
COMPSCI 638: Graph Algorithms November 6, 2019

Lecture 21
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In the last lecture, we gave an introduction to the multiplicative weight update (MWU) method.
In this lecture, we first show how MWU can be used to solve a class of linear programs. We then
apply this to the maximum flow problem to obtain an approximate algorithm.

2 MWU for Packing Linear Programs

In this section, we illustrate an algorithm that applies the multiplicative weight update (MWU)
method to a class of linear programs known as packing linear programs. More specifically, we
want to find a vector x ∈ Rn such that Ax ≤ b, where the entries of A ∈ Rm×n and b ∈ Rm are all
non-negative. The objective of a packing LP seeks is to maximize c>x over this space, where c ∈ Rn

also has non-negative entries.

Oracle specifications: Suppose we can the m constraints into m1 “easy” and m2 “hard” constraints.
(The exact details of this procedure, as well as the implementation of the oracle, depend on the
actual problem we want to solve.) Let P denote the polytope that encodes the easy constraints.
Our framework requires an oracle that, given a weight wi ≥ 0 for each hard constraint i, returns a
solution x that satisfies the following:

1. All easy constraints are satisfied, that is, x ∈ P.

2. The “average” hard constraint is satisfied, that is, ∑i wi Aix/bi ≤ ∑i wi. (Note that this is
weaker than the condition we actually want, i.e., Aix ≤ bi for every i.)

3. For every hard constraint i, we have Aix/bi ≤ ρ for some ρ. The value of ρ is known as the
width of the linear program.

Using this oracle and MWU, we can solve the feasibility problem, as shown in Algorithm 1.

Algorithm 1 Packing feasibility via MWU

Input: Constraints specified by A ∈ Rm×n
≥0 , b ∈ Rm

≥0, an oracle satisfiying the above conditions
with width ρ, and an accuracy parameter ε ∈ (0, 1).

1: Initialize w0
i = 1 for each of the m2 hard constraints indexed by i.

2: for t = 1, . . . , T do
3: Input the weights wt−1 into the oracle to obtain a solution xt.
4: for each hard constraint i do
5: Set wt

i = (1 + ε)vixt
wt−1

i where vi = Ai/ρbi.

6: return x = ∑T
t=1 xt/T

21-1



Intuitively, if xt badly violates the i-th hard constraint, then vixt is very large, so Algorithm 1
increases the weight of wi by a lot. Once wi is large, then in order for the oracle must satisfy the
“average” constraint, the solution must satisfy the i-th constraint. The final output is the average of
all over the oracle’s solutions obtained over T steps.

Theorem 1. In Algorithm 1, if T ≥ ρ ln m2/ε2, then the output x satisfies Ax ≤ (1 + ε)b.

Proof. For ease of presentation, we will use the approximation (1 + ε)δ ≈ 1 + εδ for any δ ∈ [0, 1].
Consider the final value of wi, at the end of T iterations:

wT
i =

T

∏
t=1

(1 + ε)vixt
= (1 + ε)∑T

t=1 vixt
= (1 + ε)Tvix. (1)

Now let us analyze the change in the sum of weights over time:

∑
i

wt
i = ∑

i
wt−1

i (1 + ε)vixt ≈∑
i

wt−1
i (1 + εvixt) ≤∑

i
wt−1

i +
εwt−1

i
ρ

=

(
1 +

ε

ρ

)
∑

i
wt−1

i ,

where the inequality holds because the oracle solution xt must satisfy the average constraint with
respect to wt−1, i.e., ∑i wt−1

i ρvixt ≤ ∑i wt−1
i . Applying this over T steps yields

∑
i

wT
i ≤

(
1 +

ε

ρ

)T

·∑
i

w0
i =

(
1 +

ε

ρ

)T

·m2 ≈ (1 + ε)T/ρ ·m2. (2)

We now apply the inequality wT
i ≤ ∑i wT

i on (1) and (2) to obtain

(1 + ε)Tvix ≤ (1 + ε)T/ρ ·m2

Taking the logarithm (with base 1 + ε) of both sides implies

Tvix ≤
T
ρ
+ log1+ε m2 =

T
ρ
+

ln m2

ln(1 + ε)
.

For sufficiently small values of ε, we have ln(1 + ε) ≈ ε, so substituting vi = Ai/ρbi yields

Aix
bi
≤ 1 +

ρ ln m2

εT

If T ≥ ρ ln m2/ε2, then Aix/bi ≤ 1 + ε, as desired.

Remark: Notice the dependence of T on ρ: if the oracle has small width, then Algorithm 1 requires
a fewer number of iterations we need to solve the feasibility problem. Furthermore, it is worth
noting that this framework has had widespread success in multiple problems, but as we saw, the
analysis is short and fairly straightforward. In fact, the only inequality we really needed is the fact
that total weight is at least any individual weight. Finally, replacing (1 + ε) with (1− ε) essentially
allows us to solve the covering LPs, in which we seek a vector x such that Ax ≥ b.

21-2



3 Approximate Maximum Flow

In this section, we apply the framework described in Section 2 to the maximum flow problem. Let
G = (V, E) be a directed graph on n vertices and m edges, where each edge e has capacity u(e) ≥ 0,
and let s, t ∈ V be the source and sink vertices. For any vertex u ∈ V, let δin(u) and δout(u) denote
the set of incoming and outgoing edges incident to u. Our LP is the following:

max | f | = ∑
e∈δout(s)

fe − ∑
e∈δin(s)

fe

fe ≤ u(e) ∀e ∈ E

∑
e∈δin(v)

fe = ∑
e∈δout(v)

fe ∀v ∈ V \ {s, t}

fe ≥ 0 ∀e ∈ E.

