
8/20/20

1

Introduction
Introduction to Databases

CompSci 316 Fall 2020

1

Welcome to

CompSci 316: Introduction to Database Systems!!
Fall 2020

2

2

About us…

• Instructor: Sudeepa Roy
• At Duke CS since Fall 2015
• PhD. UPenn, Postdoc: U. of Washington
• Member of “Duke Database Devils”

a.k.a. the database research group
Research interests:
• “data”
• data management, database theory, data

analysis, data science, causality and
explanations, uncertain data, data
provenance, crowdsourcing, ….

3

3

4

4

Yihao Hu Jingxian Huang Xiangchen ShenYesenia
Velasco

Graduate TAsTeaching
Associate

Remember to copy Yesenia on the emails sent to Sudeepa!
Only logistics questions should be sent to Sudeepa+Yesenia –

everything else should be discussed on Piazza

4

5

Rebecca
Shu

David Chen

Runxin
(Rebecca)
Wang

Meredith
Brown

Kathleen
Chen

Kevin Day

Ankit Jajoo

Jane Li

Jeevan
Tewari

Florence Liu

Calleigh
Smith

Meet your UTAs!

5

What are the goals of this course?

6

• Learn about “databases” or data management

6

8/20/20

2

Why do we care about data? (easy)
7

… The three years of gathering and analyzing
data culminated in what U.S. Sailing calls
their “Rio Weather Playbook,” a body of
critical information about each of the seven
courses only available to the U.S. team…

— FiveThirtyEight, “Will Data Help U.S.
Sailing Get Back On The Olympic Podium?”

Aug 15, 2016

Data =
Money
Information
Power
Fun
in
Science, Business,
Politics, Security
Sports, Education, ….

7

Wait.. don’t we need to take a Machine Learning or
Statistics course for those things?

8

Pic: https://www.technobuffalo.com /sites/technobuffalo.com /files/styles/xlarge/public/wp/2012/05/confused-student.jpg

Yes, but..

8

... we also need to manage this (huge or not-so-huge) data!

9

9

Also think about building a new App or
website based on data from scratch

• E.g., your own version of mini-Amazon* or a Book
Selling Platform
• Large data! (think about all books in the world or

even in English)

•How do we start?

10

* Many of you are going to do this in the course projects!

10

11Who are the key people?
(book-selling website)

11

Who are the key people?
(book-selling website)

12

12

8/20/20

3

What should the user be able to do?
13

• i.e. what the interface look like? (think about
Amazon)

13

What should the user be able to do?
14

14

What should the platform do?
15

15

What should the platform do?
16

16

What are the desired and necessary
properties of the platform?

17

17

What are the desired and necessary
properties of the platform?

18

18

8/20/20

4

That was the design phase
(a basic one though)

19

https://i1.wp.com /dynam iclandscapes.vita-learn.org/wp-content/uploads/2019/05/Lets-code.jpg?resize=768%2C432&ssl=1

How about C++, Java, or Python?
On data stored in large files

19

Sounds simple!

• Text files – for books, customer, …
• Books listed with title, author, price, and no. of

copies
• Fields separated by #’s

20

James Morgan#Durham, NC

... ...
A Tale of Two Cities#Charles Dickens#3.50#7
To Kill a Mockingbird#Harper Lee#7.20#1
Les Miserables#Victor Hugo#12.80#2
... ...

20

Query by programming

• James Morgan wants to buy “To Kill a Mockingbird”
• A simple script

• Scan through the books file
• Look for the line containing “To Kill a Mockingbird”
• Check if the no. of copies is >= 1
• Bill James $7.20 and reduce the no. of copies by 1

21

James Morgan#Durham, NC

... ...
A Tale of Two Cities#Charles Dickens#3.50#7
To Kill a Mockingbird#Harper Lee#7.20#1
Les Miserables#Victor Hugo#12.80#2
... ...

Better idea than scanning?

What if he changes the “query” and wants to buy a book by Victor Hugo?

21

Revisit: What are the desired and
necessary properties of the platform?

