
CompSci 516
Database Systems

Lecture 23-24
Parallel DBMS

Distributed DBMS
NOSQL

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements (Thurs, 11/19)
• HW3/Mongo Due today!
• Keep working on projects!

2Duke CS, Fall 2019 CompSci 516: Database Systems

Reading Material
• [RG]

– Parallel DBMS: Chapter 22.1-22.5
– Distributed DBMS: Chapter 22.6 – 22.14

• [GUW]
– Parallel DBMS and map-reduce: Chapter 20.1-20.2
– Distributed DBMS: Chapter 20.3, 20.4.1-20.4.2, 20.5-20.6

• Other recommended readings:
– Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by Rajaraman and Ullman:

http://i.stanford.edu/~ullman/mmds.html
– Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’ 04:

http://research.google.com/archive/mapreduce.html

3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Fall 2019 CompSci 516: Database Systems

http://i.stanford.edu/~ullman/mmds.html
http://research.google.com/archive/mapreduce.html

Parallel DBMS

Duke CS, Fall 2019 CompSci 516: Database Systems 4

Why Parallel Access To Data?

At 10 MB/s
1.2 days to scan

1,000 x parallel
1.5 minute to scan.

Parallelism:
divide a big problem
into many smaller ones
to be solved in parallel.

Duke CS, Fall 2019 CompSci 516: Database Systems 5

1 TB
Data

1 TB
Data

Parallel DBMS
• Parallelism is natural to DBMS processing

– Pipeline parallelism: many machines each doing
one step in a multi-step process.

– Data-partitioned parallelism: many machines doing
the same thing to different pieces of data.

– Both are natural in DBMS!

Pipeline
Any

Sequential
Program

Any
Sequential
Program

Partition SequentialSequential SequentialSequential Any
Sequential
Program

Any
Sequential
Program

outputs split N ways, inputs merge M ways
Duke CS, Fall 2019 CompSci 516: Database Systems 6

DBMS: The parallel Success Story

• DBMSs are the most successful application of
parallelism
– Teradata (1979), Tandem (1974, later acquired by HP),..
– Every major DBMS vendor has some parallel server

• Reasons for success:
– Bulk-processing (= partition parallelism)
– Natural pipelining
– Inexpensive hardware can do the trick
– Users/app-programmers don’t need to think in parallel

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Some || Terminology

• Speed-Up
– More resources means

proportionally less time
for given amount of data.

• Scale-Up
– If resources increased in

proportion to increase in
data size, time is constant.

#CPUs
(degree of ||-ism)

#o
ps

/s
ec

.
(t

hr
ou

gh
pu

t)

Ideal:
linear speed-up

#o
ps

/s
ec

(t
hr

ou
gh

ou
t)

#CPUs + size of database
degree of ||-ism

Ideal:
linear scale-up

Ideal graphs

Duke CS, Fall 2019 CompSci 516: Database Systems 8

Some || Terminology

• Due to overhead in parallel processing

• Start-up cost
Starting the operation on many processor,
might need to distribute data

• Interference
Different processors may compete for the
same resources

• Skew
The slowest processor (e.g. with a huge
fraction of data) may become the
bottleneck

#CPUs
(degree of ||-ism)

#o
ps

/s
ec

.
(t

hr
ou

gh
pu

t)

#CPUs + size of database
degree of ||-ism

#o
ps

/s
ec

(t
hr

ou
gh

pu
t)

In practice

Ideal:
linear speed-up

Ideal:
linear scale-up

Actual: sub-linear
speed-up

Actual: sub-linear
scale-up

Duke CS, Fall 2019 CompSci 516: Database Systems 9

Basics of Parallelism
• Units: a collection of processors

– assume always have local cache
– may or may not have local memory or disk (next)

• A communication facility to pass information among
processors
– a shared bus or a switch

• Different architecture
– Whether memory AND/OR disk are shared

Duke CS, Fall 2019 CompSci 516: Database Systems 10

Shared Memory

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Interconnection Network

P P P

D D D

Global Shared Memoryshared
memory

• Easy to program
• Expensive to build
• Low communication

overhead: shared mem.
• Difficult to scaleup
(memory contention)

