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Announcements (Thu. Oct 1)
• Keep working on your project!

• MS-2 due in two weeks (10/15)
• Need to submit a basic working version of your website (all 

functionalities not needed, but interactions from/to UI and 
databases should be there)+ other things

• HW-5/Gradiance-3 to be released today
• Due in a week 10/8 (Thu)
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Relational Model

Query in SQL

Query in RA

E/R diagram
(design from 

scratch)

Normal Forms
(refine design)

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-Reduce Parallel DBMS

Basics
Concurrency

Control Recovery

Where are we now?
Relational model and queries Database Design

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next



Why do we draw databases like this?
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Outline

• It’s all about disks!
• That’s why we always draw databases as 
• And why the single most important metric in database 

processing is (oftentimes) the number of disk I/O’s 
performed
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Storage hierarchy
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Registers

Cache

Memory

Disk

Tapes

Why a hierarchy?



How far away is data?
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Location Cycles
Registers 1
On-chip cache 2
On-board cache 10
Memory 100
Disk 106

Tape 109

Location Time
My head 1 min.
This room 2 min.
Duke campus 10 min.
Washington D.C. 1.5 hr.
Pluto 2 yr.
Andromeda 2000 yr.

F I/O dominates—design your algorithms to reduce I/O!

(Source: AlphaSort paper, 1995)
The gap has been widening!



Latency Numbers 
Every Programmer Should Know

8
Just FYI –
Take a look yourself!



A typical hard drive
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http://upload.wikimedia.org/wikipedia/commons/f/f8/Laptop-hard-drive-exposed.jpg



A typical hard drive
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Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow



Top view
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Track
Track
Track

Sectors

“Zoning”: more sectors/data on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors



Disk access time

Sum of:
• Seek time: time for disk heads to move to the 

correct cylinder
• Rotational delay: time for the desired block to 

rotate under the disk head
• Transfer time: time to read/write data in the block 

(= time for disk to rotate over the block)
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Sequential vs. Random disk access
Seek time + rotational delay + transfer time
• Average seek time
• Sequential: 0
• Random: “Typical” value: 5 ms

• Average rotational delay
• Sequential: 0
• Random: “Typical” value: 4.2 ms (7200 RPM)

• Transfer time
• Thee same for sequential and random

• Sequential is an order of magnitude faster!
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Important consequences

• It’s all about reducing I/O’s!
• Cache blocks from stable storage in memory
• DBMS maintains a memory buffer pool of blocks
• Reads/writes operate on these memory blocks
• Dirty (updated) memory blocks are “flushed” back to 

stable storage

14

Picture on board that we will use again and again!



Performance tricks
• Disk layout strategy
• Keep related things (what are they?) close together: 

same sector/block → same track → same cylinder →
adjacent cylinder

• Prefetching
• While processing the current block in memory, fetch the 

next block from disk (overlap I/O with processing)
• Parallel I/O
• More disk heads working at the same time

• Disk scheduling algorithm
• Example: “elevator” algorithm

• Track buffer
• Read/write one entire track at a time
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Data layout on disk
How each component is stored in the parent
Table à Pages/Blocks à Records/Tuples/Rows à Attributes 

Examples:

16
Not covered in detail

142

0 4
Bart (padded with space)

24
10 0.9

28 36

Fixed-length  fields

142

0 4
Bart\010 0.9

8 16
Weird kid!\0

142

0 4
Bart10 0.9

8 16
Weird kid!

18 22 32

22 32

Variable-length fields (delimiter or offset array)

142  Bart 10      0.9 123 Milhouse 10 0.2

456  Ralph    8  0.3

857  Lisa     8  0.7

N-ary storage model/NSM
“Row-major”, directory at the end
Reorganization needed after updates

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

PAX 
(Partition
Attributes 
Across)
“Column-
major”
-> Column 
store



Take-away

• Storage hierarchy
• Why I/O’s dominate the cost of database operations

• Disk
• Steps in completing a disk access
• Sequential versus random accesses

• Disk is slower than Main memory = Buffer Pool
• Minimize the number of transfers to/from Disk
• Our unit of cost!

