
COMPSCI 638: Graph Algorithms October 4, 2019

Lecture 12
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we begin studying network design problems. In particular, we give a 2-approximation
for the metric Traveling Salesman problem, and an improved version known as Christofides algo-
rithm. For the Steiner tree problem, we give a similar 2-approximation algorithm before turning
our attention to the Steiner forest.

2 Traveling Salesman

In the Traveling Salesman Problem (TSP), we are given an undirected graph G = (V, E) and
each edge e = {u, v} has length d(u, v) ≥ 0. The goal is to compute a tour T that minimizes
d(T) = ∑e∈T d(e), where a tour (also known as a Hamiltonian cycle) is a cycle that visits each vertex
exactly once. In the metric version, we assume d satisfies the triangle inequality.

Theorem 1. It is NP-hard to approximate TSP within any constant factor.

Proof. For contradiction, assume we have an α-approximation, where α is a constant, for the TSP
problem. We claim that this allows us to solve the Hamiltonian Cycle problem, which simply asks
if a graph contains a Hamiltonian cycle and is known to be NP-hard.

Let G = (V, E) be an instance of Hamiltonian Cycle on n vertices and m edges. We construct an
instance G′ = (V, E′) of TSP as follows: for every x, y ∈ V, add edge e = {x, y} to E′ with length
d(x, y) = 1 if e ∈ E, and d(x, y) = αn otherwise.

Now let C∗ denote the optimal tour in G′; our α-approximation on G′ gives a tour C′ such that
w(C′) ≤ αw(C∗). If G has a Hamiltonian Cycle, then w(C′) ≤ αn = αw(C∗); otherwise, w(C′) > αn
because we must use an edge in E′ \ E to complete a tour.

In light of Theorem 1, we relax our problem by assuming that the distance function is a metric.

A 2-approximation for metric TSP: Let T be the minimum spanning tree (MST) of the graph, and
let R denote the same tree, with two copies of every edge. Note that R is Eulerian because every
vertex in R has even degree, so there exists a walk W that traverses every edge exactly once, i.e.,
d(W) = d(R) = 2d(T). However, W may contain repeated vertices. To circumvent this, we apply
“shortcutting” to create W ′: at each step in W, visit the next (in order of W) unvisited vertex.

By the triangle inequality, we have d(W ′) ≤ d(W). Furthermore, if C∗ denotes an optimal
tour, then d(T) ≤ d(C∗) because removing any edge of C∗ results in a spanning tree. Putting this
together, we have d(W ′) ≤ 2d(T) ≤ 2d(C∗).

12-1

2.1 Christofides algorithm

In the MST-based 2-approximation for metric TSP given above, we constructed the walk W in the
MST T by simply doubling every edge. In this section, we apply a different technique to improve
our approximation ratio from 2 to 3/2.

The idea is the following: given a minimum spanning tree T, we can ensure that each vertex
has even degree by doubling every edge. However, we can instead add a matching of the vertices
with odd degree in T: by the handshaking lemma, there exists an even number of such vertices.
This allows us do add fewer edges while ensuring that the resulting graph is still Eulerian.

Algorithm 1 Christofides Algorithm for metric TSP

1: Compute a minimum spanning tree T of G.
2: Let Vodd denote the vertices whose degree in T is odd; notice |Vodd| is even.
3: Compute a minimum perfect matching M on Vodd in G.
4: Construct the graph R = T + M; notice that R is Eulerian.
5: Let W be an Eulerian circuit in R, i.e., a walk that traverses each edge of R exactly once.
6: return the tour W ′, which is W with shortcuts applied.

Theorem 2. Algorithm 1 returns a 3/2-approximation for metric TSP.

Proof. Let C∗ denote an optimal tour. By the triangle inequality, we have

d(W ′) ≤ d(W) = d(T) + d(M) ≤ d(C∗) + d(M),

where the second inequality again follows because removing any edge of C∗ yields a spanning tree.
Thus, it suffices to prove d(M) ≤ d(C∗)/2.

Recall that Vodd denotes the vertices whose degree in T is odd. Consider the cycle C∗odd on Vodd
obtained by traversing C∗ while shortcutting all vertices in V \ Vodd. By the triangle inequality,
d(C∗odd) ≤ d(C∗). Furthermore, since |Vodd| is even, C∗odd can be partitioned into two perfect
matchings M1, M2 on Vodd such that d(C∗odd) = d(M1) + d(M2). Since M (from the algorithm) is a
minimum perfect matching on Vodd, we have

d(M) ≤ min{d(M1), d(M2)} ≤
d(C∗odd)

2
≤ d(C∗)

2
.

Remark: Despite the simplicity in both the algorithm and its analysis, Algorithm 1 provides the
best-known approximation guarantee for metric TSP in general graphs. Improving upon this 3/2
is a notorious open problem in theoretical computer science; it is conjectured that 4/3 is attainable.

In asymmetric TSP (ATSP), the problem is the same but we are now given a directed graph. The
first approximation algorithm for this problem was a O(log n)-approximation given by Frieze et
al. [FGM82]. Almost thirty years later, this bound was improved to O(log n/ log log n) by Asadpour
et al. [AGM+10]. Most recently, Svensson et al. [STV18] gave a constant approximation for ATSP.