Shared Disk

Duke CS, Fall 2019 CompSci 516: Database Systems 12

P P P

M

D

M

D

M

D

Interconnection Network

local
memory

shared disk

• Trade-off but still
interference like
shared-memory
(contention of memory
and nw bandwidth)

Shared Nothing

Duke CS, Fall 2019 CompSci 516: Database Systems 13

Interconnection Network

P P P

M

D

M

D

M

D

local
memory
and disk

no two
CPU can access
the same
storage area

all communication
through a
network
connection

• Hard to program
and design
parallel algos

• Cheap to build
• Easy to scaleup

and speedup
• Considered to be

the best
architecture

• We will assume
this architecture!

End Of Lecture 23

Different Types of DBMS Parallelism
• Intra-operator parallelism

– get all machines working to compute a given
operation (scan, sort, join)

– OLAP (decision support)

• Inter-operator parallelism
– each operator may run concurrently on a

different site (exploits pipelining)
– For both OLAP and OLTP

• Inter-query parallelism
– different queries run on different sites
– For OLTP

• We’ll focus on intra-operator parallelism

⨝

𝝲

⨝

𝝲

⨝

𝝲

⨝

𝝲

Duke CS, Fall 2019 CompSci 516: Database Systems 14

Ack:
Slide by Prof. Dan Suciu

Data Partitioning
Horizontally Partitioning a table (why horizontal?):
Range-partition Hash-partition Block-partition

or Round Robin

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

• Good for equijoins,
range queries, group-by
• Can lead to data skew

• Good for equijoins
• But only if hashed

on that attribute
• Can lead to data

skew

• Send i-th tuple to
i-mod-n processor

• Good to spread
load

• Good when the
entire relation is
accessed

Duke CS, Fall 2019 CompSci 516: Database Systems 15

• Why?
• Trivial counter-example:

– Table partitioned with local secondary index
at two nodes

– Range query: all of node 1 and 1% of node 2.
– Node 1 should do a scan of its partition.
– Node 2 should use secondary index.

Best serial plan may not be best ||

N..Z

Table
Scan

A..M

Index
Scan

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Example problem: Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N = 3
machines.

Pick an efficient plan that leverages the parallelism as much as possible.

• SELECT a, max(b) as topb
• FROM R
• WHERE a > 0
• GROUP BY a

Duke CS, Fall 2019 CompSci 516: Database Systems 17

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

Duke CS, Fall 2019 CompSci 516: Database Systems 18

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc

Duke CS, Fall 2019 CompSci 516: Database Systems 19

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

sa>0 sa>0 sa>0

Duke CS, Fall 2019 CompSci 516: Database Systems 20

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)-> b ga, max(b)-> b ga, max(b)-> b

Duke CS, Fall 2019 CompSci 516: Database Systems 21

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)-> b ga, max(b)-> b ga, max(b)-> b

Hash on a Hash on a Hash on a

Duke CS, Fall 2019 CompSci 516: Database Systems 22

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)-> b ga, max(b)-> b ga, max(b)-> b

Hash on a Hash on a Hash on a

Duke CS, Fall 2019 CompSci 516: Database Systems 23

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)-> b ga, max(b)-> b ga, max(b)-> b

Hash on a Hash on a Hash on a

ga, max(b)->topb ga, max(b)->topb ga, max(b)->topb

Duke CS, Fall 2019 CompSci 516: Database Systems 24

Benefit of hash-partitioning

• What would change if we hash-partitioned R
on R.a before executing the same query on
the previous parallel DBMS and MR

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

Duke CS, Fall 2019 CompSci 516: Database Systems 25

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aPrev: block-partition

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)-> b ga, max(b)-> b ga, max(b)-> b

Hash on a Hash on a Hash on a

ga, max(b)->topb ga, max(b)->topb ga, max(b)->topb

Duke CS, Fall 2019 CompSci 516: Database Systems 26

• It would avoid the data re-shuffling phase
• It would compute the aggregates locally

