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Announcements: 10/10 (Thurs)

• HW2 on Sakai
– Deadlines: Part-1: Monday Oct 21, Part-2: Monday Oct 28
– Start working on Part-1 ASAP!
– Do not start Part-2 yet (you would need AWS accounts and $ credit) –

updates to be posted on Piazza

• Private project threads are being created on Piazza
– You will be assigned a TA member
– You can use this thread to discuss ideas/questions with us
– We may ask for updates from time to time
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Reading Material
• Recommended (optional) readings:

– Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by 
Rajaraman and Ullman:  http://i.stanford.edu/~ullman/mmds.html

– Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’ 
04: http://research.google.com/archive/mapreduce.html

– “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing” (see course website) – by Matei Zaharia
et al. - 2012
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Map Reduce
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Big Data

it cannot be stored
in one machine

store the data sets 
on multiple machines

Google File System

it cannot be processed in 
one machine

parallelize computation 
on multiple machines

MapReduceToday!

Ack: Slide by Junghoon Kang

Will le
arn 

distr
ibuted 

DBMS later
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The Map-Reduce Framework

• Google published MapReduce paper in OSDI 
2004, a year after the Google File System paper

• A high level programming paradigm
– allows many important data-oriented processes to be 

written simply
• processes large data by:
– applying a function to each logical record in the input 

(map)
– categorize and combine the intermediate results 

into summary values (reduce)
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Where does Google use MapReduce?

MapReduce

Input

Output

● crawled documents
● web request logs

● inverted indices
● graph structure of web documents
● summaries of the number of pages 

crawled per host
● the set of most frequent queries in a day

Ack: Slide by Junghoon Kang
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Storage Model

• Data is stored in large files (TB, PB)
– e.g. market-basket data (more when we do data 

mining)
– or web data

• Files are divided into chunks
– typically many MB (64 MB)
– sometimes each chunk is replicated for fault 

tolerance (later in distributed DBMS)
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Map-Reduce Steps

• Input is typically (key, value) pairs
– but could be objects of any type

• Map and Reduce are performed by a number of processes
– physically located in some processors
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Map-Reduce Steps

1. Read Data
2. Map – extract some info of interest 

in (key, value) form
3. Shuffle and sort

– send same keys to the same reduce 
process
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same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key

4. Reduce
– operate on the values of the same key
– e.g. transform, aggregate, summarize, 

filter

5. Output the results (key, final-result)



Simple Example: Map-Reduce

• Word counting
• Inverted indexes

Ack:
Slide by Prof. Shivnath Babu
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Map Function

• Each map process works on a chunk of data
• Input: (input-key, value)
• Output: (intermediate-key, value) -- may not be the same as input key value
• Example: list all doc ids containing a word

– output of map (word, docid) – emits each such pair
– word is key, docid is value
– duplicate elimination can be done at the reduce phase
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Reduce Function

• Input: (intermediate-key, list-of-values-for-this-key) – list can include duplicates
– each map process can leave its output in the local disk, reduce process can retrieve its 

portion
• Output: (output-key, final-value)
• Example: list all doc ids containing a word

– output will be a list of (word, [doc-id1, doc-id5, ….])
– if the count is needed, reduce counts #docs, output will be a list of (word, count)

Duke CS, Fall 2019 CompSci 516: Database Systems 13

same key

Map ReduceShuffle
Input
key-value pairs

output
listssort by key



Example Problem: Map Reduce
Explain how the query will be executed in 

MapReduce

• SELECT a, max(b) as topb
• FROM R
• WHERE a > 0
• GROUP BY a

Specify the computation performed in the map and 
the reduce functions
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Map

• Each map task
– Scans a block of R
– Calls the map function for each tuple
– The map function applies the selection predicate to the 

tuple
– For each tuple satisfying the selection, it outputs a record 

with key = a and value = b

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

•When each map task scans multiple relations, it needs to output something like 
key = a and value = (‘R’, b) 
which has the relation name ‘R’
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Shuffle

• The MapReduce engine reshuffles the output of the 
map phase and groups it on the intermediate key, i.e. 
the attribute a

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

•Note that the programmer has to write only the map and reduce functions, the 
shuffle phase is done by the MapReduce engine (although the programmer can 
rewrite the partition function), but you should still mention this in your answers
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Reduce
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

• Each reduce task
• computes the aggregate value max(b) = topb for each group 

(i.e. a) assigned to it (by calling the reduce function) 
• outputs the final results: (a,  topb)   

•Multiple aggregates can be output by the reduce phase like
key = a and value = (sum(b), min(b)) etc.

• Sometimes a second (third etc) level of Map-Reduce phase might be needed

A local combiner can be used to compute local max before data 
gets reshuffled (in the map tasks)

Duke CS, Fall 2019 CompSci 516: Database Systems 17



More Terminology

• A Map-Reduce “Job”
– e.g. count the words in all docs
– complex queries can have multiple MR jobs

• Map or Reduce “Tasks”
– A group of map or reduce “functions”
– scheduled on a single “worker”

• Worker 
– a process that executes one task at a time
– one per processor, so 4-8 per machine

• A master controller 
– divides the data into chunks
– assigns different processors to execute the map function on each 

chunk
– other/same processors execute the reduce functions on the outputs of 

the map functions
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terminology across systems
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Why is Map-Reduce Popular?

• Distributed computation before MapReduce
– how to divide the workload among multiple machines?
– how to distribute data and program to other machines?
– how to schedule tasks?
– what happens if a task fails while running?
– … and … and ...

• Distributed computation after MapReduce
– how to write Map function?
– how to write Reduce function?

