CS516
LAB2-Relational Algebra

09/12/2019

Outline 1. RADB introduction
2. Lab questions

3. RATest (Optional)

1. RADB introduction

What's RADB and how does it work?

o Asimple Relational Algebra (RA) interpreter written in

Python 3
e Itimplements RA queries by translating them into SQL and executing

them on the underlying database system through SQLAlchemy.

http://sqlite.org/

RADB Language Usage -- Selection

Selection: \select_{condition} input_relation

For example, to select Drinker tuples with name Amy or Ben, we can write:
\select_{name='Amy' or name='Ben'} Drinker;

String literals should be enclosed in single quotes. Comparison operators <=, <, =, >,
>=, and <> (inequality) work as expected on strings, numbers, and dates. For string
match you can use the like operator; e.g.:

\select_{name like 'A%'} Drinker;

finds all drinkers whose name start with “A”, where % is a wildcard character that
matches any number of characters. Finally, you can use boolean connectives and,
or, and not to construct more complex conditions. More features are available; see
Data Types and Operators for details.

TABLE SCHEMAS

drinker(name, address)
bar(name, address)
beer(name, brewer)
frequents(drinker, bar,
times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Projection

Projection: \project_{attr_list} input_relation

Here, attr_list is a comma-separated list of expressions that specifies the output at-
tributes. For example, to find out what beers are served by Talk of the Town (but
without the price information), you can write:

\project_{bar, beer} \select_{bar='Talk of the Town'} Serves;

You can also use an expression to compute the value of an output attribute; e.g.:
\project_{bar, 'Special Edition '||beer, price+l} Serves;

Note that | | concatenates two strings.

TABLE SCHEMAS

drinker(name, address)
bar(name, address)
beer(name, brewer)
frequents(drinker, bar,
times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Theta-Join

Theta-Join: input_relation_1\join_{cond} input_relation_2

TABLE SCHEMAS

F.or example, to join Prinker(name, c.zddres.s) and Frequents(drink.er, bar, o drinker (name’ ad dress)
times_a_week) relations together using drinker name, you can write: SEE—

e bar(name, address)

Drinker \join_{name=drinker} Frequents; e beer(name, brewer)

e frequents(drinker, bar,
Syntax for cond is similar to the case of \select. times_a_week)
You can prefix references to attributes with names of the relations that they belong e likes(drinker, beer)

to, which is sometimes useful to avoid confusion (see Relation Schema and At- e serves(bar, beer, price)
tribute References for more details):

Drinker \join_{Drinker.name=Frequents.drinker} Frequents;

RADB Language Usage -- Natural Join

Natural join: input_relation_1 \join input_relation_2 TABLE SCHEMAS
e drinker(name, address)
For example, to join Drinker(name, address) and Frequents(drinker, bar, e bar(name, address)
nmgs_a_week) relations togethe.r using drinker name, we can write D rin ke r e beer(name, brewer)
\join \rename_{name, bar, times_a_week} Frequents;. Natural join will auto- -
e frequents(drinker, bar,

matically equate all pairs of identically named attributes from its inputs (in this
case, name), and output only one attribute per pair. Here we use \ rename to create
two name attributes for the natural join; see notes on \ rename below for more
details.

times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Cross Product

Cross product: input_relation_1 \cross input_relation_2

TABLE SCHEMAS
For example, to compute the cross product of Drinker and Frequents, you can e drinker(name, address)
Write: e bar(name, address)
Drinker \cross Frequents;. e beer(name, t_)rewer)
e frequents(drinker, bar,

In fact, the following two queries are equivalent: times_a_week)
e likes(drinker, beer)
\select_{Drinker.name=Frequents.drinker} e serves(bar, beer, price)

(Drinker \cross Frequents);

Drinker \join_{Drinker.name=Frequents.drinker} Frequents;

RADB Language Usage -- Set Operations

Set union, difference, and intersection:

TABLE SCHEMAS
input_relation_1 \union input_relation_2 e drinker(name, address)
input_relation_1\diff input_relation_2 e bar(name, address)

e beer(name, brewer)
input_relation_1\intersect input_relation_2 e frequents(drinker, bar,

For a trivial example, the set union, difference, and intersection between Drinker
and itself, should return the contents of Drinker itself, an empty relation, and again .
the contents of Drinker itself, respectively.

times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Rename

Rename: TABLE SCHEMAS
\rename_{new_ attr_names} input_relation e drinker(name, address)
. . o _ e bar(name, address)
This form of the rename operator renames the attributes of its input relation to e beer b)
those in new_ attr_names, a comma-separated list of names. eerlname, _rewer
e frequents(drinker, bar,
\rename_{new_rel name: *} input_relation times_a_week)
e likes(drinker, beer)

e serves(bar, beer, price)

RADB Language Usage -- Aggregation

TABLE SCHEMAS
Aggregation and grouping; e drinker(name, address)
This operator is not in the standard relational algebra. It has two forms: L4 bar(name, address)
e beer(name, brewer)
\aggr {aggr_attr_list} input_relation o frequents(drinker, bar,

This simple form of aggregation computes a single tuple, aggregated over tk
input relation. Here, aggr_attr_list is a comma-separated list of aggregate e> °

involving functions such as sum, count, avg, min, and max. For example: ®

times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

\aggr_{group_by_attrs: aggr_attr_list} input_relation

\aggr {sum(price), avg(price)} Serves;

