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CompSci 516
Database Systems

Lecture 7
Relational Calculus (revisit)

And
Normal Forms

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements
• HW1 Deadlines!

– Today: parser and Q1-Q3
– Q4: next Tuesday
– Q5 (3 RA questions will be posted today): next 

Thursday

• 2 late days with penalty apply for individual 
deadlines
– If you are still parsing XML

• Remember to start early next time from first day
• HW2 and HW3 typically take more time and effort!
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Today’s topic
• Revisit RC
• Finish Normalization

• From Thursday: Database Internals
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Acknowledgement: 
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
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CompSci 516: Database Systems

Relational Calculus (RC)
(Revisit from Lecture 4)
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Logic Notations

• $ There exists
• " For all
• ∧ Logical AND
• ∨ Logical OR
• ¬    NOT
• ⇒ Implies

TRC: example

• Find the name and age of all sailors with a rating above 7

{P | ∃ S ϵ Sailors (S.rating > 7 ⋀ P.sname = S.sname ⋀ P.age = S.age)} 

• P is a tuple variable 
– with exactly two fields sname and age (schema of the output relation)
– P.sname = S.sname ⋀ P.age = S.age gives values to the fields of an answer 

tuple

• Use parentheses, ∀ ∃ ⋁ ⋀ >   <    =    ≠   ¬    etc as necessary
• A ⇒ B is very useful too

– next slide
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Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

$ There exists
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A ⇒ B

• A “implies” B
• Equivalently, if A is true, B must be true
• Equivalently, ¬ A ⋁ B, i.e.

– either A is false (then B can be anything) 
– otherwise (i.e. A is true) B must be true
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Useful Logical Equivalences

• "x P(x)   =    ¬$x   [¬P(x)]

• ¬(P∨Q)    =     ¬ P∧ ¬ Q
• ¬(P ∧ Q)  =     ¬ P ∨ ¬ Q

– Similarly, ¬(¬P∨Q) = P∧ ¬ Q etc.

• A Þ B     =      ¬ A ∨ B
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$ There exists
" For all
∧ Logical AND
∨ Logical OR
¬    NOT

de Morgan’s laws

TRC: example

• Find the names of sailors who have reserved at least two boats
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Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved at least two boats

{P | ∃ S ϵ Sailors (∃ R1 ϵ  Reserves ∃ R2 ϵ  Reserves (S.sid = R1.sid 
⋀ S.sid = R2.sid ⋀ R1.bid ≠ R2.bid) ⋀ P.sname = S.sname)} 
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Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved all boats
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Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved all boats

{P | ∃ S ϵ Sailors [∀B ϵ Boats (∃ R ϵ  Reserves (S.sid = R.sid⋀
R.bid = B.bid))] ⋀ (P.sname = S.sname)} 

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)
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TRC: example

• Find the names of sailors who have reserved all red boats
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Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

How will you change the previous TRC expression?

TRC: example

• Find the names of sailors who have reserved all red boats
{P | ∃ S ϵ Sailors (∀B ϵ Boats (B.color = ‘red’ ⇒ (∃ R ϵ  Reserves 
(S.sid = R.sid⋀ R.bid = B.bid))) ⋀ P.sname = S.sname)} 

Recall that A ⇒B is logically equivalent to ¬ A ⋁ B
so ⇒ can be avoided, but it is cleaner and more intuitive
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Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

More Examples: RC

• The famous “Drinker-Beer-Bar” example!
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UNDERSTAND THE DIFFERENCE IN ANSWERS 
FOR ALL FOUR DRINKERS

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

16

Find drinkers that frequent some bar that serves some beer they like.