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should

not be lost or inconsistent
• Imagine a user was in the middle of a transaction when a

crash happened, paid the money, but the book has not been
purchased

• No surprises with multiple users logged in at the same
time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

22

22

Solution?
23

• DBMS = Database Management System

23

A DBMS takes care of all of the
following (and more):

• Should be able to handle a large amount of data
• Should be efficient and easy to use (e.g., search with

authors as well as title)
• If there is a crash or loss of power, information should not

be lost or inconsistent
• Imagine a user was in the middle of a transaction when a crash

happened, paid the money, but the book has not been purchased

• No surprises with multiple users logged in at the same time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

24

In an easy-to-code, efficient, and robust way

Index

Concurrency

Control
Recovery

Declarative

Optimization

* We will learn
these in the course!

24

8/20/20

5

DBMS helps the big ones!
25

Note: Not always the “standard” DBMS (called Relational DBMS),
but we need to know pros and cons of all alternatives

25

CompSci 316 gives an intro to DBMS
• How can a user use a DBMS (programmer’s/designer’s

perspective)
• Run queries, update data (SQL, Relational Algebra)
• Design a good database (ER diagram, normalization)
• Use different types of data (Mostly relational, also XML/JSON)

• How does a DBMS work (system’s or admin’s perspective,
also for programmers for writing better queries)
• Storage, index
• Query processing, join algorithms, query optimizations
• Transactions: recovery and concurrency control

• Glimpse of advanced topics and other DBMS
• NOSQL, Spark (big data)
• Data mining, Parallel DBMS

• Hands-on experience in class projects by building an end-to-
end website or an app that runs on a database

26

26

Misc. course info
• All information available on the Course Website:

https://www2.cs.duke.edu/courses/fall20/compsci316/
• Course info; tentative schedule and reference sections in the book;

lecture slides, assignments, help docs, …

27

27

Projects
• Fixed project Option: Mini-amazon
• Open project Option: Your own idea! (More work, more fun)

• From previous years:
• RA: next-generation relational algebra interpreter

• You may get to try it out for Homework #1!
• Managing tent shifts and schedules!
• Tutor-tutee matching
• What’s in my fridge and what can I cook?
• Hearsay: manage your own musics
• Dining at Duke (and deliver meals to students)
• National Parklopedia: a website to find information about national parks

• Project-details doc will be posted soon

• More examples later - but we expect you to be creative with a new
idea!

28

28

Relational Data Model

29

Let’s get started!

What is a good model to store data?
Tree? Nested data? Graph?

(just) Tables!

29

Edgar F. Codd (1923-2003)

• Pilot in the Royal Air Force in WW2
• Inventor of the relational model

and algebra while at IBM
• Turing Award, 1981

30

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg

RDBMS = Relational DBMS

30

https://www2.cs.duke.edu/courses/fall20/compsci316/

8/20/20

6

The famous “Beers” database
31

Bars
Each has an address

Drinkers
Each has an address

Beers
Each has a brewer

Drinkers Frequent Bars
“X” times a week

Bars Serve Beers
At price “Y”

Drinkers Likes Beers

(Later in ER diagram – how to
design a relational database)

31

“Beers” as a Relational Database
32

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

See online database for more tuples

Bar

Beer

Drinker

Likes

Frequents

Serves

32

Relational data model
• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)

• Set-valued attributes are not allowed

• Each relation contains a “set” of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed (Two tuples are duplicates if they

agree on all attributes)
• Ordering of rows doesn’t matter (even though output is

always in some order)

• However, SQL supports “bag”
or duplicate tuples (why?)

FSimplicity is a virtue
• not a weakness!

33

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

33

Schema vs. instance
• Schema

• Beer (name string, brewer string)
• Serves (bar string, beer string, price float)
• Frequents (drinker string, bar string, times_a_week int)

• Instance
• Actual tuples or records

34

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2
Beer

Frequents

Serves

FCompare to types vs. collections of
objects of these types in a programming
language

34

SQL: Querying a RDBMS
• SQL: Structured Query Language

• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS
• First developed at IBM System R
• Follows ANSI standards

35

SQL is Declarative:

Programmer specifies what answers a query should return,
but not how the query is executed

DBMS picks the best execution strategy based on availability of indexes,
data/workload characteristics, etc.
FProvides physical data independence