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

Duke CS, Fall 2019 CompSci 516: Database Systems 27

Hash-partition on a for R(a, b)

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)->topb ga, max(b)->topb ga, max(b)->topb

Duke CS, Fall 2019 CompSci 516: Database Systems 28

Distributed DBMS

Duke CS, Fall 2019 CompSci 516: Database Systems 29

Parallel vs. Distributed DBMS
Parallel DBMS

• Parallelization of various
operations
– e.g. loading data, building

indexes, evaluating queries

• Data may or may not be
distributed initially

• Distribution is governed
by performance
consideration

Duke CS, Fall 2019 CompSci 516: Database Systems 30

Distributed DBMS

• Data is physically stored across
different sites
– Each site is typically managed by an

independent DBMS

• Location of data and autonomy of
sites have an impact on Query opt.,
Conc. Control and recovery

• Also governed by other factors:
– increased availability for system

crash
– local ownership and access

Topics in Distributed DBMS

• Architecture
• Data Storage
• Query Execution
• Transactions – updates
• Recovery – Two Phase Commit (2PC)

• A brief overview / examples of all these

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Distributed Data Independence
• Users should not have to know where data is

located
– no need to know the locations of references

relations, their copies or fragments (later)
– extends Physical and Logical Data Independence

principles

• Queries spanning multiple sites should be
optimized in a cost-based manner
– taking into account communication costs and

differences in local computation costs

Duke CS, Fall 2019 CompSci 516: Database Systems 32

Distributed DBMS Architectures

• Three alternative approaches

1. Client-Server
– Client: user interace, server: executes queries

2. Collaborating Server
– All are of the same status

3. Middleware
– Good for integrating legacy systems, middleware

coordinates, individual server executes local queries

Duke CS, Fall 2019 CompSci 516: Database Systems 33

CLIENT CLIENT

SERVER SERVER SERVER

QUERY

SERVER
SERVER

SERVERQUERY

Storing Data in a Distributed DBMS
• A single relation may be partitioned or fragmented across

several sites
– typically at sites where they are most often accessed

• The data can be replicated as well
– when the relation is in high demand or for robustness

Duke CS, Fall 2019 CompSci 516: Database Systems 34

• Horizontal:
– Usually disjoint
– Can often be identified by a selection query

• employees in a city – locality of reference
– To retrieve the full relation, need a union

• Vertical:
– Identified by projection queries
– Typically unique TIDs added to each tuple
– TIDs replicated in each fragments
– Ensures that we have a Lossless Join

TID
t1
t2
t3
t4

Joins in a Distributed DBMS
• Can be very expensive if relations are stored at

different sites

1. Fetch as needed
2. Ship to one site
3. Semi-join
4. Bloom join

Duke CS, Fall 2019 CompSci 516: Database Systems 35

Sailors (S) Reserves (R)

LONDON PARIS

500 pages 1000 pages

Sailors as outer – for each S page, fetch all R pages
from Paris
if cached at London, each R page fetched once

Ship Sailor to Paris
Unnecessary shipping
Not all tuples used

Semijoin
• Suppose want to ship R to London and then do join with S at

London. Instead,
1. At London, project S onto join columns and ship this to Paris

– Here foreign keys, but could be arbitrary join

2. At Paris, join S-projection with R
– Result is called reduction of Reserves w.r.t. Sailors (only these tuples are

needed)

3. Ship reduction of R to back to London
4. At London, join S with reduction of R

Duke CS, Fall 2019 CompSci 516: Database Systems 36

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

• Tradeoff the cost of computing and shipping projection for cost of shipping full
R relation

– Especially useful if there is a selection on Sailors, and answer desired at London

Bloomjoin

• Similar idea like semi-join
• Suppose want to ship R to London and then do join with S at London (like semijoin)

Duke CS, Fall 2019 CompSci 516: Database Systems 37

1. At London, compute a bit-vector of some size k:
– Hash column values into range 0 to k-1
– If some tuple hashes to p, set bit p to 1 (p from 0 to k-1)
– Ship bit-vector to Paris

2. At Paris, hash each tuple of R similarly
– discard tuples that hash to 0 in S’s bit-vector
– Result is called reduction of R w.r.t S

3. Ship “bit-vector-reduced” R to London
4. At London, join S with reduced R
• Bit-vector cheaper to ship, almost as effective

– the size of the reduction of R shipped back can be larger. Why?