3 Steiner Tree and Forest

In the Steiner tree problem, we are given a graph G = (V, E), a subset S ⊆ V known as terminals,
and every edge e = {u, v} has a length d(u, v) ≥ 0. Our goal is to find a tree T in G with minimum

12-2

cost d(T) = ∑e∈T d(e) whose vertex set contains all of S. (Vertices of T in V \ S are known as Steiner
vertices). In the metric version, we assume d satisfies the triangle inequality.

This problem is a generalization of both the s-t shortest path problem (|S| = 2) and the
minimum spanning tree problem (S = V). However, unlike these two special cases, the Steiner
Tree problem is NP-hard. In fact, Chlebík and Chlebíková [CC08] showed that even obtaining a
96/95-approximation is NP-hard.

A 2-approximation for metric Steiner tree: Let G′ be a complete graph on S; the length of edge
{si, sj} is the length of the shortest path between si and sj in G. Let T′ be a minimum spanning tree
(MST) of G′, and let T be the corresponding subgraph of G, with edges removed as necessary so
that T is a Steiner tree and d(T) ≤ d(T′).

We now bound the cost of d(T′). Let T∗ denote the optimal Steiner tree, and let P∗ denote a
path through the terminals in G obtained by shortcutting through T∗. By the triangle inequality,
d(P∗) ≤ 2d(T∗). Since P∗ corresponds to a spanning tree in G′, we have d(T′) ≤ d(P∗) ≤ 2d(T∗).

3.1 A primal-dual approach to Steiner Forest

The Steiner forest problem is the following generalization of Steiner tree: we are given a graph
G = (V, E) where every edge e has cost d(e) and a set of k terminal pairs (si, ti) for i = 1, . . . , k.
Our goal is to compute a forest F in G such that connects si to ti for every i and minimizes
d(F) = ∑e∈F d(e). (The Steiner tree problem is the special case where every ti is a fixed terminal.)

In this section, we describe a primal-dual algorithm proposed by Agarwal et al. [AKR95] and
simplified and generalized by Goemans and Williamson [GW95]. Note that the term “primal-dual”
was coined by Goemans and Williamson, who pioneered the usage of this technique in the design
of approximation algorithms. We describe our algorithm in two separate phases.

Balls and moats: The key idea behind this algorithm is the notion of balls and moats. For any
vertex u and number r ≥ 0, let Br(u) denote the region of G within radius r from u. To connect
terminals s and t, we will increase r until Br(s) and Br(t) intersect i.e., when r = d(s, t)/2.

A moat is formed when two balls that do not correspond to a terminal pair, say Br(s1) and Br(s2)
collide. In this case, the moat is the union of these two balls, and the growth of the moat is dictated
by the growth of Br(s1) ∪ Br(s2). Thus, a ball is essentially a special case of a moat.

Inactivate moats: A moat M is inactive if every terminal in the moat is satisfied, that is, |M ∩ {si, ti}|
is either 0 or 2 for every i ∈ {1, . . . , k}. As we will see, this determines the stopping condition of
our algorithm. (Note that an activate moat can become active if an activate moat expands into it.)

The algorithm: The first phase of the algorithm, known as the forward phase, is the following:
starting with a ball with radius 0 around every terminal vertex, uniformly expand active balls/moats
until every moat is inactive. At this point, let F be the set of edges that are completely contained in
a moat. (Although F is a feasible Steiner forest, its cost can be very high.)

The second phase of the algorithm is known as reverse delete. It is a simple greedy heuristic that
reduces the size of F: for each e ∈ F (considered in reverse order of addition to F), remove e from F
if F \ {e} is feasible. In the next lecture, we’ll show how to interpret the radii of the balls as dual
values in the corresponding linear program.

12-3

4 Summary

In this lecture, we saw an MST-based 2-approximation for both metric TSP and the metric Steiner
tree problem. We improved the former to a 3/2-approximation using Christofides algorithm, and
we began looking at a primal-dual algorithm for the Steiner forest problem. In the next lecture, we
will continue studying the primal-dual algorithm for Steiner forest.

References

[AGM+10] Arash Asadpour, Michel X Goemans, Aleksander Mądry, Shayan Oveis Gharan, and
Amin Saberi. An o (log n/log log n)-approximation algorithm for the asymmetric trav-
eling salesman problem. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pages 379–389. SIAM, 2010.

[AKR95] Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algorithm
for the generalized steiner problem on networks. SIAM Journal on Computing, 24(3):440–
456, 1995.

[CC08] Miroslav Chlebík and Janka Chlebíková. The steiner tree problem on graphs: Inap-
proximability results. Theoretical Computer Science, 406(3):207–214, 2008.

[FGM82] Alan M Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case performance
of some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23–
39, 1982.

[GW95] Michel X Goemans and David P Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[STV18] Ola Svensson, Jakub Tarnawski, and László A. Végh. A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 204–213,
New York, NY, USA, 2018. ACM.

12-4

	Overview
	Traveling Salesman
	Christofides algorithm

	Steiner Tree and Forest
	A primal-dual approach to Steiner Forest

	Summary

