External Sorting
and
Join Algorithms

Introduction to Databases
CompSci 316 Fall 2020

DUKE

COMPUTER SCIENCE

|

Announcements (Thu. Oct 8)

HW-5 + Gradiance-3 (Constraints/Triggers)
* Due now Monday 10/12 -- extended

Keep working on your project!
* MS-2 due next week (10/15)

* Need to submit a basic working version of your website (all
functionalities not needed, but interactions from/to Ul and
databases should be there) + other things

Will focus on projects in the discussion session on Monday

Midterm survey due Tue 10/13

Notation

Recall our disk-memory diagram

o |
 Relations: R, On board!

* Tuples: 7,

* Number of tuples: |R|,

 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement

Scanning-based algorithms

0110101001 101010001 101001000
?OO?170?0!0110101000101010
1010101 1C00101CC010101001 0%
)01101010011101011011101000
pO1010010101101110101000110
10011010100111010110111010
2001010010101 1017 101010001
)u)}c;OOHO’(\MHm 3
.OK” 110101101010
OKL)\)‘O’OK/O’H
C"\, 2101101010101
)H?()‘M(«N"\'”’N

1 U] "Ln'l Y
\,‘ r""r'- —\'~ 1 _‘; BYTA \. ;'-‘5‘ ~_T '
- ¥

10) _--1\‘\x1~.,‘.’1|..,\ /\11\14\("

NN

1]1 \1 A\ 10\ 4

Table scan

* Scan table R and process the query
* Selection overR
* Projection of R without duplicate elimination

* 1/O’s: B(R)
* Trick for selection: stop early if it is a lookup by key
* Memory requirement: 2

* Not counting the cost of writing the result out
* Same for any algorithm!

* Maybe not needed—results may be pipelined into
another operator

Announcements (Tue. Oct 13)

* Keep working on your project!
* MS-2 due next Monday (10/19)

* Need to submit a basic working version of your website (all
functionalities not needed, but interactions from/to Ul and
databases should be there) + other things

* Midterm survey due today Tue 10/13

* HW6 to be posted today, due next Thursday

* How do we implement Join?

* Cost?
* (page I/O - in terms of B(R), |R| etc.)

* Memory requirement?

Nested-loop join

R >, S
* For each block of R, and for each r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true overr and s
* R is called the outer table; S is called the inner table
* |/O’s: B(R) + |R| - B(S)
* Memory requirement: 3

Improvement: block-based nested-loop join

Block-based Nested Loop Join

*R ™, S
* R outer, Sinner
* For each block of R, for each block of S:

For each r in the R block, for each sinthe §
block: ...

* 1/0’s: B(R) + B(R) - B(S)
* Memory requirement: same as before

10

More improvements

* Make use of available memory

* Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

. 1/0’s: B(R) + B(R)} B(S)
* Or,roughly: B(R) - B(S)/M
* Memory requirement: M (as much as possible)

* Which table would you pick as the outer?

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sortertmediaviewer/File:Mail_sorting,1951.jpg

11

See example on the next slide first =

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

To Understand:
What is a run?

What is a level and a pass?

Reminder: How 2-way merge sort works?
How to extend to multi-way merge sort?

See example on the next slide first 3

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

e Pass 0: read M blocks
of R at a time, sort them,)
and write out a level-0 run

[

* Pass 1: merge (M — 1) -0
level-0 runs at a time, L]
and write out a level-1 run

* Pass 2: merge (M — 1) level-1 runs at a time, and write

out a level-Z run

* Final pass produces one sorted run

el-1

Toy example

* 3 memory blocks available; each holds one number

* InPUt: 1,745, 2 8} 3) 6) 9
e Pass O

*1,7,4—14,7
° 572)8_)275)8

* 9)6)3_)3)679
e Pass 1

*1,4,7+2,58—1,2,4,5,7,8
*3,6,9

* Pass 2 (final)
*1,2,4,578+3,6,9—123,45,6,7,8,9

Analysis

* Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run

e There are [%\ level-0 sorted runs

* Pass i:merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run

* (M — 1) memory blocks for input, 1 to buffer output
of level—(i—1) runs}

M-1
* Final pass produces one sorted run

e # of level-i runs = [

Note: The pages of memory are being
reused!

* We just have M memory blocks/pages, whereas the number
of blocks of R can be much larger
* B(R) >> M typically
. Othe'rwise you will load all pages and sort in memory in a single
pass!