With this form, the input relation is first partitioned into groups, according to the

attributes listed in group_by_attrs: all tuples that agree on the values of group_by_attrs

go into the same group. Then, for each group, one output tuple is produced: it will have

the values for group_by_attrs (which are shared by all group members), followed by the

values of aggregate expressions in aggr_attr_list. For example, the following query
finds, for each beer, its average price and number of bars serving it:

\aggr_{beer: avg(price), count(1)} Serves;

RADB Language Documentation

To find more details about this language, and how to use
radb, please find this link:

https://users.cs.duke.edu/~junyang/radb/

(RADB is an in-house Duke product developed by Prof. Jun Yang!)

https://users.cs.duke.edu/~junyang/radb/

2. Lab Questions

Lab Questions

TABLE SCHEMAS

e drinker(name, address)

bar(name, address)

beer(name, brewer)
frequents(drinker, bar, times_a_week)
likes(drinker, beer)

serves(bar, beer, price)

Lab Questions Cont'd

(a) Find names of all bars that Eve frequents

(b) Find names and addresses of drinkers who frequents Satisfaction more than
once per week

(c) Find names of bars serving some beer Amy likes for strictly less than $2.75

(d) Find names of all drinkers who like Corona but not Budweiser

(e) For each beer that Eve likes, find the names of bars that serve it at the highest
price. Format your output as list of (beer, bar) pairs

NOTE: If the format of your solution is (bar, beer), the autograder will consider it
incorrect.

Points

e 20 points for each question. 100 points in total.
o 10 points for any submission within 24 hours
o + 10 points for a correct submission within 24 hours
e Extra 10 points for all correct submissions within the class

¥ ACTIVE ASSIGNMENTS Add files via Drag & Drop or Browse Files b-query.txt

>>2ZIFZZZZZZZZ>>>> test dbe

‘ *CORRECT***
LEC6 LAB2.RA:Y @400 - T assiassisaess >>>> test dbl

a-query.txt 0Ob #*CORRECT***
b-query.txt 0b

AL c-query.txt
c-query.txt Ob X

>>>>>>>>>>>>>>>> >>>> test dbo
q ry. txt not found

>>>>>>>>>>>>>>>>>> >> test dbl
q ry. txt not found

Submission Guide

(a) Once you get a working solution, record your query in a plain text file for
each part. Take part (a) for example. You should write your query in a plain
text file named “a-query.txt’(replace “a” with “b”, “c”, and other parts as
appropriate).

(b) Thus, for the whole question, you are gonna submit 5 files in total. They are:
“a-query.txt”, “b-query.txt”, “c-query.txt”, “d-query.txt” and “e-query.txt”.

(c) Remember to (re)-submit all your query files at the same time on
Gradescope (Assignment “LEC6_LAB2_RA”).

(d) Even though it's an "auto"grader, we are still manually scoring the problem.
Hence the autograder component of the score is always set to 0 (which
doesn't mean you got nothing right).

L1 LE 11

How to test your answers: Three options

1. Submit to gradescope. If it is wrong, it will tell you it is wrong. However,
it if says true, it doesn’t necessarily guarantee that your answer is true
o your answer may match the correct answer even by a wrong
query!
2. Youcaninstall RADB (follow the instructions from the RADB link), and
run queries there. (optional)
3. Use RATest to debug your queries! (optional)

3. RATest

(optional use)

What is RATest

e Atoolto helpyoudebugyour RA query!

e Itwill provide you a “small counterexample” if your result does not
match the correct result - the counterexample should help you fix the
query

o CAUTION: If your query is incorrect, but the answer somehow
matches the correct answer, it won't be able to catch such errors

e No environment setup required!

e Link: https://ratest516.cs.duke.edu

https://ratest.cs.duke.edu

RATest Consent

RATest is a research tool that is still under development. Before you
start using this debug tool, we need you to accept a consent form, so
that we can use your anonymized data to evaluate and improve our
tool.

Note that the use of RATest is completely optional, does not affect your
grade anyway, and we will completely anonymize the data for analysis
purposes

Alternatively, you can only use the autograder on Gradescope, which
will give you the same answer on whether your query is correct/wrong

RATest Interface

Relation Algebra Debugger

Q(a)

Question

Input your RA query here Qu e ry goes
here

~— Runquery Result report

RA Test Status: Incorrect

RA Test Result:

Your query returns different number of columns from the correct query!

RATest Interface - Explaining wrong queries by

a small example

RA Test Result:

Sample input database:

In relation drinker:

name address
A Smal I data base Insta nce 1 Aaron 10330 Richardson Place Apt. 664
\ In relation bar:
name address

In relation beer:

Your Output

name brewer

Correct Output <

Your output:

1 Aaron

In relation frequents:

drinker

In relation likes:
drinker
In relation serves:

bar

Correct output:

(Empty)

Want to know more about RATest?

We have recent research and demonstration papers in SIGMOD 2019 led by Duke database group PhD
student Zhengjie Miao:

e Research paper
e Demonstration paper

Want to join the RATest team? We will have class project ideas based on RATest!

https://users.cs.duke.edu/~sudeepa/papers/SIGMOD2019-ratest.pdf
https://users.cs.duke.edu/~sudeepa/papers/SIGMOD2019-ratest-demo.pdf