…

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

17

Find drinkers that frequent some bar that serves some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

18

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

…

Free HW question hint!
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Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

19

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " F1 ϵ Frequents (F.drinker = F1.drinker) 
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

Drinker Category 3

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

20

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " F1 ϵ Frequents (F.drinker = F1.drinker) 
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

…

Drinker Category 3

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

21

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " F1 ϵ Frequents (F.drinker = F1.drinker) 
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " S ϵ Serves (F.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

Drinker Category 4

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

22

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " F1 ϵ Frequents (F.drinker = F1.drinker) 
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " S ϵ Serves (F.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

Find drinkers that frequent only bars that serve only beer they like.
…

Drinker Category 4

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

23

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " F1 ϵ Frequents (F.drinker = F1.drinker) 
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " S ϵ Serves (F.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

Find drinkers that frequent only bars that serve only beer they like.
{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [ " F1 ϵ Frequents (F.drinker = F1.drinker) 

Þ [ " S ϵ Serves (F1.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)] ]}

Why should we care about RC
• RC is declarative, like SQL, and unlike RA (which is 

operational)
• Gives foundation of database queries in first-order 

logic
– you cannot express all aggregates in RC, e.g. cardinality of 

a relation or sum (possible in extended RA and SQL)
– still can express conditions like “at least two tuples” (or any 

constant)
• RC expression may be much simpler than SQL queries

– and easier to check for correctness than SQL
– power to use " and Þ
– then you can systematically go to a “correct” SQL or 

RA query

Duke CS, Fall 2019 CompSci 516: Database Systems 24
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From RC to SQL
Query: Find drinkers that like some beer (so much) that 

they frequent all bars that serve it

CompSci 516: Database Systems 25

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

{x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [ " S ϵ Serves (L.beer = S.beer) Þ
$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]  ]}

Drinker category 5!

From RC to SQL (or RA)
Query: Find drinkers that like some beer so much that 

they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ [ ¬$ S ϵ Serves [(L.beer = S.beer) ∧
¬ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)] ])
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Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º {x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [ " S ϵ Serves [¬ (L.beer = 
S.beer) ∨ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)] ] ]}

Duke CS, Fall 2019

{x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [ " S ϵ Serves [ (L.beer = S.beer) Þ
$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)] ] ]}

SQL or RA does not have "! 
Now you got all $ and ¬ expressible in RA/SQL 

From RC to SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT * 
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))
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Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that 
they frequent all bars that serve it

We will see a 
“methodical and correct”
translation trough 
“safe queries”
in Datalog

Q(x) = $y. Likes(x, y) ∧ ¬$ S ϵ Serves [(L.beer = S.beer) ∧
¬ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)])

Database Normalization
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1. Redundant storage
2. Update anomalies
3. Insertion anomalies

4. Deletion anomalies

Schema is forcing to store (complex) associations among tuples 
Nulls may or may not help

Recap from Lecture-5
ssn (S) name (N) lot 

(L)
rating 
(R)

hourly-
wage (W)

hours-
worked (H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Redundancy is bad!
(well…not always?)

Solution: Decomposition!

Be careful about “Lossy decomposition”!
(on blackboard)

Decompositions should be used judiciously

1. Do we need to decompose a relation?
– Several “normal forms” exist to identify possible redundancy at 

different granularity

– If a relation is not in one of them, may need to decompose further

2. What are the problems with decomposition?
– Bad decompositions: e.g., Lossy decompositions
– Performance issues -- decomposition may both

• help performance (for updates, some queries accessing part of data), or
• hurt performance (new joins may be needed for some queries)

Duke CS, Fall 2019 CompSci 516: Database Systems 30
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Functional Dependencies (FDs)
• A functional dependency (FD) X → Y holds over relation R if, for 

every allowable instance r of R:
– i.e., given two tuples in r, if the X values agree, then the Y values must also 

agree
– X and Y are sets of attributes
– t1 ϵ r,  t2 ϵ r,   ΠX (t1) = ΠX (t2)  implies ΠY (t1) = ΠY (t2) 

Duke CS, Fall 2019 CompSci 516: Database Systems 31

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

What is a (possible) FD here?