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

Distributed Query Optimization

• Similar to centralized optimization, but have differences
1. Communication costs must be considered
2. Local site autonomy must be respected
3. New distributed join methods should be considered

• Query site constructs global plan, with suggested
local plans describing processing at each site
– If a site can improve suggested local plan, free to do so

Duke CS, Fall 2019 CompSci 516: Database Systems 38

Updating Distributed Data
• Synchronous Replication: All copies of a modified relation (or

fragment) must be updated before the modifying transaction
commits
– Always updated but expensive commit protocols (2PC – soon!)
– By “voting” - e.g., 10 copies; 7 written for update; 4 copies read (why 4?)
– Read-any Write-all (special case of voting, why not write-any read all?)

• Asynchronous Replication: Copies of a modified relation are only
periodically updated; different copies may get out-of-sync in the
meantime
– More efficient – many current products follow this approach
– Primary site (one master copy) or peer-to-peer (multiple master copies)

Duke CS, Fall 2019 CompSci 516: Database Systems 39

Distributed Locking
• How do we manage locks for objects across many sites?

1. Centralized: One site does all locking
– Vulnerable to single site failure

2. Primary Copy: All locking for an object done at the primary copy site
– Reading requires access to locking site as well as site where the object

copy is stored
3. Fully Distributed: Locking for a copy done at site where the copy is stored

– Locks at all sites while writing an object (unlike previous two)
– May lead to “undetected” or “missing” ”global deadlock” due to delay in

information propagation
– Timeout or hierarchical detection

• e.g. sites (every 10 sec)-> sites in a state (every min)-> sites in a country (every
10 min) -> global waits for graph. Intuition: more deadlocks are likely across
closely related sites

Duke CS, Fall 2019 CompSci 516: Database Systems 40

T1 T1 T1T2 T2 T2

SITE A SITE B GLOBAL

Distributed Recovery

• Two new issues:
– New kinds of failure, e.g., links and remote sites
– If “sub-transactions” of a transaction execute at

different sites, all or none must commit
– Need a commit protocol to achieve this
– Most widely used: Two Phase Commit (2PC)

• A log is maintained at each site
– as in a centralized DBMS
– commit protocol actions are additionally logged

Duke CS, Fall 2019 CompSci 516: Database Systems 41

Two-Phase Commit (2PC)

• Site at which transaction originates is
coordinator

• Other sites at which it executes are
subordinates
– w.r.t. coordination of this transaction

Example on whiteboard

Duke CS, Fall 2019 CompSci 516: Database Systems 42

When a transaction wants to commit – 1/5

1. Coordinator sends prepare message to each
subordinate

Duke CS, Fall 2019 CompSci 516: Database Systems 43

When a transaction wants to commit – 2/5

2. Subordinate receives the prepare message
a) decides whether to abort or commit its

subtransaction
b) force-writes an abort or prepare log record
c) then sends a no or yes message to coordinator

Duke CS, Fall 2019 CompSci 516: Database Systems 44

When a transaction wants to commit – 3/5

3. If coordinator gets unanimous yes votes from
all subordinates

a) it force-writes a commit log record
b) then sends commit message to all subs

Else (if receives a no message or no response
from some subordinate),

a) it force-writes abort log record
b) then sends abort messages

Duke CS, Fall 2019 CompSci 516: Database Systems 45

When a transaction wants to commit – 4/5

4. Subordinates force-write abort/commit log
record based on message they get

a) then send ack message to coordinator
b) If commit received, commit the subtransaction
c) write an end record

