
Transactions
Introduction to Databases

CompSci 316 Fall 2020

Announcements (Thu. Oct 29)
• Gradiance4—XML, due next Thursday (11/5).

• Count() returns the number of elements returned by a Xpath
• Execute your Xpath query and see how many elements at the outermost level are returned (not the

nested elements)

• LectureQuiz-4-ACID (today after class) due on Thursday 11/5

• HW7-MongoDB/JSON posted, due Tuesday 11/10
• To be done in project group, no collaboration outside project grp
• One submission per project group to gradescope
• Set up a common time, work on it together!
• You need to know JSON/MongoDB only for this HW, not included in Final exam (XML/Lec 9 is

included in Final)

• No other written/programming homework!

• Gradiance Quizzes on Transactions due on Thursday 11/12
• Try to solve early when a quiz is posted

• Final project submission due Monday 11/16 (LDOC)
• See project doc file on what to submit

• Tuesday Nov 3 – Election day
• Class on – watch the video later if you cannot attend-- Lecture (Transaction Concurrency

Control/Recovery) included in Final – Gradiance quiz deadline moved

Mark your calendars
for the HW deadlines!

Relational Model

Query in SQL

Query in RA

E/R diagram
(design from

scratch)

Normal Forms
(refine design)

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-Reduce Parallel DBMS

Basics
Concurrency

Control Recovery

Where are we now?
Relational model and queries Database Design

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next

So far: One query/update
One machine

Multiple query/updates
One machine

One query/update
Multiple machines

Multiple query/updates, multiple machines:
Distributed transactions, Two-Phase Commit protocol, .. (not covered)

Transactions Parallel query processing
Map-Reduce, Spark, ..
Distributed query processing

Why should we care about running
multiple queries/updates/programs on a
machine concurrently?

Motivation: Concurrent Execution

• Concurrent execution of user programs is essential
for good DBMS performance.
• Disk accesses are frequent, and relatively slow
• it is important to keep the CPU busy by working on several

user programs concurrently
• short transactions may finish early if interleaved with long

ones

• May increase system throughput (avg. #transactions
per unit time)

• May decrease response time (avg. time to complete a
transaction)

Transactions

• A transaction is the DBMS’s abstract view of a user
program
• a sequence of reads and write
• DBMS only cares about R/W of “elements” (tuples,

tables, etc)

• the same program executed multiple times would
be considered as different transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Example
• Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• Intuitively, the first transaction is transferring $100 from B’s account
to A’s account. The second is crediting both accounts with a 6%
interest payment

• There is no guarantee that T1 will execute before T2 or vice-versa, if
both are submitted together.

• However, the net effect must be equivalent to these two transactions
running serially in some order

Are these interleaving (schedule) good?

• Schedule 1:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• Schedule 2:

• Schedule 3:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

Example: View of DBMS

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v The DBMS’s view (and Notations!):
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• Schedule 2:

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

C1 = “Commit” by Transaction T1.
A1 = “Abort” by Transaction T1

• Two possible
representation
of schedules
• No message

passing
• Fixed set of

objects (for
now)

(next slide)

Commit and Abort

• A transaction might commit after completing all its
actions
• or it could abort (or be aborted by the DBMS) after

executing some actions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Concurrency Control and Recovery

• Concurrency Control
• (Multiple) users submit (multiple) transactions
• Concurrency is achieved by the DBMS, which interleaves actions

(reads/writes of DB objects) of various transactions
• user should think of each transaction as executing by itself one-at-a-time
• The DBMS needs to handle concurrent executions

• Recovery
• Due to crashes, there can be “partial” transactions

• DBMS needs to ensure that they are not visible to other transactions

• Also there can be some “completed” transactions with updated data
still in memory (not yet to disk) and therefore lost in a crash
• DBMS needs to ensure that the updates eventually go to disk

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability

Recall our
Disk-memory diagram!

Atomicity

• A user can think of a transaction as always executing all its
actions in one step, or not executing any actions at all
• Users do not have to worry about the effect of incomplete

transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Transactions can be aborted (terminated) by the DBMS or by itself
• because of some anomalies during execution (and then restarts)
• the system may crash (say no power supply)
• may decide to abort itself encountering an unexpected situation

e.g. read an unexpected data value or unable to access disks

Ensured by recovery methods using “Logs” by “undo”-ing incomplete tr.

