
COMPSCI 638: Graph Algorithms September 18, 2019

Lecture 7
Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we continue studying the sparsest cut problem. We will give an approximation
algorithm that uses an embedding theorem concerning general metrics and conclude with some
discussion about the current state of the problem.

2 Sparsest Cut

Recall the (uniform) sparsest cut problem: given a graph G = (V, E) with edge capacities u(e), find
S ⊂ V that minimizes the sparsity u(S)/|S| · |V \ S|, where u(S) denotes the total capacity of edges
crossing S. Before proceeding, let us define a few metrics on V that are critical for our algorithm.

1. A metric d on V is an elementary cut metric if there exists S ⊂ V such that

d(x, y) =

{
1 if |S ∩ {x, y}| = 1
0 otherwise.

2. A metric d on V is a cut metric if there exist λ1, . . . , λk ≥ 0 and elementary cut metrics
d(1), . . . , d(k) on V for some k ≥ 0 such that for every x, y ∈ V,

d(x, y) =
k

∑
i=1

λid(i)(x, y).

3. A metric d on V is an `1-metric if there exists h ≥ 1 and f : V → Rh such that, for every
x, y ∈ V,

d(x, y) =
h

∑
i=1
| f (x)i − f (y)i|.

Notice that the sparsest cut problem is equivalent to finding an elementary cut metric d that
minimizes

φ(d) =
∑x,y u(x, y)d(x, y)

∑x,y d(x, y)
. (1)

And as we saw in the previous lecture, the LP relaxation of this problem is

(LP-SC): min ∑
x,y

u(x, y)d(x, y)

∑
x,y

d(x, y) ≥ 1

d is a metric

7-1

This relaxation is equivalent to minimizing (1) over all metrics, not just elementary cut metrics.
Now suppose we extend our search space from elementary cut metrics to cut metrics—the optimal
value of (1) can only decrease. However, our first lemma states that this does not actually happen.

Lemma 1. Let φ1, φ2 denote the minimum values of (1) over elementary cut metrics and cut metrics,
respectively. Then φ1 = φ2.

Proof. The inequality φ1 ≥ φ2 holds because the set of cut metrics includes all elementary cut
metrics. Now let d be the cut metric attain the value of φ2, that is,

φ2 = φ(d) =
∑x,y u(x, y)d(x, y)

∑x,y d(x, y)
.

Since d is a cut metric, we know there exist λ1, . . . , λk and elementary cut metrics d(1), . . . , d(k) on V
for some k ≥ 1 such that

d(x, y) =
k

∑
i=1

λid(i)(x, y)

for every x, y ∈ V. Applying this substitution and reordering the summations, we get

φc =
∑x,y u(x, y)∑i λid(i)(x, y)

∑x,y ∑i λid(i)(x, y)

=
∑i λi ∑x,y u(x, y)d(i)(x, y)

∑i λi ∑x,y d(i)(x, y)

≥ min
i

∑x,y u(x, y)d(i)(x, y)

∑x,y d(i)(x, y)
,

where the inequality holds due to a standard averaging argument. The index i that achieves this
minimum ratio gives us an elementary cut metric d(i) such that φ2 ≥ φ(d(i)) ≥ φ1, as desired.

So Lemma 1 tells us that when solving the sparsest cut problem, we can extend our search space
from elementary cut metrics to cut metrics without changing the optimal objective value. Our next
lemma allows us to convert, in both directions, between cut metrics and `1-metrics.

Lemma 2. For every cut metric d on V, there exists an `1-metric d′ on V such that all distances are exactly
preserved, and vice versa. In other words, cut metrics are isometric to `1-metrics.

Proof. Let d be a cut metric, so d = ∑k
i=1 λid(i) for some λ1, . . . , λk ≥ 0 and elementary cut metrics

d(1), . . . , d(k) corresponding to sets S1, . . . , Sk. Following the definition of `1-metric, let h = k, fix
some i ∈ {1, . . . , h}, and consider f : V → Rh defined as

f (x)i =

{
λi if x ∈ Si

0 otherwise.

Then notice | f (x)i − f (y)i| = λi if |S ∩ {x, y}| = 1 and 0 otherwise, so

d(x, y) =
k

∑
i=1

λid(i)(x, y) =
h

∑
i=1
| f (x)i − f (y)i|.

7-2

Conversely, suppose d is an `1-metric with h ≥ 1 and f : V → Rh as given in the corresponding
definition. For any set S ⊆ V, we let δS denote the elementary cut metric induced by S. For
simplicity, let us first assume h = 1 and rename the points of V = {x1, . . . , xn} so that

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn).

We also let Si and αi denote the following:

Si = {x1, . . . , xi} ∀i ∈ {1, . . . , n− 1}
αi = f (xi+1)− f (xi) ≥ 0 ∀i ∈ {1, . . . , n− 1}.

Notice that for any p < q, we have

d(xp, xq) =
∣∣ f (xp)− f (xq)

∣∣ = αp + · · ·+ αq−1 =
n−1

∑
i=1

αiδSi(xp, xq).

Thus, for h = 1, we have shown that d can be written as the nonnegative linear combination of
elementary cut metrics, so d is a cut metric. We can extend this to higher values of h by performing
the above procedure in every coordinate, and summing the results. In other words, for each of the h
coordinates, we sort V to obtain n− 1 elementary cut metrics and the corresponding α coefficients;
the final cut metric is defined as the linear combination of all (n− 1)h elementary cut metrics.