Duke CS, Fall 2019 CompSci 516: Database Systems 46

When a transaction wants to commit – 5/5

5. After the coordinator receives ack from all
subordinates,

– writes end log record

Transaction is officially committed when the
coordinator’s commit log record reaches the disk

– subsequent failures cannot affect the outcomes

Duke CS, Fall 2019 CompSci 516: Database Systems 47

Comments on 2PC
• Two rounds of communication

– first, voting
– then, termination
– Both initiated by coordinator

• Any site (coordinator or subordinate) can unilaterally decide to
abort a transaction
– but unanimity/consensus needed to commit

• Every message reflects a decision by the sender
– to ensure that this decision survives failures, it is first recorded in the local

log and is force-written to disk

• All commit protocol log records for a transaction contain tid and
Coordinator-id
– The coordinator’s abort/commit record also includes ids of all

subordinates.
Duke CS, Fall 2019 CompSci 516: Database Systems 48

Restart After a Failure at a Site – 1/4

• Recovery process is invoked after a sites comes
back up after a crash
– reads the log and executes the commit protocol
– the coordinator or a subordinate may have a crash
– one site can be the coordinator some transaction and

subordinates for others

Duke CS, Fall 2019 CompSci 516: Database Systems 49

Restart After a Failure at a Site – 2/4

• If we have a commit or abort log record for
transaction T, but not an end record, must
redo/undo T respectively
– If this site is the coordinator for T (from the log

record), keep sending commit/abort messages to subs
until acks received

– then write an end log record for T

Duke CS, Fall 2019 CompSci 516: Database Systems 50

Restart After a Failure at a Site – 3/4

• If we have a prepare log record for transaction T,
but not commit/abort
– This site is a subordinate for T
– Repeatedly contact the coordinator to find status of T
– Then write commit/abort log record
– Redo/undo T
– and write end log record

Duke CS, Fall 2019 CompSci 516: Database Systems 51

Restart After a Failure at a Site – 4/4

• If we don’t have even a prepare log record for T
– T was not voted to commit before crash
– unilaterally abort and undo T
– write an end record

• No way to determine if this site is the coordinator
or subordinate
– If this site is the coordinator, it might have sent

prepare messages
– then, subs may send yes/no message – coordinator is

detected – ask subordinates to abort

Duke CS, Fall 2019 CompSci 516: Database Systems 52

Blocking

• If coordinator for transaction T fails, subordinates
who have voted yes cannot decide whether to
commit or abort T until coordinator recovers.
– T is blocked
– Even if all subordinates know each other (extra

overhead in prepare message) they are blocked unless
one of them voted no

• Note: even if all subs vote yes, the coordinator
then can give a no vote, and decide later to
abort!

Duke CS, Fall 2019 CompSci 516: Database Systems 53

Link and Remote Site Failures

• If a remote site does not respond during the
commit protocol for transaction T, either because
the site failed or the link failed:
– If the current site is the coordinator for T, should abort T
– If the current site is a subordinate, and has not yet voted

yes, it should abort T
– If the current site is a subordinate and has voted yes, it is

blocked until the coordinator responds
– needs to periodically contact the coordinator until

receives a reply

Duke CS, Fall 2019 CompSci 516: Database Systems 54

Observations on 2PC

• Ack messages used to let coordinator know when it
can “forget” a transaction; until it receives all acks, it
must keep T in the transaction Table

• If coordinator fails after sending prepare messages
but before writing commit/abort log records, when it
recovers, it aborts the transaction

• If a subtransaction does no updates, its commit or
abort status is irrelevant

Duke CS, Fall 2019 CompSci 516: Database Systems 55

NoSQL

• Optional reading:
– Cattell’s paper (2010-11)
– Warning! some info will be outdated
– see webpage http://cattell.net/datastores/ for

updates and more pointers
Duke CS, Fall 2019 CompSci 516: Database Systems 56

Lecture 25

http://cattell.net/datastores/

NOSQL
• Many of the new systems are referred to as “NoSQL” data

stores
– MongoDB, CouchDB, VoltDB, Dynamo, Membase, ….

