
CompSci 516
Database Systems

Lecture 13
Map-Reduce

and
Spark

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements: 10/10 (Thurs)

• HW2 on Sakai
– Deadlines: Part-1: Monday Oct 21, Part-2: Monday Oct 28
– Start working on Part-1 ASAP!
– Do not start Part-2 yet (you would need AWS accounts and $ credit) –

updates to be posted on Piazza

• Private project threads are being created on Piazza
– You will be assigned a TA member
– You can use this thread to discuss ideas/questions with us
– We may ask for updates from time to time

2Duke CS, Fall 2019 CompSci 516: Database Systems

Reading Material
• Recommended (optional) readings:

– Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by
Rajaraman and Ullman: http://i.stanford.edu/~ullman/mmds.html

– Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’
04: http://research.google.com/archive/mapreduce.html

– “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing” (see course website) – by Matei Zaharia
et al. - 2012

3

Acknowledgement:
Some of the following slides have been borrowed from
Prof. Shivnath Babu, Prof. Dan Suciu, Prajakta Kalmegh, and
Junghoon Kang

Duke CS, Fall 2019 CompSci 516: Database Systems

http://i.stanford.edu/~ullman/mmds.html
http://research.google.com/archive/mapreduce.html

Map Reduce

Duke CS, Fall 2019 CompSci 516: Database Systems 4

Big Data

it cannot be stored
in one machine

store the data sets
on multiple machines

Google File System

it cannot be processed in
one machine

parallelize computation
on multiple machines

MapReduceToday!

Ack: Slide by Junghoon Kang

Will le
arn

distr
ibuted

DBMS later

Duke CS, Fall 2019 CompSci 516: Database Systems 5

The Map-Reduce Framework

• Google published MapReduce paper in OSDI
2004, a year after the Google File System paper

• A high level programming paradigm
– allows many important data-oriented processes to be

written simply
• processes large data by:
– applying a function to each logical record in the input

(map)
– categorize and combine the intermediate results

into summary values (reduce)

Duke CS, Fall 2019 CompSci 516: Database Systems 6

Where does Google use MapReduce?

MapReduce

Input

Output

● crawled documents
● web request logs

● inverted indices
● graph structure of web documents
● summaries of the number of pages

crawled per host
● the set of most frequent queries in a day

Ack: Slide by Junghoon Kang
7

Storage Model

• Data is stored in large files (TB, PB)
– e.g. market-basket data (more when we do data

mining)
– or web data

• Files are divided into chunks
– typically many MB (64 MB)
– sometimes each chunk is replicated for fault

tolerance (later in distributed DBMS)

Duke CS, Fall 2019 CompSci 516: Database Systems 8

Map-Reduce Steps

• Input is typically (key, value) pairs
– but could be objects of any type

• Map and Reduce are performed by a number of processes
– physically located in some processors

Duke CS, Fall 2019 CompSci 516: Database Systems 9

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

Map-Reduce Steps

1. Read Data
2. Map – extract some info of interest

in (key, value) form
3. Shuffle and sort

– send same keys to the same reduce
process

Duke CS, Fall 2019 CompSci 516: Database Systems 10

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

4. Reduce
– operate on the values of the same key
– e.g. transform, aggregate, summarize,

filter

5. Output the results (key, final-result)

Simple Example: Map-Reduce

• Word counting
• Inverted indexes

Ack:
Slide by Prof. Shivnath Babu

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Map Function

• Each map process works on a chunk of data
• Input: (input-key, value)
• Output: (intermediate-key, value) -- may not be the same as input key value
• Example: list all doc ids containing a word

– output of map (word, docid) – emits each such pair
– word is key, docid is value
– duplicate elimination can be done at the reduce phase

Duke CS, Fall 2019 CompSci 516: Database Systems 12

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

Reduce Function

• Input: (intermediate-key, list-of-values-for-this-key) – list can include duplicates
– each map process can leave its output in the local disk, reduce process can retrieve its

portion
• Output: (output-key, final-value)
• Example: list all doc ids containing a word

– output will be a list of (word, [doc-id1, doc-id5, ….])
– if the count is needed, reduce counts #docs, output will be a list of (word, count)

Duke CS, Fall 2019 CompSci 516: Database Systems 13

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

Example Problem: Map Reduce
Explain how the query will be executed in

MapReduce

• SELECT a, max(b) as topb
• FROM R
• WHERE a > 0
• GROUP BY a

Specify the computation performed in the map and
the reduce functions
Duke CS, Fall 2019 CompSci 516: Database Systems 14