Functional Dependencies (FDs)
• A functional dependency (FD) X → Y holds over relation R if, for 

every allowable instance r of R:
– i.e., given two tuples in r, if the X values agree, then the Y values must also 

agree
– X and Y are sets of attributes
– t1 ϵ r,  t2 ϵ r,   ΠX (t1) = ΠX (t2)  implies ΠY (t1) = ΠY (t2) 
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A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

What is a (possible) FD here?

AB → C

Note that, AB is not a key

Can we detect FDs from an instance?

• An FD is a statement about all allowable relation instances
– Must be identified based on semantics of application
– Given some allowable instance r1 of R, we can check if it violates some FD 

f, but we cannot tell if f holds over R

• K is a candidate key for R means that K →R
– denoting R = all attributes of R too
– However, S →R does not require S to be minimal
– e.g. S can be a superkey

Duke CS, Fall 2019 CompSci 516: Database Systems 33

FD from a key

• Consider a relation R(A,B, C, D) where AB is a key
• Which FD must hold on R?

• AB → ABCD

• However, S → ABCD does not mean S is a key. Why?
– S can be a superkey!
– E.g., ABC → ABCD in R, but ABC is not a key

Duke CS, Fall 2019 CompSci 516: Database Systems 34

Armstrong’s Axioms
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• X, Y, Z are sets of attributes

1. Reflexivity:  If  X ⊇ Y,  then   X → Y, e.g., ABC → AB

2. Augmentation:  If  X → Y,  then  XZ → YZ  for any Z, 
– e.g., AB → C ⇒ABDE → CDE

3. Transitivity:  If  X → Y  and  Y → Z,  then   X → Z
– e.g., AB → C and C → D ⇒AB → D

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

Apply these rules on
AB → C and check

• Additional rules that follow from Armstrong’s Axioms

4. Union:   If X → Y  and  X → Z,   then  X → YZ
5. Decomposition:   If X → YZ,   then  X → Y  and  X → Z

A → B and A → C
⇒A → BC

A → BC
⇒A → B, A → C

Closure of a set of FDs

• Given some FDs, we can usually infer additional FDs:
– SSN → DEPT, and DEPT → LOT implies SSN → LOT

• An FD f is implied by a set of FDs F if f  holds whenever all FDs in F 
hold.

• F+ = closure of FDs F is the set of all FDs that are implied by F
• S+ = closure of attributes S is the set of all attributes that are implied 

by S according to F+

Duke CS, Fall 2019 CompSci 516: Database Systems 36

Armstrong’s Axioms are sound and complete inference rules for FDs
– sound: they only generate FDs in closure F+ for F
– complete: by repeated application of these rules, all FDs in F+ will be 

generated
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Computing Attribute Closure

Algorithm:
• closure = X
• Repeat until no change

– if there is an FD U → V in F such that U ⊆
closure, then closure = closure ∪ V 
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Does F = {A → B,  B → C,  C D → E }  imply  
1. A → E? (i.e,  is  A → E  in the closure F+ , or E in A+?)
2. AD → E?

On blackboard

Let’s do the example first,
Then look at the algo
yourself

Normal Forms 

• Question: given a schema, how to decide whether any schema 
refinement is needed at all?

• If a relation is in a certain normal forms, it is known that 
certain kinds of problems are avoided/minimized

• Helps us decide whether decomposing the relation is 
something we want to do
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FDs play a role in detecting redundancy

Example
• Consider a relation R with 3 attributes, ABC 

– No FDs hold:   There is no redundancy here – no decomposition 
needed

– Given A → B:   Several tuples could have the same A value, and 
if so, they’ll all have the same B value ⇒ redundancy ⇒
decomposition may be needed if A is not a key

• Intuitive idea:
– if there is any non-key dependency, e.g. A → B, 

decompose!