Consistency

• Each transaction, when run by itself with no concurrent
execution of other actions, must preserve the consistency
of the database
• e.g. if you transfer money from the savings account to the checking

account, the total amount still remains the same

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Responsibility of programmer’s code
and ensured by DBMS through other properties

Isolation

• A user should be able to understand a transaction
without considering the effect of any other
concurrently running transaction
• even if the DBMS interleaves their actions
• transaction are “isolated or protected” from other

transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Often ensured by “Locks”,
and other concurrency control approaches

Durability

• Once the DBMS informs the user that a
transaction has been successfully completed,
its effect should persist
• even if the system crashes before all its changes

are reflected on disk

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Ensured by recovery methods using “Logs” by
“redo”-ing complete/committed tr.

End of lecture on 10/29

Announcements (Tue. Nov 3)
• Today’s attendance goes to everyone

Deadlines:

• Thursday 11/5:
• (1) Gradiance4—XML due
• (2) LectureQuiz-4-ACID due

• Tuesday 11/10
• HW7-MongoDB/JSON due
• One submission per project group to gradescope, no collaboration outside

project group
• You need to know JSON/MongoDB only for this HW, not included in Final exam

• Thursday 11/12
• Two Gradiance Quizzes on Transactions due
• To be released on Thursday 11/5

• Monday 11/16 (LDOC)
• Final project submission due

Schedule

• An actual or potential sequence for executing
actions as seen by the DBMS

• A list of actions from a set of transactions
• includes READ, WRITE, ABORT, COMMIT

• Two actions from the same transaction T MUST
appear in the schedule in the same order that they
appear in T
• cannot reorder actions from a given transaction

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions
of different transactions

• Equivalent schedules: For any database state, the effect (on
the set of objects in the database) of executing the first
schedule is identical to the effect of executing the second
schedule

• Serializable schedule: A schedule that is equivalent to some
serial execution of the committed transactions
• Note: If each transaction preserves consistency, every serializable

schedule preserves consistency

Serial Schedule

• If the actions of different
transactions are not
interleaved
• transactions are executed

from start to finish one by
one

• Simple, but advantages of
concurrent execution lost

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

Serializable Schedule
• Equivalent to “some” serial schedule

• However, no guarantee on T1-> T2 or T2 -> T1

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

COMMIT

COMMIT

serial schedule serializable schedules

T1 T2

R(A)

W(A)

R(A)

R(B)

W(B)

W(A)

R(B)

W(B)

COMMIT

COMMIT

(Later, how to check for serializability)

Anomalies with Interleaved Execution

• Conflicts may arise if one transaction wants to write to a
data that another transaction reads/writes

• Write-Read (WR) – reading uncommitted or “dirty” data
• Read-Write (RW) – unrepeatable reads
• Write-Write (WW) – overwriting uncommitted data or “lost

updates”

• No conflict with RR if no write is involved

SQL transactions
• A transaction is automatically started when a user

executes an SQL statement
• Subsequent statements in the same session are

executed as part of this transaction
• Statements see changes made by earlier ones in the

same transaction
• Statements in other concurrently running transactions

do not
• COMMIT command commits the transaction
• Its effects are made final and visible to subsequent

transactions
• ROLLBACK command aborts the transaction
• Its effects are undone

Fine prints

• Schema operations (e.g., CREATE TABLE) implicitly
commit the current transaction

• Many DBMS support an AUTOCOMMIT feature,
which automatically commits every single
statement
• You can turn it on/off through the API

SQL isolation levels

• Strongest isolation level: SERIALIZABLE
• Complete isolation

• Weaker isolation levels:
• REPEATABLE READ,
• READ COMMITTED,
• READ UNCOMMITTED
• Increase performance by eliminating overhead and

allowing higher degrees of concurrency
• Trade-off: sometimes you get the “wrong” answer

READ UNCOMMITTED
• Can read “dirty” data (WR conflict)
• A data item is dirty if it is written by an uncommitted

transaction
• Problem: What if the transaction that wrote the

dirty data eventually aborts?
• Example: wrong average
• -- T1: -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142;

SELECT AVG(pop)
FROM User;

ROLLBACK;
COMMIT;

READ COMMITTED
• No dirty reads, but non-repeatable reads possible

(RW conflicts)
• Reading the same data item twice can produce different

results
• Example: different averages
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

SELECT AVG(pop)
FROM User;
COMMIT;