Map

• Each map task
– Scans a block of R
– Calls the map function for each tuple
– The map function applies the selection predicate to the

tuple
– For each tuple satisfying the selection, it outputs a record

with key = a and value = b

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

•When each map task scans multiple relations, it needs to output something like
key = a and value = (‘R’, b)
which has the relation name ‘R’

Duke CS, Fall 2019 CompSci 516: Database Systems 15

Shuffle

• The MapReduce engine reshuffles the output of the
map phase and groups it on the intermediate key, i.e.
the attribute a

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

•Note that the programmer has to write only the map and reduce functions, the
shuffle phase is done by the MapReduce engine (although the programmer can
rewrite the partition function), but you should still mention this in your answers

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Reduce
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

• Each reduce task
• computes the aggregate value max(b) = topb for each group

(i.e. a) assigned to it (by calling the reduce function)
• outputs the final results: (a, topb)

•Multiple aggregates can be output by the reduce phase like
key = a and value = (sum(b), min(b)) etc.

• Sometimes a second (third etc) level of Map-Reduce phase might be needed

A local combiner can be used to compute local max before data
gets reshuffled (in the map tasks)

Duke CS, Fall 2019 CompSci 516: Database Systems 17

More Terminology

• A Map-Reduce “Job”
– e.g. count the words in all docs
– complex queries can have multiple MR jobs

• Map or Reduce “Tasks”
– A group of map or reduce “functions”
– scheduled on a single “worker”

• Worker
– a process that executes one task at a time
– one per processor, so 4-8 per machine

• A master controller
– divides the data into chunks
– assigns different processors to execute the map function on each

chunk
– other/same processors execute the reduce functions on the outputs of

the map functions

Duke CS, Fall 2019 CompSci 516: Database Systems 18

however, there is no uniform
terminology across systems

Ack: Slide by Prof. Dan Suciu

Why is Map-Reduce Popular?

• Distributed computation before MapReduce
– how to divide the workload among multiple machines?
– how to distribute data and program to other machines?
– how to schedule tasks?
– what happens if a task fails while running?
– … and … and ...

• Distributed computation after MapReduce
– how to write Map function?
– how to write Reduce function?

• Developers’ tasks made easy!

Duke CS, Fall 2019 CompSci 516: Database Systems 19

Ack: Slide by Junghoon Kang

Handling Fault Tolerance in MR

• Although the probability of a machine failure is
low, the probability of a machine failing among
thousands of machines is common

• Worker Failure
– The master sends heartbeat to each worker node
– If a worker node fails, the master reschedules the

tasks handled by the worker
• Master Failure
– The whole MapReduce job gets restarted through a

different master

Duke CS, Fall 2019 CompSci 516: Database Systems 20
Ack: Slide by Junghoon Kang

Other aspects of MapReduce

• Locality
– The input data is managed by GFS
– Choose the cluster of MapReduce machines such that

those machines contain the input data on their local disk
• To conserve network bandwidth

• Task granularity
– Smaller the partition size, faster failover and better

granularity in load balance, but it incurs more overhead
• Need a balance

• Backup Tasks
– In order to cope with a “straggler”, the master schedules

backup executions of the remaining in-progress tasks

Duke CS, Fall 2019 CompSci 516: Database Systems 21
Ack: Slide by Junghoon Kang

Apache Hadoop

• Apache Hadoop has an open-source version of
GFS and MapReduce
– GFS -> HDFS (Hadoop File System)
– Google MapReduce -> Hadoop MapReduce

• You can download the software and
implement your own MapReduce applications

Duke CS, Fall 2019 CompSci 516: Database Systems 22
Ack: Slide by Junghoon Kang

Map Reduce Pros and Cons

• MapReduce is good for off-line batch jobs on
large data sets

• MapReduce is not good for iterative jobs due
to high I/O overhead as each iteration needs
to read/write data from/to GFS

• MapReduce is bad for jobs on small datasets
and jobs that require low-latency response

Duke CS, Fall 2019 CompSci 516: Database Systems 23
Ack: Slide by Junghoon Kang

Spark

Duke CS, Fall 2019 CompSci 516: Database Systems 24

See the RDD paper from
the course website

What is Spark?

• Not a modified version of Hadoop

• Separate, fast, MapReduce-like engine
– In-memory data storage for very fast iterative queries
–General execution graphs and powerful optimizations
–Up to 40x faster than Hadoop
–Up to 100x faster (2-10x on disk)

• Compatible with Hadoop’s storage APIs
– Can read/write to any Hadoop-supported system, including HDFS,

HBase, SequenceFiles, etc

Borrowed slide

Distributed in-memory large scale data processing engine!

