XML

Introduction to Databases
CompSci 316 Fall 2020

DUKE

COMPUTER SCIENCE

Where are we now?

Relational model and queries Database Design
E/R diagram
Query in SQL (design from Normal F(?rms
) (refine design)
Relational Model
Query in RA Beyond Relational Model
NOSQL
AML JSON/MongoDB
DBMS Internals and Query Processing
Storage Index Transactions
: Concurrenc
Basics Colrjm trol y Recovery
: , Execution/
J lgo/Sort .
oin algo/Sorting Optimization
(Basic) Big Data Processing

Covered Map-Reduce Parallel DBMS
Next

To be covered

Structured vs. unstructured data

* Relational databases are highly structured
* All data resides in tables
* You must define schema before entering any data
* Every row confirms to the table schema
* Changing the schema is hard and may break many things

* Texts are highly unstructured
* Datais free-form

* There is no pre-defined schema, and it’s hard to
define any schema

* Readers need to infer structures and meanings

What’s in between these two extremes?

Sudeepa Roy

Assistant Professor

Department of Computer Science
Duke U Y.

308 Research Drive

Campus Box 90129

Durham, NC 27708-0129

el

4 —
=

NEW & INTERESTING FINDS ON AMAZON

C' | @ Secure | https://www.amazon.com/s/ref=nb_sb_ss_c_1_8?url=search-alias%3Dinstant-video&field-keywords=simpsons&sprefix=simpsons%2Caps%2C133&crid=NTZCTUN5GGSJ

a%x 0@ :

E B & FE & © A9

amazon, Amazon Video - | simpsons

Departments - Help

Everyday FREE Shipping: Elig
EN | Ll Signin
@ - | Account&Lists- Orders Try Prime -

Background
o lamcoc
Deadline
e Potential

e Potentia

youcans

* Thanks to
(Duke St:

* Thanks to

* Thanks to

Backgrou

I joined the Dep
I am & member
which is part of

Before joining |
University of W

I eraduated fron

Your Amazon.com Today's Deals _Gift Cards & Registry Sell

Amazon Video Originals TV Shows Movies Kids Explore-

1-16 of 570 results for Amazon Video : "simpsons"

All Videos (569) Included with Prime (97) Channels (136) Rent or Buy (308) Free with Ads (15)

Show results for The Simpsons Movie 2007 PG-13

After Homer accidentally pollutes the town's water supply,
Springfield is encased in a gigantic dome by the EPA and the Simpson
family are declared fugitives.

 Any Department
Amazon Video
v
Movies Cast

Refine by

Channels
Broadway HD
Cinemax
Comic-Con HQ
Echoboom Sports
Fandor

HBO
IndieFlix Shorts
REELZ NOW
Seeso
STARZ
Stingray Karaoke
TheSurfNetwork
See more

Pame
Haye
Multii

Yeardley Hank
Smith Multiple
LisaSi... charac...

Julie
Kavner
Multiole

Dan
Castel...
Muiltile

Nancy
Cartw...
Multiole

Harry
Shearer

Multiole
The Simpsons Season 29 2017 CC
$000.-$3499 Buy episodes or Buy TV Season Pass

The Simpsons Season 5 1993 | CC
3 $299.-$1999 Buy episodes or Buy season
Amazon Prime

orime
New Releases
Last 30 Days
Last 90 Days
Purchase Type
Purchase
Rental

The Simpsons Season 7 1995 CC
$299.-$1999 Buy episodes or Buy season

Genre
Action & Adventure
Comedy
Documentary
Drama

Horror

Kids & Family
Music Videos &
Concerts

Mystery & Thrillers
Romance

Science Fiction
Special Interests
Sports

See more

The Simpsons Season 4 1992 CC
$299.-$1999 Buy episodes or Buy season

The Simpsons Season 6 1994 CC

Mood
$299.-$1999 Buy episodes or Buy season

Bleak
Exciting
Feel Good
Funny
Offbeat
Rough
Suspenseful
Touching
See more

The Simpsons Season 15 2003 | CC
$299.-$1999 Buy episodes or Buy season

Theme

YYour Watchlist Your Video Library Settings

Sort by [Relevance ¢

Getting Started Help

The Simpsons Season 1 1989 | CC

b 7.4/10 $299-$1499 Buy episodes or Buy season AT~ 860

Release: Jul 21, 2007
Directed David Silverman

by:

Genre: Adventure, Animation, Comedy
Runtime:87 minutes

The Simpsons Movie 2007 PG-13 CC

THe
Simbsons
0.00 Watch with HBO on Amazon Channels.

