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1 Overview

In this lecture, we begin studying an area of graph algorithms known as network reliability. For
this problem, we will give a polynomial-time algorithm based on Monte Carlo sampling and a
problem known as DNF counting.

2 An FPRAS for Network Reliability

In this problem, we are given a graph G = (V, E), and we are told that every edge e fails (i.e.,
disappears) independently with some probability pe. Without loss of generality, we can assume
pe = 1/2 by replacing each edge e with a carefully defined “bundle” of edges such that the
probability they all fail is pe, while the probability that a single edge fails is p = 1/2.

Our goal is to compute F(G, p), the probability that G disconnects if each edge fails indepen-
dently with probability p = 1/2. If our estimate must be completely accurate, then this problem is
equivalent to returning the probability that the graph does not fail, i.e., 1− F(G, 1/2).

However, the complexity of this algorithm is known as #P-hard, which means we cannot expect
to return an exact answer in polynomial time. Thus, we must settle for an approximation, but
approximating F(G, p) is not equivalent to approximating 1− F(G, p).

In this section, we will give an algorithm due to Karger [Kar01] that is a fully-polynomial time
randomized approximation scheme (FPRAS). Such an algorithm has an input accuracy parameter
ε > 0 and, for this problem, returns a value F̃ such that

(1− ε)F(G, 1/2) ≤ F̃ ≤ (1 + ε)F(G, 1/2)

with probability at least 3/4. (This success probability can be made arbitrarily close to 1 by repeating
the algorithm a small number of times.) Furthermore, the running time of this algorithm must be
polynomial in both n and 1/ε. For simplicity, we let f = F(G, 1/2) denote the failure probability of
the graph, so we are seeking a (1± ε)-approximation of f .

2.1 The case where f ≥ 1/n4

For this case, we use an idea known as Monte Carlo (MC) sampling: in each experiment, remove
each edge of G with probability 1/2; repeat this experiment N times for some N. Then return the
proportion of experiments that resulted in G becoming disconnected. The following lemma shows
that if f is sufficiently large, then it suffices to choose some N that is O(n4/ε2).

Lemma 1. If f ≥ 1/n4, then O(n4/ε2) rounds of MC sampling yields a (1 ± ε)-approximation of
f = F(G, 1/2) with probability at least 3/4.

11-1



Proof. For i = 1, . . . , N, let Xi be a random variable equal to 1 if the i-th trial resulted in G becoming
disconnected and 0 otherwise. Then Xi = 1 with probability f , so the expectation of ∑N

i=1 Xi is N f .
By a Chernoff bound (see Lecture 9), we have

Pr

(
N

∑
i=1

Xi 6∈ (1− ε, 1 + ε)N f

)
≤ 2 exp

(
−ε2N f

3

)
.

If we set N = c/ε2 f for a suitable constant c, then the above quantity is at most 3/4. Since f ≥ n4,
this implies that the value of N is O(n4/ε2).

So we have successfully handled the case where f ≥ 1/n4, but our algorithm does not know
the value of f . To address this, let λ denote the minimum cut value of G. Then f ≥ 1/2λ because if
the λ edges of a minimum cut fail, then G becomes disconnected. Thus, it suffices for the algorithm
to check if 1/2λ ≥ 1/n4 for the purposes of Lemma 1.

2.2 The case where f < 1/n4

The high-level idea is this: the probability that a large cut fails is tiny because it contains many
edges. In fact, it is so tiny that the probability any large cut fails is negligibly small. So it suffices to
focus on the small cuts, and the cut-counting lemma (see Lecture 8) tells us G does not have many
small cuts. Finally, we estimate the probability that a small cut fails via a reduction to a problem
known as DNF counting.

More formally, we begin by proving the following lemma. Recall that we are in the case where
f is small, i.e., 1/2λ ≤ f < n−4. So we can define δ > 2 such that 1/2λ = n−(δ+2).

Lemma 2. Let δ be as defined above. Then there exists some α and constant c such that

Pr(any cut of size at least αλ fails) ≤ c · 1
nαδ

< ε f .

Proof. First recall the cut-counting lemma, which states that there are at most n2α cuts with size at
most αλ. Thus, by the definition of δ, we have

Pr(any cut of size exactly αλ fails) ≤ 1
2αλ
· n2α =

1
n(δ+2)α

· n2α =
1

nαδ
.

The cut counting lemma allows us to sum over cuts with at least αλ edges without significantly
increasing the value of the right hand side. So for simplicity, and without loss of generality, we
now ignore the constant c. By setting α = 2 + logn(1/ε)/2 and using δ > 2, we get

1
nαδ

=
εδ/2

n2δ
≤ ε

n4 < ε f .