The isometry of cut metrics and `1-metrics is useful because, as we shall see, any metric can be
“approximated,” in some sense, by an `1-metric. Once we have an `1 metric, Lemma 2 allows us
to convert it to a cut metric, and as we saw in Lemma 1, we can then convert this cut metric to an
elementary cut metric. Before formalizing all of this, let us define a way to quantify how well one
metric approximates another.

Definition 1. Let d, d′ be metrics on V, and suppose α, β are values that satisfy

d(x, y)
α

≤ d′(x, y) ≤ βd(x, y)

for every x, y ∈ V. Then we say d is embeddable into d′ with distortion αβ.

We now state the final ingredient needed for our sparsest cut algorithm; this theorem allows us
to obtain the `1 “approximation” metric mentioned above. The existence portion of this result is
due to Bourgain [Bou85], and the construction was given by Linial et al. [LLR95].

Theorem 3 ([Bou85], [LLR95]). Any metric on n points is embeddable into an `1-metric in O(log2 n)
dimensions with O(log n) distortion. Furthermore, this `1-metric can be found with high probability in
poly(n) time.

Although the proof of Theorem 3 is not particularly difficult, we omit it for the sake of brevity.
With all of its ingredients in place, we now formally state a sparsest cut algorithm.

Algorithm 1 Sparsest Cut via an `1 embedding

1: Solve (LP-SC) to obtain a general metric d1.
2: Apply Theorem 3 on d1 to obtain an `1-metric d2.
3: Find a cut metric d3 that is isometric to d2 via Lemma 2.
4: Enumerate over the support of d3 to find an elementary cut metric that minimizes φ(·); call this

elementary cut metric d4.
5: Return the cut corresponding to d4.

7-3

Theorem 4. Algorithm 1 is a polynomial-time O(log n)-approximation for the sparsest cut problem.

Proof. For any metric d, let V(d) = ∑x,y u(x, y)d(x, y) denote the objective attained by d in (LP-SC).
Furthermore, let D∗ denote the optimal value of (LP-SC) and let OPT denote the sparsity of the
sparsest cut, so we have V(d1) = D∗ ≤ OPT.

By Theorem 3, the distortion between d1 and d2 is O(log n), and by Lemma 2, we know that d2
and d3 are isometric. Finally, by Lemma 1, we know φ(d4) ≤ φ(d3). Putting this all together, we
have the following:

φ(d4) ≤ φ(d3) ≤ V(d3) = V(d2) = O(log n) ·V(d1) = O(log n) ·OPT,

so d4 is an O(log n)-approximate elementary cut metric, as desired.
Now we analyze the running time of Algorithm 1. The linear program (LP-SC) has polynomial

size, so Step 1 runs in polynomial time, and the subsequent two steps run in polynomial time due
to Theorem 3 and Lemma 2. In Step 4, we enumerate over (n− 1)h dimensions, where h is the
dimension of the `1 space. By Theorem 3, we know h = O(log2 n), so the enumeration is over
O(n log2 n) items. Since computing φ(d) can be done in polynomial time for any metric d on V, the
entire algorithm runs in polynomial time.

We conclude by briefly discussing the non-uniform version of sparsest cut. In this problem,
every pair x, y ∈ V has some “demand” quantity D(x, y), and the sparsity of S ⊂ V becomes
u(S)/D(S) where D(S) is the total demand of pairs separated by S. As we can see, in the uniform
sparsest cut problem, every pair has unit demand. All of the results in this section extend in a
straightforward manner to the non-uniform sparsest cut problem.

2.1 The Integrality Gap of (LP-SC)

We now briefly discuss the integrality gap of (LP-SC) and its implications. Recall that in the
minimum s-t cut problem (see Lecture 2), the linear programming relaxation is integral, that is,
there exists an optimal integral solution. Thus, there is no “gap” between the optimal solution and
the optimal solution of the linear program.

In contrast, the linear programming relaxation for the sparsest cut problem is not integral. In
fact, there exist instances of the problem in which optimal value of (LP-SC) is roughly a log n factor
smaller than the sparsity of the sparsest cut.

This implies that for this problem, an O(log n)-approximation is essentially the best algorithm
this relaxation can generate. Letting ALG denote the output of any algorithm, OPT denote the
optimal solution value, and LP denote the optimal value of (LP-SC), we have

LP ≤ OPT ≤ ALG.

As mentioned above, there are instance in which log n · LP ≤ OPT. For these instances, if we prove
that our algorithm is an α-approximation by using LP as a surrogate for OPT, then

log n ≤ OPT
LP
≤ ALG

LP
≤ α.

In the early 2000’s, a new approach to the sparsest cut problem was developed using a technique
known as semidefinite programming, a generalization of linear programming. This reduced the
log n integrality gap to O(

√
log n). On the other hand, it has been shown that a polynomial-time

constant-approximation is unlikely to exist.

7-4

3 Summary

In this lecture, we saw another algorithm for the sparsest cut problem. We showed that by applying
of sequence of transformations and metric embeddings, we can obtain an O(log n)-approximation
in polynomial time. Finally, we discussed the LP integrality gap for this problem and its implications
in the design of approximation algorithms.

References

[Bou85] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel
Journal of Mathematics, 52(1-2):46–52, 1985.

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

7-5

	Overview
	Sparsest Cut
	The Integrality Gap of (LP-SC)

	Summary