Not a “Procedural” or “Operational” language like C++, Java, Python

35

Basic queries: SFW statement

• SELECT 𝐴!, 𝐴", …, 𝐴#
FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

• SELECT, FROM, WHERE are often referred to as
SELECT, FROM, WHERE “clauses”

36

36

8/20/20

7

Example: reading a table

• SELECT *
FROM Serves

• Single-table query
• WHERE clause is optional
• * is a short hand for “all columns”

37

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

37

Example: selecting few rows
• SELECT beer AS mybeer

FROM Serves
WHERE price < 2.75

• SELECT beer
FROM Serves
WHERE bar = ‘The Edge’

38

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Serves

• SELECT list can contain expressions
Can also use built-in functions such as SUBSTR, ABS, etc.

• String literals (case sensitive) are enclosed in single quotes
• “AS” is optional
• Do not want duplicates? Write SELECT DISTINCT beer …

What does these return?

38

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

• Which tables do we need?

39

39

Example: Join

• Find addresses of all bars that ‘Dan’ frequents

40

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge
108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

Bar

Beer

Drinker

Likes

Frequents

Which tables
do we need?

How do we
combine them?

40

Example: Join
• Find addresses of all bars that ‘Dan’ frequents

• SELECT B.address
FROM Bar B, Frequents F
WHERE B.name = F.bar

AND F.drinker = ‘Dan’

• Okay to omit table_name in
table_name.column_name
if column_name is unique

• Can use “Aliases” for
convenience
• “Bar as B” or “Bar B”

41

name address

The Edge 108 Morris
Street

Satisfaction
905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Bar

Frequents

41

Try some SQL queries yourself on
pgweb!

(See how to access the pgweb
interface for a small “Beers” database
on the slides posted on the course website)

42

Next: semantics of SFW statements in SQL

42

8/20/20

8

Semantics of SFW
• SELECT 𝐸!, 𝐸", …, 𝐸#

FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
• For each 𝑡! in 𝑅!:

For each 𝑡" in 𝑅": … …
For each 𝑡$ in 𝑅$:

If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡!, 𝑡", …, 𝑡$:

Compute and output 𝐸!, 𝐸", …, 𝐸# as a row

43

1. Apply “FROM”
Form cross-product of R1, .., Rm

2. Apply “WHERE”
Only consider satisfying rows

3. Apply “SELECT”
Output the desired columns

43

Step 1: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is
outputs!

44

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben
Satisfaction

2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan
Satisfaction

2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan
The Edge

1

Satisfaction 905 W.
Main Street

Dan
Satisfaction

2

Form Cross product of two relations

44

Step 2: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is
outputs!

45

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben
Satisfaction

2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan
Satisfaction

2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan
The Edge

1

Satisfaction 905 W.
Main Street

Dan
Satisfaction

2

Discard rows that do not satisfy WHERE condition

45

Step 3: Illustration of Semantics of SFW

• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is
outputs!

46

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

name address drinker bar times_a_w
eek

The Edge 108 Morris
Street

Ben
Satisfaction

2

The Edge 108 Morris
Street

Dan The Edge 1

The Edge 108 Morris
Street

Dan
Satisfaction

2

Satisfaction 905 W.
Main Street

Ben Satisfaction 2

Satisfaction 905 W.
Main Street

Dan
The Edge

1

Satisfaction 905 W.
Main Street

Dan
Satisfaction

2

Output the “address” output of rows that survived

46

Final output: Illustration of Semantics of
SFW
• NOTE: This is “NOT HOW” the DBMS outputs the result, but “WHAT” is

outputs!

47

• SELECT B.address
FROM Bar B, Frequents F

WHERE B.name = F.bar
AND F.drinker = ‘Dan’

name address

The Edge
108 Morris
Street

Satisfaction 905 W. Main
Street

Bar

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

Frequents

address

108 Morris
Street

905 W.
Main Street

Output the “address” output of rows that survived

47

Announcements (Tue, 08/18)

• You are/will be on Sakai, Piazza, Gradescope by the
next class

• You will receive instructions on installing the VM
• Please follow Piazza posts, all notifications will be

posted there and you should receive emails right away

• Office hours start from today

• First homework to be released soon

48

48