• NoSQL stands for “Not Only SQL” or “Not Relational”
– not entirely agreed upon

• NoSQL = “new” database systems
– not typically RDBMS
– relax on some requirements, gain efficiency and scalability

• New systems choose to use/not use several concepts we
learnt so far
– You may find systems that use multi-version Concurrency Control

(MVCC) or, asynchronous replication

Duke CS, Fall 2019 CompSci 516: Database Systems 57

OLTP (Online
Transaction Processing)

Data Warehousing/OLAP (On
Line Analytical Processing)

Mostly updates Mostly reads
Applications:
Order entry, sales update,
banking transactions

Applications:
Decision support in industry/organization

Detailed, up-to-date data Summarized, historical data
(from multiple operational db, grows over
time)

Structured, repetitive, short tasks Query intensive, ad hoc, complex queries
Each transaction reads/updates
only a few tuples (tens of)

Each query can access many records, and
perform many joins, scans, aggregates

MB-GB data GB-TB data
Typically clerical users Decision makers, analysts as users
Important:
Consistency, recoverability,
Maximizing tr. throughput

Important:
Query throughput
Response times

58Duke CS, Fall 2018 CompSci 516: Database Systems

Applications of New Systems

• Designed to scale simple “OLTP”-style application
loads
– to do updates as well as reads
– in contrast to traditional DBMSs and data warehouses
– to provide good horizontal scalability for simple read/write

database operations distributed over many servers

• Originally motivated by Web 2.0 applications
– these systems are designed to scale to thousands or

millions of users

Duke CS, Fall 2019 CompSci 516: Database Systems 59

NoSQL: Six Key Features

1. the ability to horizontally scale “simple operations”
throughput over many servers

2. the ability to replicate and to distribute (partition) data over
many servers

3. a simple call level interface or protocol (in contrast to SQL
binding)

4. a weaker concurrency model than the ACID transactions of
most relational (SQL) database systems

5. efficient use of distributed indexes and RAM for data storage
6. the ability to dynamically add new attributes to data records

Duke CS, Fall 2019 CompSci 516: Database Systems 60

BASE (not ACID J)

• Recall ACID for RDBMS desired properties of
transactions:
– Atomicity, Consistency, Isolation, and Durability

• NOSQL systems typically do not provide ACID

• Basically Available
• Soft state
• Eventually consistent

Duke CS, Fall 2019 CompSci 516: Database Systems 61

ACID vs. BASE
• The idea is that by giving up ACID constraints, one

can achieve much higher performance and scalability

• The systems differ in how much they give up
– e.g. most of the systems call themselves “eventually

consistent”, meaning that updates are eventually
propagated to all nodes

– but many of them provide mechanisms for some degree of
consistency, such as multi-version concurrency control
(MVCC)

Duke CS, Fall 2019 CompSci 516: Database Systems 62

“CAP” “Theorem”

• Often Eric Brewer’s CAP theorem cited for NoSQL

• A system can have only two out of three of the following
properties:
– Consistency,
– Availability
– Partition-tolerance

• The NoSQL systems generally give up consistency
– However, the trade-offs are complex

Duke CS, Fall 2019 CompSci 516: Database Systems 63

What is different in NOSQL systems

• When you study a new NOSQL system, notice
how it differs from RDBMS in terms of

1. Concurrency Control
2. Data Storage Medium
3. Replication
4. Transactions

Duke CS, Fall 2019 CompSci 516: Database Systems 64

Choices in NOSQL systems:
1. Concurrency Control

a) Locks
– some systems provide one-user-at-a-time read or update locks
– MongoDB provides locking at a field level

b) MVCC
c) None

– do not provide atomicity
– multiple users can edit in parallel
– no guarantee which version you will read

d) ACID
– pre-analyze transactions to avoid conflicts
– no deadlocks and no waits on locks