So Lemma 2 allows us to effectively ignore cuts with greater than αλ edges where α = 2 +
logn(1/ε). That is, let fs = Pr(any cut of size at most αλ fails). Then Lemma 2 implies f ≤ fs + ε f ,
so fs is a (1± ε)-approximation of f . Thus, a (1± ε)-approximation of fs is a (1± ε)2 ≈ (1± 2ε)-
approximation of f . So for the rest of this section, we seek a (1± ε)-approximation of fs.
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Reduction to DNF counting: To estimate fs, the number of cuts we must consider is at most
n2α = n4/ε, where α was defined in the proof of Lemma 2. Thus, in fully polynomial time, we can
list these cuts as C1, C2, . . . , Ck where k ≤ n4/ε2 using the Karger-Stein algorithm (see [KS96]).

Let xe be a random variable that indicates whether or not edge e fails, and consider the variable
Yi = ∧e∈Ci xe. Notice that Yi indicates whether or not the cut Ci has failed, i.e., all of its edges have
failed. Now consider the random variable

Z =
k∨

i=1

Yi = Y1 ∨Y2 ∨ · · · ∨Yk,

which indicates whether or not an α-minimum cut has failed, so fs is precisely the probability that
Z = 1 given that every xe is 1 with probability 1/2. Furthermore, the total size of Z is polynomial
because k ≤ n4/ε2 and each Yi contains at most |E| variables.

Let m′ ≤ m denote the number of distinct variables in Z, so that there are exactly 2m′ possible
assignments. Since xe is 1 with probability 1/2, every assignment is equally likely. Thus, it suffices
to count the number of assignments such that Z = 1; the value of fs is that number divided by 2m′ .

DNF counting: So the final piece of our FPRAS is solving the following problem, known as
disjunctive normal form (DNF) counting: given a DNF formula Z = ∨iti containing m terms and n
variables, count the number of assignments such that Z is true. (Note that in our case, we actually
have a special case of this problem because our DNF formula has no negations.)

For this problem, we state an algorithm given by Karp, Luby, and Madras [KLM89]. Consider
the following matrix M with m rows and 2n columns, whose (i, j)-th entry is × if term ti is satisfied
by the j-th assignment Aj (in some fixed order of terms and variables). Furthermore, the first × in
every column (if it exists) is circled, so that it becomes ⊗. We refer to both × and ⊗ as “cross,” and
the latter is also a “circled cross.” An example of this matrix is given in Table 1.

A1 A2 · · · A2n

t1 ⊗
t2 × ⊗
t3 ⊗
...

tm × × ×

Table 1: The matrix used in the KLM algorithm [KLM89]. Each row ti corresponds to a term in the
DNF formula, and each column Aj corresponds to a truth assignment to the variables.

Thus, counting the number of satisfying assignments is equivalent to counting the number of
non-empty columns. However, the number of empty columns might be very large, so Monte Carlo
sampling over the columns would require too many iterations.

This is why we circle a cross in every non-empty column: it allows us to sample crosses instead
of columns. Let r denote the fraction of circled crosses among all crosses; the key observation
is r ≥ 1/m. We can calculate the number of crosses exactly, so the product of these values is an
estimate on the number of circled crosses, i.e., non-empty columns.

Lemma 3. In polynomial time, we can sample a cross uniformly at random and determine if it’s circled.
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Proof. We first describe how to sample a cross uniformly at random. For each i, let |ti| denote the
number of crosses in the row corresponding to ti. Also, let si denote the number of variables in ti.
Then |ti| = 2n−si because there are n− si variables that do not influence the truth value of ti, and
each of them can be assigned either true or false.

Once we’ve computed |ti|, we sample a cross as follows: first sample each row with probability
proportional to |ti|. Once we have a row, sample one of its crosses by setting each of the variables
not in the row to 1 with probability 1/2. This yields an assignment that satisfies the chosen row
term, so the corresponding entry contains a cross; this step takes linear time.

To determine if a sampled cross is circled, we calculate every cell in the column corresponding
to the cross in O(mn) time. We then scan the column to see if the sampled cross is the first cross in
the column.

Now we apply a Chernoff bound to bound the number of MC iterations we need. Again, the
key observation is that r ≥ 1/m. By combining this with Lemma 3, we’ve obtained an FPRAS for
DNF counting, and hence, an FPRAS for the network reliability problem.

Lemma 4. In O(m/ε2) iterations of MC sampling of the crosses, we obtain a (1± ε)-approximation of r
with probability 3/4.

Proof. For i = 1, . . . , N, let Ri = 1 if the i-th sampled cross is circled, so our estimate of r is ∑i Ri/N.
Then by a Chernoff bound, we see that

Pr
(

∑n
i=1 Ri

N
6∈ (1± ε)r

)
≤ 2 exp

(
−ε2Nr

3

)
.

If we set N = c/ε2r for a suitable constant c, then the above quantity is at most 3/4. Since r ≥ 1/m,
this implies that the value of N is O(m/ε2).

3 Summary

In this lecture, we gave an FPRAS for the network reliability problem. We saw that the cut counting
lemma allowed us to focus on cuts with small value, reduced the problem to DNF counting, and
gave an algorithm for this new problem.
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