* We need to reuse both input and output pages in memory
* Once the output pages are full, flush them (write) to disk

* Once aninput page is fully processed in Pass-1 onward, get the next
page from the same run

* In pass-0, sort M-pages together, reuse the memory pages for the
next M-pages and so on...

* Pass-0 uses an “in-place” sorting algorithm (with constant
additional space), so all M pages can be used

6

17

Performance of external merge sort

* Number of passes: [logM 1 [B(R)H + 1

* |/O’s
* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

 Subtract B(R) for the final pass
- Roughly, this is O(B(R)xlogB(R))
* Memory requirement: M (as much as possible)

We do not count the final write!

Some tricks for sorting

* Double buffering
* Allocate an additional block for each run
* Overlap 1/O with processing
* Trade-off: smaller fan-in (more passes)

* Blocked I/O

* Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

* More sequential 1/O’s
* Trade-off: larger cluster — smaller fan-in (more passes)

Announcements (Thu. Oct 15)

Keep working on your project!
* MS-2 due next Monday (10/19)

* Need to submit a basic working version of your website (all
functionalities not needed, but interactions from/to Ul and
databases should be there) + other things

HW6 due next Thursday (10/22)

Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)

No Gradiance this week.

Review of clustered/unclustered on Monday

Sort-merge join

R Mg -5 S

* Sort R and S by their join attributes; then merge
r, s = the first tuples in sorted R and S
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuplein §

elseifr.A < s.B thenr =next tuplein R

else output all matching tuples, and
r,s=nextinRandS

* |/Q’s: sorting + 2B(R) + 2B(S) (always?)
* In most cases (e.g., join of key and foreign key)
» Worst case is B(R) - B(S): everything joins

sBS:

__134345
SR A DS R
SR GO GO
X
R

— N MMOO
1 L [T |
bt

e = AN M < 1N
LN n n ». h \»n

— M M N OO
I L | O O VR VO |
TS SNSTSS

x ST L

Example of merge join

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

)

s{

A
Y

Y Y Y

AT
_/

Sorted runs

Y ¥

22

Performance of SMJ

* If SMJ completes in two passes:
* 1/0’s:3 - (B(R) + B(S)) -why 3?
* Memory requirement

* We must have enough memory to accommodate one block

) B(R) |, B(S)
from eachrun: M > Y + Y

« M >./B(R) + B(S)

* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

Other sort-based algorithms

* Union (set), difference, intersection
* More or less like SMJ

* Duplication elimination

* External merge sort
 Eliminate duplicates in sort and merge

* Grouping and aggregation

* External merge sort, by group-by columns

* Trick: produce “partial” aggregate values in each run, and
combine them during merge

* This trick doesn’t always work though
* Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

25

Hash join

R Mg =55 S
 Main idea

* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

* If r.A and s. B get hashed to different partitions, they
don’t join

12 3,_1,2 4 5

-_—

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

- -

w oA w ANy

26

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory < Disk >
[]
— O
- O
L]
L]

M — 1 partitions of R
SN—— -

Same for S

Probing phase

* Read in each partition of R, stream in the
corresponding partition of §, join

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions (_

A <

partitions (_

< Disk
_/

Memory

stream

LN
-

P

For each S tuple,
= [probe and join

28

Example

* R(A), S(B)

* RX¥Ra-sB S
- B(R)=6

* B(S)=9

e M= 4

* Each page of
R, S contains
just one
record

* Hash function
for
partitioning h
=A%3 (for
R), B% 3 for S

* Hash function
for probing
h2=A%2(for
R), B% 2 for S

1. Partitioning phase

2. Probing phase

2-pass works here as at least one relation
has <=2 pages in each partition

Partitioning for R done,

next similar for S

COR @S

Original
RelationR, S OUTPUT Partitions
0 S
3| [§ G O
2| H , B E |
c 0 INPUT ;
Disk = > full"llac%ihon Ld L4l L]
= o 0 O
[dl h=7%3 R
7] Lz] ,
[] [alCellaa Tl
13 - : ~
—_ ——“ M=4main memory pages Disk
1 for input, 3 for hash buckets
Probing for partition-o and 15t page of S in partition o,
Similarly for other pages of S, and for partitions 1 and 2
Partitions Hash table for partition-o | J0in Result
of R&S hash Of R at the end
%D fn 0 1 S
EEmE ° h2=}2|E - (9]
BEE T Then [+2)]
npw En [Eos——
] Input page Output
..-- 2B-1 for Si page W,
~ M = 4 main memory pages Disk