Ttk Fhetedds - 553

Starring: Dan Castellaneta, Julie Kavner, et al.
Directed 20TH_CENTURY_FOX

by:
Runtime: 1 hr 26 mins

The Simpsons Season 28 2016 CC

Fdrdededs ~ 329 $000-$2499 Buy episodes or Buy TV Season Pass Fededriis v 27
The Simpsons Season 26 2014 CC

Hfrfrfed 3 $000-$1999 Buy episodes or Buy season Fededekds ~ g7
The Simpsons Season 17 2006 | CC

Fefrdededs v 384 $299-$1999 Buy episodes or Buy season

The Simpsons Season 2 1990 CC
$299-$1999 Buy episodes or Buy season

The Simpsons Season 3 1991 CC
$199-$1999 Buy episodes or Buy season

Semi-structured data

* Observation: most data have some structure, e.g.:

* Book: chapters, sections, titles, paragraphs, references,
index, etc.

* Item for sale: name, picture, price (range), ratings,
promotions, etc.

XML: eXtensible Markup Language

<bibliography>

<book>
<title>Foundations of Databases</title> Bibli hv
<author>Abiteboul</author> 1b1ograpny
<author>Hull</author>
<author>Vianu</author> Foundations of Databases. Abiteboul, Hull, and Vianu
<publisher>Addison Wesley</publisher> Addison Wesley. 1995
<year>1995</ year> Data on the Web. Abiteboul. Buneman. and Suciu
</book> Morgan Kaufmann, 1999

<book>...</book>
</bibliography>

 Text-based

* Capture data (content), not presentation
* Similar but different from HTML

 Data self-describes its structure
* Names and nesting of tags have meanings!

Other nice features of XML

: Just like HTML, you can ship XML data
across platforms
* Relational data requires heavy-weight API’s

: You can represent any information
(structured, semi-structured, documents, ...)
* Relational data is best suited for structured data

: Since data describes itself, you can
change the schema easily
* Relational schema is rigid and difficult to change

<bibliography>
<book ISBN="ISBN-10" price="80.00">

ht <title>Foundations of Databases</title>
XM L te rl I I I n O O y <author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>

<year>1995</year>

names: book, title, ... </book>...

</bibliography>

: <book>, <title>, ...
: </book>, </title>, ...

* An is enclosed by a pair of start and end
tags: <book>...</book>
* Elements can be nested: <book>...<title>...</title>...</book>

* Empty elements: <is_textbook></is_textbook>
e Can be abbreviated: <is_textbook/>

* Elements can also have
<book ISBN="..." price="80.00">

* Many other features

® Ordering generally matters, except for attributes

Well-formed XML documents

A XML document
e Follows XML lexical conventions

* Wrong: <section>We show that x < 0...</section>

* Right: <section>We show that x < 0...</section>
* Other special entities: > becomes and & becomes

* Contains a single root element

* Has properly matched tags and properly nested
elements (like parentheses matching)
* Right: <section>...<subsection>...</subsection>...</section>

* Wrong: <section>...<subsection>...</section>...</subsection>
e Think of {{()}([])} matching!

A tree representation “sru e

<title>Foundations of Databases</title>
T <author>Abiteboul</author>
blbllography <author>Hull</author>
<author>Vianu</author>

<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>...
</bibliography>

title author author author publisher @@

Foundations Abiteboul Hull Vianu Addison 1995

of Databases wWesley

Introduction In this

section we

introduce the

notion of semi-
structured

data

FYI - NOT COVERED

DTD and Schema (details omitted)

DTD (Document Type
Definitions)

Specifies Schema and
constraints for XML

Specifies a grammar (e.g.
+, ? for one or more, zero
or1etc.)

Another option XML
schema (.xsd)

<?xml version="1.0"?>
<IDOCTYPE bibliography [

<IELEMENT bibliography (book+)>

<IELEMENT book (title, author*, publisher?, year?, section™)>
<IATTLIST book ISBN ID #REQUIRED>

<IATTLIST book price CDATA #IMPLIED>

<IELEMENT title (#PCDATA)>
<IELEMENT author (#PCDATA)I_>
<IELEMENT publisher (#PCDATA)>

<IELEMENT year (#PCDATA)>

<IELEMENT i (#PCDATA)>

<IELEMENT content (#PCDATA|i)*>
<IELEMENT section (title, content?, section*)>

1>

<bibliograp

hy>

<book ISEN=“ISBN-10“ price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>...</section>...