Ack: Slide by Prajakta Kalmegh

Duke CS, Fall 2019 CompSci 516: Database Systems 25

Applications
(Big Data Analysis)

• In-memory analytics & anomaly detection
(Conviva)

• Interactive queries on data streams (Quantifind)
• Exploratory log analysis (Foursquare)
• Traffic estimation w/ GPS data (Mobile

Millennium)
• Twitter spam classification (Monarch)
• . . .

Borrowed slide

Ack: Slide by Prajakta Kalmegh

Duke CS, Fall 2019 CompSci 516: Database Systems 26

Why a New Programming Model?

• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted

more:
–More complex, multi-stage iterative applications

(graph algorithms, machine learning)
–More interactive ad-hoc queries
–More real-time online processing
• All three of these apps require fast data sharing

across parallel jobs

Borrowed slide

NOTE: What were the workarounds in MR world?
Ysmart [1], Stubby[2], PTF[3], Haloop [4], Twister [5]

Ack: Slide by Prajakta Kalmegh

Duke CS, Fall 2019 CompSci 516: Database Systems 27

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO
Borrowed slide

Ack: Slide by Prajakta Kalmegh

Duke CS, Fall 2019 CompSci 516: Database Systems 28

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network and disk
Borrowed slide

Ack: Slide by Prajakta Kalmegh

Duke CS, Fall 2019 CompSci 516: Database Systems 29

RDD: Spark Programming Model

• Key idea: Resilient Distributed Datasets
(RDDs)
–Distributed collections of objects that can be

cached in memory or stored on disk across
cluster nodes
–Manipulated through various parallel operators
–Automatically rebuilt on failure (How? Use

Lineage)

Borrowed slide

Ack: Slide by Prajakta Kalmegh

Duke CS, Fall 2019 CompSci 516: Database Systems 30

Additional Slides on Spark
(Optional Reading)

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Ack: The following slides are by
Prajakta Kalmegh

More on RDDs
• Transformations: Created through deterministic operations on either

‣ data in stable storage or

‣ other RDDs

• Lineage: RDD has enough information about how it was derived from other
datasets

• Immutable: RDD is a read-only, partitioned collection of records

‣ Checkpointing of RDDs with long lineage chains can be done in the
background.

‣ Mitigating stragglers: We can use backup tasks to recompute
transformations on RDDs

• Persistence level: Users can choose a re-use storage strategy (caching in
memory, storing the RDD only on disk or replicating it across machines; also
chose a persistence priority for data spills)

• Partitioning: Users can ask that an RDD’s elements be partitioned across
machines based on a key in each record

32

RDD Transformations and Actions

*http://www.tothenew.com/blog/spark-1o3-spark-internals/

*https://spark.apache.org/docs/1.0.1/cluster-overview.html

Note: Lazy Evaluation: A very important concept

33

https://spark.apache.org/docs/1.0.1/cluster-overview.html

DAG of RDDs

*https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
34

Fault Tolerance

• RDDs track the series of transformations used
to build them (their lineage) to recompute lost
data

• E.g:
messages = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

Borrowed slide

Tradeoff:
Low Computation cost (cache more RDDs)

VS High memory cost (not much work for GC)
Duke CS, Fall 2019 CompSci 516: Database Systems 35

Representing RDDs
• Graph-based representation. Five components :

36

Representing RDDs
(Dependencies)

one-to-one many-to-one many-to-many

shuffle

37

Representing RDDs (An
example)

38

Advantages of the RDD
model

39

Checkpoint!

• Data Sharing in Spark and Some Applications
• RDD Definition, Model, Representation,

Advantages

Duke CS, Fall 2019 CompSci 516: Database Systems 40

Other Engine Features:
Implementation

• Not covered in details

• Some Summary:
• Spark local vs Spark Standalone vs Spark cluster (Resource sharing

handled by Yarn/Mesos)
• Job Scheduling: DAGScheduler vs TaskScheduler (Fair vs FIFO at task

granularity)
• Memory Management: serialized in-memory(fastest) VS deserialized in-

memory VS on-disk persistent

• Support for Checkpointing: Tradeoff between using lineage for
recomputing partitions VS checkpointing partitions on stable storage

• Interpreter Integration: Ship external instances of variables referenced in
a closure along with the closure class to worker nodes in order to give
them access to these variables

Duke CS, Fall 2019 CompSci 516: Database Systems 41