1 for S pages (one by one), one for output,
3 for hash table for R-partition using h2

Performance of (two-pass) hash join

* If hash join completes in two passes:
* 1/0’s:3 - (B(R) + B(S))

* Memory requirement:
* In the probing phase, we should have enough memory to fit

one partitionof R: M — 1 > ER)

M—1
« M>,/B(R)+1
* We can always pick R to be the smaller relation, so:

M > \/min(B(R),B(S)) +1

Generalizing for larger inputs

* What if a partition is too large for memory?

* Read it back in and partition it again!
 See the duality in multi-pass merge sort here?

31

Hash join versus SMJ

(Assuming two-pass)
* |/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1 < /B(R) + B(S)
* Hash join wins when two relations have very different sizes

* Other factors
* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets
* SMJ can be adapted for inequality join predicates
* SMJ wins if R and/or § are already sorted
* SMJ wins if the result needs to be in sorted order

What about nested-loop join?

* May be best if many tuples join
* Example: non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHERE user_defined_pred(R.A, S.B)

Announcements (Tue. Oct 20)

HW6a (probs 1, 2) due Thursday (10/22)
HW6b (prob 3) due next Tuesday (10/27)

Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)

No Gradiance this week.

Review of keys/superkeys/FDs/BCNF on Monday

* Please check all grades posted - regrade requests through
gradescope or Google Form only within a week

Check yourself

Other hash-based algorithms

* Just like Sorting!

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

* Tuplesin the same group must end up in the same
partition/bucket

* Keep arunning aggregate value for each group
* May not always work

Index-based algorithms

& D
[ose acenta Jl
ANEFACTU ER | i

http://il.trekearth.com/photos/28820/p2270994.jpg

36

Selection using index

 Equality predicate: 04-,(R)
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate: g4~ (R)
* Use an ordered index (e.g., ISAM or B*-tree) on R(A)
* Hash index is not applicable

* Indexes other than those on R(A) may be useful
« Example: B*-tree index on R(4, B)
 How about B*tree index on R(B,A)?

Index versus table scan

Situations where index clearly wins:

* Index-only queries which do not require retrieving
actual tuples

« Example: ﬂA(GA>v(R))

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider g,-,,(R) and a secondary, non-clustered
index on R(A)
* Need to follow pointers to get the actual result tuples
* Say that 20% of R satisfies A > v
* Could happen even for equality predicates
* 1/O’s for index-based selection: lookup + 20% |R|
* |/O’s for scan-based selection: B(R)
* Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

R ™Mpa=sp S
* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s withs.B =1.4
Output rs

* |/O’s: B(R) + |R| - (index lookup)
 Typically, the cost of an index lookup is 2-4 1/O’s
* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: 3

Example

Query: R Mg 4=sp S

* R.Avalues (1 R-tuple/page): 7,2, 9, 8, 3 AN Key (:sz'E); =9
© BR)=IR] =5 N

* B+-tree Index on S.B, 2 S-tuples/data page \ M
 (Clustered, 3 levels, all index/data pages in memory Z #‘\
* Assume foreign key S.B to primary key R.A 323 37 28 8/6 9
« Assume each R.A joins with the same no. of S.B o 31“/\

S| =10,B(S)=5 2| 3% |7] [8] (9
Assume matching data entries fit in one leaf p) 3 7 8

41

Each R tuple joins with 2 S tuples that fit in 1 S-page

Algo:

For every page of R | costof R=B(R)=5
* For every tuple of R in that page
+ Send the value of R.A as the key value Total cost for S = |R| * (3 + 1)
* Retrieve the matching S records from data pages pointed to by the matching index entries

* Output all of them

For every R.A value, max cost of accessing matching S tuples = 3 (accessing

leaves) + 1 (accessing data page)

Total cost of index-nested-loop-join = B(R) + |R| (3+1) =5+ 5 * 4 = 25

Zig-zag join using ordered indexes

R Mpp-sp S

* Idea: use the ordering provided by the indexes on R(A)
and S(B) to eliminate the sorting step of sort-merge join

* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

)y mmo EE g =g 12 17 ™19

42

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

e Sort

 External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and
aggregation

e Hash

* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join