</book>

<7bib|iography>

12

XML versus relational data

Relational data XML data

* Schema s always fixedin ¢ Well-formed XML does not
advance and difficult to require predefined, fixed
change schema

* Simple, flat table structures « Nested structure; ID/IDREF(S)
permit arbitrary graphs

» Ordering of rows and * Ordering forced by

columns is unimportant document format; may or
may not be important

 Exchange is problematic ¢ Designed for easy exchange

* “Native” supportin all * Often implemented as an
serious commercial DBMS ‘““add-on” on top of relations

Announcements (Thu. Oct 22)

* HW6a (probs 1, 2) due today (10/22)

* HW6b (prob 3) due Tuesday (10/27)

» Short Lecture-quiz-3 (Sorting etc.) due today (10/22)
* No Gradiance this week.

* Review of keys/superkeys/FDs/BCNF (if we have time, Join
Algos) on Monday

* Please let Yesenia know if you would like to meet me

* Please check out the email on tutoring + IREX feedback
session for SQL

Case study

* Design an XML document representing cities,
counties, and states
* For states, record name and capital (city)
* For counties, record name, area, and location (state)

* For cities, record name, population, and location (county
and state)

* Assume the following:
* Names of states are unique
* Names of counties are only unique within a state
* Names of cities are only unique within a county
* A city is always located in a single county
* A county is always located in a single state

A possible design

Design an XML document representing cities, counties, and states
For states, record name and capital (city)
For counties, record name, area, and location (state)
For cities, record name, population, and location (county and state)
Assume the following:
Names of states are unique
Names of counties are only unique within a state
Names of cities are only unique within a county
A city is always located in a single county
A county is always located in a single state

XPath and XQuery

Query languages for XML

e XPath

* Path expressions with conditions

< Building block of other standards (XQuery, XSLT, XLink,
XPointer, etc.)

* XQuery
* XPath + full-fledged SQL-like query language

* Also XSLT (not covered)

* We would cover only simple queries

Try the queries in this lecture online

<bibliography>

° There are many Online <book ISBN="ISBN-10" price:"70">
Xpath/Xquery testers <title>Foundations of Databases</title>
e.g. <author>Abiteboul</author>

<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>

* http://codebeautify.org/X
path-Tester (XPATH)

e http://videlibri.sourceforg <year>1995</year>
e.net/cgi-bin/xidelcgi <section>abc</section>
(XQUERY) </book>

. T +h thi | <book ISBN="ISBN-11"price="20">

ry with this example (Or <title>DBSTS</title>

change it for different <author>Ramakrishnan</author>

querles) <author>Gehrke</author>
e Caveats <publisher>Addison Wesley</publisher>
* if you see bad characters, <year>1999</year>
you might have to replace <section>abc</section>
them like " or. </book>
* Not everything works all </bibliography>

the time! Try different
websites and config

http://codebeautify.org/Xpath-Tester
http://videlibri.sourceforge.net/cgi-bin/xidelcgi

XPath

» XPath specifies path expressions <book SBNLMSEN-10" price"7of>

<title>Foundations of Databases</title>

that match XML data by navigating autorasiebouidautron

<author>Hull</author>

dOWﬂ (and OccaSiOna”y up and <author>Vianu</author>

<publisher>Addison Wesley</publisher>
<year>1995</year>
across) th e tree <section>abc</section>
</book>
o <book ISBN="ISBN-11"price="20">
Exa m p I e <title>DBSTS</title>
<author>Ramakrishnan</author>

¢ Query: <author>Gehrke</author>

. . <publisher>Addison Wesley</publisher>
* Like a file system path, except there can Jears1999<iyears

be multiple “subdirectories” with the zlssggﬁfab“/sectiom
Ssame name </bibliography>

e Result: all author elements reachable
from root via the path
/bibliography/book/author

Basic XPath constructs

separator between steps in a path
matches any child element with this tag name
matches any child element

matches the attribute with this name
matches any attribute

matches any descendent element or the
current element itself

matches the current element
matches the parent element

Simple XPath examples
* All book titles

e All book ISBN numbers

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

* All title elements, anywhere in the document

* All section titles, anywhere in the document

* Authors of bibliographical entries (suppose there
are articles, reports, etc. in addition to books)

Predicates in
path expressions

matches the
“current” element if condition
evaluates to true on the current
element

* Books with price lower than $50
/bibliography/book

» XPath will automatically convert the
price string to a numeric value for
comparison

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

Predicates in

path expressions — contd.