• All computation cost ignored by default
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End of Lecture 10/1



Index
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Announcements (Tue. Oct 6)
• HW-5 + Gradiance-3 (Constraints/Triggers)

• Due this Friday 10/9

• Keep working on your project!
• MS-2 due next week (10/15)
• Need to submit a basic working version of your website (all 

functionalities not needed, but interactions from/to UI and 
databases should be there) + other things

• If you would like to meet me one-one, please email Yesenia 
and me ASAP 
• By tomorrow (Wed 10/7)
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Relational Model

Query in SQL

Query in RA

E/R diagram
(design from 

scratch)

Normal Forms
(refine design)

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-Reduce Parallel DBMS

Basics
Concurrency

Control Recovery

Where are we now?
Relational model and queries Database Design

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next



Recall the Disk-Main Memory 
diagram!
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Topics

• Index

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. secondary
• Tree-based vs. Hash-index

22

Related



What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM R WHERE A > value;
• Keyword search

23

database indexing Search

Focus
of this
lecture



Dense and sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

24

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

When are these  
possible?

Comparison?



Dense versus sparse indexes

• Index size
• ??

• Requirement on records
• ??

• Lookup
• ??

• Update
• ??
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Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



Dense versus sparse indexes

• Index size
• Sparse index is smaller

• Requirement on records
• Records must be clustered for sparse index

• Lookup
• Sparse index is smaller and may fit in memory
• Dense index can directly tell if a record exists

• Update
• May be easier for sparse index (less movement for 

updates)
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Primary and secondary indexes

• Primary index
• Created for the primary key of a table
• Records are usually clustered by the primary key
• Can be sparse

• Secondary index
• Usually dense

• SQL
• PRIMARY KEY declaration automatically creates a primary 

index, UNIQUE key automatically creates a secondary 
index
• Additional secondary index can be created on non-key 

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);
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What if the index is too big as well?
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Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



What if the index is too big as well?
29

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Put a another (sparse) index on top of that!



ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less
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100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197



Updates with ISAM

• Overflow chains and empty data blocks degrade 
performance
• Worst case: most records go into one long chain, so 

lookups require scanning all data!
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100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: insert 107

107 Overflow block

Example: delete 129



Binary Search Tree
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50

30 70

25 47 59 84

Each node can hold 
Exactly one entry

Leaves are sorted

Height balanced:
All leaves are at the 
Same level
(complete binary tree)

< 50 >= 50 

< 30 >= 30 < 70 >= 70 



B-tree: Generalizing Binary Search Trees
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50

30 ??

25 44 ?? ??

42 ??

27 46 ?? ??35 39 ????

Each node 
can hold multiple entries,
has fixed max size
and is sorted

Each node does not have
To be full
#pointers = #entries + 1

Height balanced

Leaves are sorted

< 50 >= 50 

< 30 >= 30
< 42 

>= 42 



B+-tree: Data only at leaves
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50

30 59

25 44 ?? ??

42 ??

27 46 59 ??35 39 ????

Index Nodes
Containing 
Index entries

Data entries: Pointers to actual tuples

< 50 >= 50 

< 30 >= 30
< 42 

>= 42 Data values can be repeated as index

Leaves are linked



B+-tree: Closer Look

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out

35
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

to keys
100 ≤ 𝑘

to keys
𝑘 < 100



Sample B+-tree nodes
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Max fan-out: 4

12
0

15
0

18
0

to keys 
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves (pros/cons?)

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘



• Questions

• Why do we use B+-tree as database index instead of 
binary trees?

• Why do we use B+-tree as database index instead of 
B-trees?
• What are the differences/pros/cons of B-trees vs. B+-tree 

as index?

37

vs.