The constraints fe ≤ u(e) are a packing constraint, so these are our hard constraints (see Section 2).
To simplify our presentation, we assume u(e) = 1 for every e ∈ E. The remaining constraints, i.e.,
non-negativity on each edge and conservation at each vertex, are the easy constraints.

Instead of finding an exact maximum flow, we are also given a parameter ε ∈ (0, 1), and the
goal is to find a flow with value at least (1− ε)F∗, where F∗ is the maximum flow value. With this
goal in mind, we can reduce our optimization problem to a feasibility problem by encoding | f | ≥ F
as an additional easy constraint, and binary searching over values of F to approximate F∗.

Oracle specifications: Now that we have the hard and easy constraints, we can restate the oracle
specifications from Section 2 in the context of our maximum flow problem. Given a weight we ≥ 0
for each e ∈ E and a value F, the oracle must return an s-t flow f in G that satisfies the following:

1. The flow value of f must be F, fe ≥ 0 for every e ∈ E, and flow is conserved at every vertex.

2. The average capacity constraint is approximately satisfied, i.e., ∑e∈E we fe ≤ (1 + ε)∑e∈E we

3. The width at most ρ, that is, fe ≤ ρ for every e ∈ E and some ρ.

Electrical flow oracle: To construct such an oracle, we use the method of electrical flows (see
Lecture 18). In particular, the electrical flow oracle does the following: set the resistance of each
edge e to re = we + εW/m, where W = ∑e∈E we is the sum of all weights. Then, inject F units of
current into s and remove F units from t. Finally, return the resulting electrical flow.

Theorem 2. The electrical flow oracle satisfies the specifications above for ρ = O(
√

m/ε).

Proof. Let f be the electrical flow returned by the oracle given weights we. The easy constraints, i.e.,
the first specification, are automatically satisfied by f , being a feasible flow.

We now prove that f satisfies the average capacity constraint. Let Fe denote the flow value on e
of the maximum (not necessarily electrical) s-t flow. Recall (from Lecture 18) that among all flows
of value F, the electrical flow, i.e., f , has the least energy. In other words,

∑
e∈E

re f 2
e = ∑

e∈E

(
we +

εW
m

)
f 2
e ≤ ∑

e∈E

(
we +

εW
m

)
F2

e ≤ (1 + ε) ∑
e∈E

we, (3)

21-3



where the final inequality holds because Fe ≤ u(e) = 1 for every e ∈ E. We also have we ≤ re for
every e ∈ E, so combining this with (3) yields

∑
e∈E

we f 2
e ≤ (1 + ε) ∑

e∈E
we (4)

Recall that we want to show ∑e we fe ≤ ∑e we. Observe the following:(
∑
e∈E

we fe

)2

≤ ∑
e∈E

we f 2
e ∑

e∈E
we ≤ (1 + ε)

(
∑
e∈E

we

)2

,

where the first inequality follows from Cauchy-Schwarz and the second follows from (4). Taking
the square root of both sides gives us the desired result.

We now show that the width of the oracle is O(
√

m/ε) by showing f 2
e = O(m/ε) for every

e ∈ E. From (3), for any edge e ∈ E, we have

f 2
e ≤

(1 + ε)W
re

≤ (1 + ε)m
ε

= O(m/ε),

where the second inequality follows from re ≥ εW/m.

We can now use the electrical flow oracle, whose width is bounded by Theorem 2, as part of
Algorithm 1 to prove the following result for approximate maximum flow, due to Christiano et
al. [CKM+11]. Note that our result is a simplification of their main algorithm, which runs in time
Õ(m4/3/ε3), where Õ( f (m)) denotes O( f (m) logc f (m)) for some constant c.

Corollary 3. There exists an algorithm that computes a (1 − ε)-approximate maximum flow in time
Õ(m3/2ε−5/2).

Proof. As described above, we can reduce our problem to feasibility without affecting the final
result. To apply Theorem 1, notice that each hard constraint corresponds to an edge, so the number
of hard constraints is m. Thus, according to Theorem 1, the number of iterations we need to
compute an approximate maximum flow is T = ρ ln m/ε2 = Õ(ρε−2), where ρ is the width of the
electrical flow oracle. Theorem 2 states ρ = O(m1/2ε−1/2), which implies T = Õ(m1/2ε−5/2).

In each iteration, the oracle computes an electrical flow, and it is known that this can be done in
Õ(m) time. Thus, the overall running time is T · Õ(m) = Õ(m3/2ε−5/2).

4 Summary

In this lecture, we gave an algorithm that finds an approximately feasible solution to any packing
linear program by using an oracle that satisfies certain properties and the multiplicative weight
update method. We then applied this algorithm, using an oracle that finds an electrical flow, to
approximately solve the maximum flow problem.

21-4



References

[CKM+11] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-
Hua Teng. Electrical flows, laplacian systems, and faster approximation of maximum
flow in undirected graphs. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 273–282. ACM, 2011.

21-5


	Overview
	MWU for Packing Linear Programs
	Approximate Maximum Flow
	Summary