• Developers’ tasks made easy!
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Handling Fault Tolerance in MR

• Although the probability of a machine failure is 
low, the probability of a machine failing among 
thousands of machines is common

• Worker Failure
– The master sends heartbeat to each worker node
– If a worker node fails, the master reschedules the 

tasks handled by the worker
• Master Failure
– The whole MapReduce job gets restarted through a 

different master
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Other aspects of MapReduce

• Locality
– The input data is managed by GFS
– Choose the cluster of MapReduce machines such that 

those machines contain the input data on their local disk
• To conserve network bandwidth

• Task granularity
– Smaller the partition size, faster failover and better 

granularity in load balance, but it incurs more overhead 
• Need a balance

• Backup Tasks
– In order to cope with a “straggler”, the master schedules 

backup executions of the remaining in-progress tasks
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Apache Hadoop

• Apache Hadoop has an open-source version of 
GFS and MapReduce
– GFS -> HDFS (Hadoop File System)
– Google MapReduce -> Hadoop MapReduce

• You can download the software and 
implement your own MapReduce applications
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Map Reduce Pros and Cons

• MapReduce is good for off-line batch jobs on 
large data sets

• MapReduce is not good for iterative jobs due 
to high I/O overhead as each iteration needs 
to read/write data from/to GFS

• MapReduce is bad for jobs on small datasets 
and jobs that require low-latency response
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Spark
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See the RDD paper from 
the course website



What is Spark?

• Not a modified version of Hadoop

• Separate, fast, MapReduce-like engine
– In-memory data storage for very fast iterative queries
–General execution graphs and powerful optimizations
–Up to 40x faster than Hadoop
–Up to 100x faster (2-10x on disk) 

• Compatible with Hadoop’s storage APIs
– Can read/write to any Hadoop-supported system, including HDFS, 

HBase, SequenceFiles, etc

Borrowed slide

Distributed in-memory large scale data processing engine!

Ack: Slide by Prajakta Kalmegh
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Applications
(Big Data Analysis)

• In-memory analytics & anomaly detection 
(Conviva)

• Interactive queries on data streams (Quantifind)
• Exploratory log analysis (Foursquare)
• Traffic estimation w/ GPS data (Mobile 

Millennium)
• Twitter spam classification (Monarch)
• . . .

Borrowed slide

Ack: Slide by Prajakta Kalmegh
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Why a New Programming Model?

• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted 

more:
–More complex, multi-stage iterative applications 

(graph algorithms, machine learning)
–More interactive ad-hoc queries
–More real-time online processing
• All three of these apps require fast data sharing

across parallel jobs

Borrowed slide

NOTE: What were the workarounds in MR world? 
Ysmart [1], Stubby[2], PTF[3], Haloop [4], Twister [5]

Ack: Slide by Prajakta Kalmegh
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Data Sharing in MapReduce

iter. 1 iter. 2 .  .  .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

.  .  .

HDFS
read

Slow due to replication, serialization, and disk IO
Borrowed slide

Ack: Slide by Prajakta Kalmegh
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iter. 1 iter. 2 .  .  .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

.  .  .

one-time
processing

10-100× faster than network and disk
Borrowed slide

Ack: Slide by Prajakta Kalmegh
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RDD: Spark Programming Model

• Key idea: Resilient Distributed Datasets 
(RDDs)
–Distributed collections of objects that can be 

cached in memory or stored on disk across 
cluster nodes
–Manipulated through various parallel operators
–Automatically rebuilt on failure (How? Use 

Lineage)

Borrowed slide

Ack: Slide by Prajakta Kalmegh
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Additional Slides on Spark
(Optional Reading)
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Ack: The following slides are by 
Prajakta Kalmegh



More on RDDs
• Transformations: Created through deterministic operations on either 

‣ data in stable storage or 

‣ other RDDs

• Lineage: RDD has enough information about how it was derived from other 
datasets

• Immutable: RDD is a read-only, partitioned collection of records

‣ Checkpointing of RDDs with long lineage chains can be done in the 
background. 

‣ Mitigating stragglers: We can use backup tasks to recompute 
transformations on RDDs

• Persistence level: Users can choose a re-use storage strategy (caching in 
memory, storing the RDD only on disk or replicating it across machines; also 
chose a persistence priority for data spills) 

• Partitioning: Users can ask that an RDD’s elements be partitioned across 
machines based on a key in each record
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RDD Transformations and Actions

*http://www.tothenew.com/blog/spark-1o3-spark-internals/

*https://spark.apache.org/docs/1.0.1/cluster-overview.html

Note: Lazy Evaluation: A very important concept
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DAG of RDDs

*https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
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Fault Tolerance

• RDDs track the series of transformations used 
to build them (their lineage) to recompute lost 
data

• E.g:
messages = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

Borrowed slide

Tradeoff: 
Low Computation cost (cache more RDDs) 

VS High memory cost (not much work for GC)
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Representing RDDs
• Graph-based representation. Five components :
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Representing RDDs 
(Dependencies)

one-to-one many-to-one many-to-many

shuffle
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Representing RDDs (An 
example)
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Advantages of the RDD 
model
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Checkpoint!

• Data Sharing in Spark and Some Applications
• RDD Definition, Model, Representation, 

Advantages
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Other Engine Features: 
Implementation

• Not covered in details 

• Some Summary:
• Spark local vs Spark Standalone vs Spark cluster (Resource sharing 

handled by Yarn/Mesos)
• Job Scheduling: DAGScheduler vs TaskScheduler (Fair vs FIFO at task 

granularity)
• Memory Management: serialized in-memory(fastest) VS deserialized in-

memory VS on-disk persistent

• Support for Checkpointing: Tradeoff between using lineage for 
recomputing partitions  VS checkpointing partitions on stable storage

• Interpreter Integration: Ship external instances of variables referenced in 
a closure along with the closure class to worker nodes in order to give 
them access to these variables
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