Duke CS, Fall 2019 CompSci 516: Database Systems 39

Normal Forms

R is in 4NF
⇒R is in BCNF
⇒R is in 3NF
⇒R is in 2NF  (a historical one)
⇒R is in 1NF (every field has atomic 
values)

Duke CS, Fall 2019 CompSci 516: Database Systems 40

BCNF

3NF

2NF

1NF

Only BCNF and 4NF are covered in the class

4NF

Boyce-Codd Normal Form  (BCNF)

• Relation R with FDs F is in BCNF if, for all X →
A  in F
– A   ϵ   X   (called a trivial FD), or
– X contains a key for R

• i.e. X is a superkey

Duke CS, Fall 2019 CompSci 516: Database Systems 41

BCNF decomposition algorithm

• Find a BCNF violation
– That is, a non-trivial FD 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super key of 
𝑅

• Decompose 𝑅 into 𝑅/ and 𝑅0, where
– 𝑅/ has attributes 𝑋 ∪ 𝑌
– 𝑅0 has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes of 𝑅

that are in neither 𝑋 nor 𝑌
• Repeat until all relations are in BCNF

• Also gives a lossless decomposition!
– Check yourself

42Duke CS, Fall 2019 CompSci 516: Database Systems
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BCNF decomposition example - 1

• CSJDPQV,  key C,  F = {JP → C,  SD → P,   J → S}
– To deal with SD → P, decompose into  SDP, CSJDQV.
– To deal with J → S, decompose CSJDQV into JS and CJDQV

• Is JP → C a violation of BCNF?

• Note:
– several dependencies may cause violation of BCNF  
– The order in which we pick them may lead to very different sets of 

relations
– there may be multiple correct decompositions (can pick J → S first)
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On blackboard

BCNF decomposition example - 2

44

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: uid→ uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid→ uname, twitterid
twitterid→ uid

uid, gid→ fromDate

Duke CS, Fall 2019 CompSci 516: Database Systems

45

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: twitterid→ uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid→ uname
twitterid, gid→ fromDate

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid→ uname

UserName (twitterid, uname)
BCNF

apply Armstrong’s 
axioms and rules!
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BCNF decomposition example - 3
It is not enough to only look at  given FDs! You need to
Consider the closure!

Recap

• Functional dependencies: a generalization of the key 
concept

• Non-key functional dependencies: a source of 
redundancy

• BCNF decomposition: a method for removing 
redundancies
– BCNF decomposition is a lossless join decomposition 

• BCNF: schema in this normal form has no 
redundancy due to FD’s
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BCNF = no redundancy?

• User (uid, gid, place)
– A user can belong to multiple groups
– A user can register places she’s visited
– Groups and places have nothing to do with other
– FD’s?

• None

– BCNF?
• Yes

– Redundancies?
• Tons!

47

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

Duke CS, Fall 2019 CompSci 516: Database Systems

Multivalued dependencies

• A multivalued dependency (MVD) has the form
𝑋 ↠𝑌, where 𝑋 and 𝑌 are sets of attributes in a relation 𝑅

• 𝑋 ↠𝑌means that whenever 
two rows in 𝑅 agree on all the 
attributes of 𝑋, then we can 
swap their 𝑌 components and 
get two rows that are also in 𝑅

48

𝑿 𝒀 𝒁
𝑎 𝑏/ 𝑐/
𝑎 𝑏0 𝑐0

… … …

𝑿 𝒀 𝒁
𝑎 𝑏/ 𝑐/
𝑎 𝑏0 𝑐0
𝑎 𝑏0 𝑐/
𝑎 𝑏/ 𝑐0

… … …

Duke CS, Fall 2019 CompSci 516: Database Systems
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MVD examples

User (uid, gid, place)
• uid↠ gid
• uid↠ place

– Intuition: given uid, attributes gid and place are 
“independent”

• uid, gid↠ place
– Trivial: LHS ∪ RHS = all attributes of 𝑅

• uid, gid↠ uid
– Trivial: LHS ⊇RHS
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An elegant solution: “chase”

• Given a set of FD’s and MVD’s 𝒟, does another 
dependency 𝑑 (FD or MVD) follow from 𝒟?