B+-tree versus B-tree

• B-tree: why not store records (or record pointers) 
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and 

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!
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B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full 

(except root)

Max #   Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋

39

Check yourself



Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;

40
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found



Search key and Data entry

• SELECT * FROM R WHERE k = 179;

41
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

17
9

Search key
(value)

Data Entry
(pointer to tuple)



Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;

42
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound
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Insertion

• Insert a record with search key value 32

43
3 5 11 30 35 10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there



Another insertion example

• Insert a record with search key value 152

44

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

What are our options here?



Node splitting
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12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer 
to the newly created node

Oops, that node 
becomes full!



More node splitting
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12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer 
to the newly created node

• In the worst case, node splitting can “propagate” all the way up 
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree 

to grow “up” by one level

End of Lecture 10/6



Deletion

• Delete a record with search key value 130

47

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!



Stealing from a sibling
48

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor 
of the affected nodes



Another deletion example

• Delete a record with search key value 179

49

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!



Coalescing

• Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

50

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent



Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log!"#$%&𝑁, where 𝑁 is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for 

all non-root nodes 
• Fan-out is typically large (in hundreds)—many keys and 

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables
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B+-tree in practice

• Complex reorganization for deletion often is not 
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically 

reorganize

• Most commercial DBMS use B+-tree instead of 
hashing-based indexes because B+-tree handles 
range queries
• A key difference between hash and tree indexes!
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The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary <= 25000;
• There is a B+-tree index on Payroll(salary)
• All employees end up earning >= 25000 (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id

53

https://en.wikipedia.org/wiki/Halloween_Problem



• If order of data records in a file is the same as, or `close to’, 
order of data entries in an index, then clustered, otherwise 
unclustered

• How does it affect # of page accesses? (in class)

Index entries

Data entries

direct search for 

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

54

Clustered vs. Unclustered Index



• How does it affect # of page accesses? 
• Recall disk-memory diagram!

• SELECT * FROM USER WHERE age = 50
• Assume 12 users with age = 50
• Assume one data page can hold 4 User tuples
• Suppose searching for a data entry requires 3 IOs in a 

B+-tree, which contain pointers to the data records (assume 
all  matching pointers are in the same node of B+-tree)

• What happens if the index is unclustered?
• What happens if the index is clustered?

55

Clustered vs. Unclustered Index
Data is sorted on search key Data can be anywhere



Beyond ISAM, B-trees, and B+-trees

• Other tree-based indexes: R-trees and variants, 
GiST, etc. 

• Hashing-based indexes: extensible hashing, linear 
hashing, etc.

• Text indexes: inverted-list index, suffix arrays, etc.

• Other tricks: bitmap index, bit-sliced index, etc.

56FYI – not covered in this class



Hash vs. Tree Index
• Hash indexes can only handle equality queries

• SELECT * FROM R WHERE age = 5 (requires hash index on (age))
• SELECT * FROM R, S WHERE R.A = S.A (requires hash index on R.A or S.A)
• SELECT * FROM R WHERE age = 5 and name = ‘Bart’ (requires hash index 

on (age, name))

• (-) Cannot handle range queries or prefixes
• SELECT * FROM R WHERE age >= 5
• need to use tree indexes (more common)
• Tree index on (age), or (age, name) works, but not (name, age) – why?

• (+) Hash-indexes are more amenable to parallel processing
• Will learn more in hash-based join

• Performance depends on how good the hash function is (whether the hash 
function distributes data uniformly and whether data has skew)

57

Need to know only this much 
About hash indexes in this class



Trade-offs for Indexes
• Should we use as many indexes as possible?

58



Trade-offs for Indexes
• Should we use as many indexes as possible?

• Indexes can make 
• queries go faster
• updates slower

• Require disk space, too
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Index-Only Plans
• A number of queries can be answered without retrieving any 

tuples from one or more of the relations involved if a suitable 
index is available

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY  E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY  E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE  E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
Tree index!

60

• If you have an index on E.dno
in the above query, no need to 
access data

• For index-only strategies, 
clustering is not important