Duke CS, Fall 2019 CompSci 516: Database Systems 65

Choices in NOSQL systems:
2. Data Storage Medium

a) Storage in RAM
– snapshots or replication to disk
– poor performance when overflows RAM

b) Disk storage
– caching in RAM

Duke CS, Fall 2019 CompSci 516: Database Systems 66

Choices in NOSQL systems:
3. Replication

• whether mirror copies are always in sync
a) Synchronous
b) Asynchronous

– faster, but updates may be lost in a crash

c) Both
– local copies synchronously, remote copies

asynchronously

Duke CS, Fall 2019 CompSci 516: Database Systems 67

Choices in NOSQL systems:
4. Transaction Mechanisms

a) support
b) do not support
c) in between

– support local transactions only within a single
object or “shard”

– shard = a horizontal partition of data in a
database

Duke CS, Fall 2019 CompSci 516: Database Systems 68

Comparison from Cattell’s paper (2011)

Duke CS, Fall 2019 CompSci 516: Database Systems 69

FYI only -Details not covered

Data Store Categories
• The data stores are grouped according to their data model
• Key-value Stores:

– store values and an index to find them based on a programmer- defined key
– e.g. Project Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet,

Memcached/Membrain/Membase

• Document Stores:
– store documents, which are indexed, with a simple query mechanism
– e.g. Amazon SimpleDB, CouchDB, MongoDB, Terrastore

• Extensible Record Stores:
– store extensible records that can be partitioned vertically and horizontally across

nodes (“wide column stores”)
– e.g. Hbase, HyperTable, Cassandra, Yahoo’s PNUTS

• “New” Relational Databases:
– store (and index and query) tuples, e.g. the new RDBMSs that provide horizontal

scaling
– e.g. MySQL Cluster, VoltDB, Clustrix, ScaleDB, ScaleBase, NimbusDB, Google

Megastore (a layer on BigTable)Duke CS, Fall 2019 CompSci 516: Database Systems 70

FYI only -Details not covered

RDBMS benefits

• Relational DBMSs have taken and retained majority market share
over other competitors in the past 30 years

• While no “one size fits all” in the SQL products themselves, there is
a common interface with SQL, transactions, and relational schema
that give advantages in training, continuity, and data interchange

• Successful relational DBMSs have been built to handle other
specific application loads in the past:
– read-only or read-mostly data warehousing, OLTP on multi-core multi-

disk CPUs, in-memory databases, distributed databases, and now
horizontally scaled databases

Duke CS, Fall 2019 CompSci 516: Database Systems 71

NoSQL benefits
• We haven’t yet seen good benchmarks showing that RDBMSs can achieve

scaling comparable with NoSQL systems like Google’s BigTable

• If you only require a lookup of objects based on a single key, then a key-
value/document store may be adequate and probably easier to
understand than a relational DBMS

• Some applications require a flexible schema

• A relational DBMS makes “expensive” (multi-node multi-table) operations
“too easy”
– NoSQL systems make them impossible or obviously expensive for

programmers

• The new systems are slowly gaining market shares too
Duke CS, Fall 2019 CompSci 516: Database Systems 72

Column Store

Duke CS, Fall 2019 CompSci 516: Database Systems 73

Row vs. Column Store
• Row store

– store all attributes of a tuple together
– storage like “row-major order” in a matrix

• Column store
– store all rows for an attribute (column) together
– storage like “column-major order” in a matrix

• e.g.
– MonetDB, Vertica (earlier, C-store), SAP/Sybase IQ, Google

Bigtable (with column groups)

Duke CS, Fall 2019 CompSci 516: Database Systems 74

Ack: Slide from VLDB 2009 tutorial on Column store
Duke CS, Fall 2019 CompSci 516: Database Systems 75

Ack: Slide from VLDB 2009 tutorial on Column store
Duke CS, Fall 2019 CompSci 516: Database Systems 76

Ack: Slide from VLDB 2009 tutorial on Column store
Duke CS, Fall 2019 CompSci 516: Database Systems 77

Ack: Slide from VLDB 2009 tutorial on Column store
Duke CS, Fall 2019 CompSci 516: Database Systems 78

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2019 CompSci 516: Database Systems 79