• Procedure
– Start with the premise of 𝑑, and treat them as “seed” 

tuples in a relation
– Apply the given dependencies in 𝒟 repeatedly

• If we apply an FD, we infer equality of two symbols
• If we apply an MVD, we infer more tuples

– If we infer the conclusion of 𝑑, we have a proof
– Otherwise, if nothing more can be inferred, we have a 

counterexample
50

Read this slide after looking at the examples
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Proof by chase
• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 ↠ 𝐵 and 𝐵 ↠ 𝐶

imply that 𝐴 ↠ 𝐶?

51

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐/ 𝑑/
𝑎 𝑏0 𝑐0 𝑑0

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐0 𝑑/
𝑎 𝑏0 𝑐/ 𝑑0

Have: Need:

𝑎 𝑏0 𝑐/ 𝑑/
𝑎 𝑏/ 𝑐0 𝑑0

𝐴 ↠𝐵

𝑎 𝑏0 𝑐/ 𝑑0
𝑎 𝑏0 𝑐0 𝑑/

𝐵 ↠ 𝐶

𝑎 𝑏/ 𝑐0 𝑑/
𝑎 𝑏/ 𝑐/ 𝑑0

𝐵 ↠ 𝐶

A
A
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Another proof by chase
• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 → 𝐵 and 𝐵 → 𝐶 imply 

that 𝐴 → 𝐶?

52

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐/ 𝑑/
𝑎 𝑏0 𝑐0 𝑑0

Have: Need:
𝑐/ = 𝑐0

𝐴 → 𝐵 𝑏/ = 𝑏0
𝐵 → 𝐶 𝑐/ = 𝑐0

A

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities
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Counterexample by chase
• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 ↠ 𝐵𝐶 and 𝐶𝐷 → 𝐵

imply that 𝐴 → 𝐵?

53

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐/ 𝑑/
𝑎 𝑏0 𝑐0 𝑑0

Have: Need:
𝑏/ = 𝑏0

𝑎 𝑏0 𝑐0 𝑑/
𝑎 𝑏/ 𝑐/ 𝑑0

𝐴 ↠𝐵𝐶

D

Counterexample!
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4NF

• A relation 𝑅 is in Fourth Normal Form (4NF) if
– For every non-trivial MVD 𝑋 ↠ 𝑌 in 𝑅, 𝑋 is a 

superkey
– That is, all FD’s and MVD’s follow from “key →

other attributes” (i.e., no MVD’s and no FD’s 
besides key functional dependencies)

• 4NF is stronger than BCNF
– Because every FD is also a MVD
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4NF decomposition algorithm

• Find a 4NF violation
– A non-trivial MVD 𝑋 ↠𝑌 in 𝑅where 𝑋 is not a superkey

• Decompose 𝑅 into 𝑅/ and 𝑅0, where
– 𝑅/ has attributes 𝑋∪𝑌
– 𝑅0 has attributes 𝑋∪𝑍 (where 𝑍 contains 𝑅 attributes not 

in 𝑋 or 𝑌)
• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
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4NF decomposition example

56

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

User (uid, gid, place)
4NF violation: uid↠gid

Member (uid, gid) Visited (uid, place)
4NF 4NFuid gid

142 dps

456 abc

456 gov

… …

uid place

142 Springfield

142 Australia

456 Springfield

456 Morocco

… …
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Other kinds of dependencies and 
normal forms

• Dependency preserving decompositions
• Join dependencies
• Inclusion dependencies
• 5NF, 3NF, 2NF
• See book if interested (not covered in class)
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Summary

• Philosophy behind BCNF, 4NF:
Data should depend on the key, 
the whole key, 
and nothing but the key!
– You could have multiple keys though

• Redundancy is not desired typically
– not always, mainly due to performance reasons

• Functional/multivalued dependencies – capture redundancy
• Decompositions – eliminate dependencies (should not be lossy!)
• Normal forms

– Guarantees certain non-redundancy
– BCNF, and 4NF

• How to decompose into BCNF, 4NF
• Chase
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