 Books with author “Abiteboul’”

/bibliography/book

* Books with a publisher child element

/bibliography/book

* Prices of books authored by
“Abiteboul”
/bibliography/book

/@price

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

More complex predicates

Predicates can use , or, and

* Books with price between $40
and $50
/bibliography/book

* Books authored by “Abiteboul”
or those with price no lower than

350
/bibliography/book

/bibliography/book

* Any difference between these two queries?

<bibliography>

<book ISBN="ISBN-10" price="70">

<title>Foundations of Databases</title>

<author>Abiteboul</author>

<author>Hull</author>

<author>Vianu</author>

<publisher>Addison Wesley</publisher>

<year>1995</year>

<section>abc</section>

</book>

<book ISBN="ISBN-11"price="20">
<title>DBSTS</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<publisher>Addison Wesley</publisher>
<year>1999</year>
<section>abc</section>
</book>

</bibliography>

A tricky example

* Suppose for a moment that price is a child
element of book, and there may be multiple
prices per book

* Books with some price in range [20, 50]

* Wrong answer:
/bibliography/book

(returns true with one price 10 and one 70!)

* Correct answer:
/bibliography/book

Predicates involving node-sets

* There may be multiple authors, so author in general
returns a (in XPath terminology)

* The predicate evaluates to true as long as it
evaluates in the node-set,
i.e., at least one authoris “Abiteboul”

* Another tricky query
/bibliography/book
* Will it return any books?

* (Returns books with at least one “Abiteboul” and one
non-Abiteboul as authors!)

More XPath operators and functions

Frequently used in conditions:
))))
true if string x contains string y
counts the number nodes in node-set

returns the ‘“context position” (roughly, the position of the
current node in the node-set containing it)

returns the “context size” (roughly, the size of the node-set
containing the current node)

returns the tag name of the current element

Books with fewer than 10 sections
All elements whose tag names contain “section” (e.g., “subsection”)

Title of the first section in each book

A shorthand:
Title of the last section in each book

XQuery

* XPath + full-fledged SQL-like query language

Sample online Xquery tester:

¢ Xquery expreSSiOnS can be http://videlibri.sourceforge.net/cgi-bin/xidelcgi
o XPath expressions Use Xquery 3.0, node format = xml, output format = adhoc,

. and compatibility = Standard Xquery in the settings
* FLWOR expressions
* Quantified expressions
* Aggregation, sorting, and more...

* An XQuery expression can return a new result XML
document

http://videlibri.sourceforge.net/cgi-bin/xidelcgi

A simple XQuery based on XPath

Find all books with price lower than $50

<result>{

doeelbib>anl}/bibliography/book[@price<50]

}</result>
* Things outside {}’s are copied to output verbatim

* Things inside {}’s are evaluated and replaced by the
results
* doc("bib.xml") specifies the document to query
e Omit this in the online tester

* The XPath expression returns a sequence of book
elements

* These elements (including all their descendants) are
copied to output

29

30

FLWR expressions

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for Sb in /bibliography/book
let Sp := Sb/publisher
where Sb/year < 2000

return : loop
<book> * Sbranges over the result sequence, getting
{ Sb/title } one item at a time
{Sp} : ““assignment”’
</book> * Sp gets the entire result of Sb/publisher
}</result> (possibly many nodes)

: filtering by condition
: result structuring
* Invoked in the “innermost loop,” i.e., once
for each successful binding of all query
variables that satisfies where

An equivalent formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for Sb in /bibliography/book[year<2000]
return
<book>
{ Sb/title }
{ Sb/publisher }
</book>
}</result>

31

32

Another formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{

for Sb in /bibliography/book, } Nested loop

where Sb/year < 2000

return
<book> * Is this query equivalent to the previous two?
{ Sb/title } * Yes, if thereis one publisher per book
{Sp} * No, in general
</book> Two result book elements will be
}</result>

created for a book with two publishers
* Noresult book element will be created
for a book with no publishers

Yet another formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{

where Sb/year < 2000

return
<book>
{ Sb/title } * Is this query correct?
{ Sb/publisher } No!
</book> * It will produce only one output book
}</result> element, with all titles clumped together

and all publishers clumped together
 All books will be processed (as long as one is
published before 2000)

33

34

An explicit join

* Find pairs of books that have common author(s)

<result>{

for Sb1l in deefbibxml™}//book
for Sb2 in deefbibxmi}//book
where Sb1/author = Sb2/author
and Sb1/title > Sb2/title
return
<pair>
{Sb1/title}
{Sb2/title}
</pair>
}</result>

< These are string comparisons,
not identity comparisons!

More features

Subqueries

FYI - NOT COVERED

* normalize-space(string) removes leading and trailing spaces from
string, and replaces all internal sequences of white spaces with one

white space

Aggregation

Conditional

Existential (some) and Universal (all)

* Use anywhere you’d expect a value, e.g.:
* let Sfoo :=if (...) then ... else ...

* return <bar blah="{if (...

Extract book titles and their authors; make
title an attribute and rename author to writer
<bibliography>{
for Sb in doc("bib.xml")/bibliography/book
return
<book title="{normalize-space(Sb/title)}">{
for Sa in Sh/author
return <writer>{string(Sa)}</writer>
}</book>
}</bibliography>

then ... else ... }"/>

List each publisher and the average prices of
all its books

<result>{
for Spub in distinct-
values(doc("bib.xml")//publisher)
let Sprice :=
avg(doc("bib.xml")//book[publisher=Spub
1/ @price)
return
<publisherpricing>
<publisher>{Spub}</publisher>
<avgprice>{Sprice}</avgprice>
</publisherpricing>
}</result>

Find titles of books in which XML is
mentioned in some section

<result>{
for Sb in doc("bib.xml")//book
where (some Ssection in Sb//section
satisfies
contains(string(Ssection),
"XML"))
return Sb/title
}/result>

Find titles of books in which XML is
mentioned in every section

<result>{
for Sb in doc("bib.xml")//book
where (every Ssection in Sb//section
satisfies
contains(string(Ssection),
"XML"))
return Sbh/title
I/result>

XML to Relational Data

Which one is easier?

e XML to relational?
e Or

e Relational to XML?

Mapping XML to relational

* Store XML in a column
* CLOB (Character Large OBject) type
* Not much useful!

e Alternatives?

well-formed XML — generic relational schema
‘ mapping for graphs | <:| Only this one in

mapping for trees this class
mapping for trees (not covered)

valid XML — special relational schema based on DTD

Example — Node/Edge Based

<bibliography>
<book ISBN="ISBN-10" price="80.00">

oo <title>Foundations of Databases</title>
blbllography <author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
</book>...
ISBN book book | </bibliography>
Price
title author author author publisher year

* How would you translate it to a relational schema?
* Element? Attribute? Parent-child relationship?
« Keys? (Do not see the next slides yet!)

Node/edge-based: schema

Key: (eid, attrName)
* Attribute order does not matter

Keys: (eid, pos), (child)
* pos specifies the ordering of children
* child references either Element(eid) or Text(tid)

* tid cannot be the same as any eid
“ Need to “invent” lots of id’s

Need indexes for efficiency, e.g., Element(tag),
Text(value)

Node/edge-based: example

<bibliography> ElementCh”d

Element EZMEZEZEN
el

<title>Foundations of Databases</title>

<author>Abiteboul</author> m_ e0 1

<author>Hull</author>

el 1 e2

<author>Vianu</author> bibliography
<publisher>Addison Wesley</publisher> el book el 2 e3

<year>1995</year> .
</book>... e2 title el 3 ed
</bibliography> e3 author el 4 e5
ed author el 5 eb
e5 author el 6 e7
ISBN ISBN-10
e7 year e3 1 t1
el price 80

e4 1 12

e5 1 t3

Text m_ P

Foundations of Databases

e7 1 t5
t1 Abiteboul
t2 Hull
t3 Vianu
t4 Addison Wesley

t5 1995

Node/edge-based: queries

el

ISBN-10

ISBN

¢ //tltle el price

SELECT eid FROM Element WHERE tag = 'title’;

o //section/title

SELECT e2.eid

FROM Element el, ElementChild c, Element e2
WHERE el.tag = 'section’

AND e2.tag = 'title'

AND el.eid = c.eid

AND c.child = e2.eid;

® Path expression becomes joins!

* Number of joins is proportional to the length of the path expression
 //bibliography/book[author="Abiteboul"]/@price

More complex SQL queries with EXISTS needed

e //book//title

Needs recursion (not covered yet)

80

e0
el
e2
e3
e4
e5
e6
e7

bibliography

book
title
author
author
author
publisher

year

42

i o
Attribute S %

el 2 e3

el 3 ed

el 4 €5,

el 5 e6

il 6 G7/

e2 1 t0

e3 1 t1

e4 1 2

e5 1 t3

e6 1 t4

e7 1 t5

ElementChild

Element

Text

t0
t1
t2
t3
t4

t5

Foundations of Databases
Abiteboul

Hull

Vianu

Addison Wesley

1995