REPEATABLE READ

• Reads are repeatable, but may see phantoms
• Example: different average (still!)
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

INSERT INTO User
VALUES(789, 'Nelson',

10, 0.1);
COMMIT;

SELECT AVG(pop)
FROM User;
COMMIT;

Summary of SQL isolation levels

• Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level
[READ ONLY | READ WRITE];
• READ UNCOMMITTED can only be READ ONLY

• PostgreSQL defaults to READ COMMITTED

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

Bottom line

• Group reads and dependent writes into a
transaction in your applications
• E.g., enrolling a class, booking a ticket

• Anything less than SERIALABLE is potentially very
dangerous
• Use only when performance is critical
• READ ONLY makes weaker isolation levels a bit safer

Conflicting operations

• Two operations on the same data item conflict if at
least one of the operations is a write
• r(X) and w(X) conflict
• w(X) and r(X) conflict
• w(X) and w(X) conflict
• r(X) and r(X) do not conflict
• r/w(X) and r/w(Y) do not conflict

• Order of conflicting operations matters
• E.g., if 𝑇!.r(A) precedes 𝑇".w(A), then conceptually, 𝑇!

should precede 𝑇"

Precedence graph

• A node for each transaction
• A directed edge from 𝑇! to 𝑇" if an operation of 𝑇!

precedes and conflicts with an operation of 𝑇" in
the schedule

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

𝑇! 𝑇"

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

𝑇!

𝑇"

Good:
no cycle

𝑇!

𝑇"

Bad:
cycle

Conflict-serializable schedule

• A schedule is conflict-serializable iff its precedence
graph has no cycles

• A conflict-serializable schedule is equivalent to
some serial schedule (and therefore is “good”)
• In that serial schedule, transactions are executed in the

“topological order” of the precedence graph (see next
slide)
• You can get to that serial schedule by repeatedly

swapping adjacent, non-conflicting operations from
different transactions (see next to next slide)

Topological order to find equivalent
serial schedule(s)
• List a node only after all its predecessors (nodes

having a directed path to this node) are processed

Equivalent serial schedule (s)

T1, T2, T3 T1, T3, T4, T2

T1, T4, T3, T2OR

T1, T2, T3

T2, T1, T3OR

End of lecture on 11/3

Swapping adjacent non-conflicting actions
to reach an equivalent serial schedule
𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

𝑇!

𝑇"

Good:
no cycle

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(C)
w(C)

𝑇! 𝑇"

r(A)
w(A)

r(A)
r(B)

w(A)
w(B)

r(C)
w(C)

𝑇! 𝑇"

r(A)
w(A)
r(B)

r(A)
w(A)

w(B)
r(C)

w(C)

𝑇! 𝑇"

r(A)
w(A)
r(B)
w(B)

r(A)
w(A)
r(C)

w(C)

SERIAL

Locking (for Conurrency Control)

• Rules
• If a transaction wants to read an object, it must first

request a shared lock (S mode) on that object
• If a transaction wants to modify an object, it must first

request an exclusive lock (X mode) on that object
• Allow one exclusive lock, or multiple shared locks

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

S X

S Yes No

X No No

Basic locking is not enough

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

unlock(A)

unlock(B)
lock-X(B)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇!

𝑇"

Read 100
Write 100+1

Read 101

Write 101*2

Read 100
Write 100*2

Read 200
Write 200+1

Add 1 to both A and B
(preserve A=B)

Multiply both A and B by 2
(preserves A=B)

A ≠ B !

𝑇% 𝑇&

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks, phase 2: release locks

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

lock-X(B)

Cannot obtain the lock on B
until 𝑇! unlocks

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

2PL guarantees a
conflict-serializable

schedule

Remaining problems of 2PL
• 𝑇! has read uncommitted

data written by 𝑇"
• If 𝑇" aborts, then 𝑇! must

abort as well
• Cascading aborts possible if

other transactions have read
data written by 𝑇!
• Avoids Cascading Rollback =

Each transaction reads only
data written by committed
transactions.

• Even worse, what if 𝑇! commits before 𝑇"?
• Schedule is not recoverable if the system crashes right after
𝑇! commits

• Recoverable = Each transaction commits after all
transactions from which it has read has committed.

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Abort!

Strict 2PL

• Only release locks at commit/abort time
• A writer will block all other readers until the writer

commits or aborts

• Used in many commercial DBMS
• Oracle is a notable exception

Isolation levels not based on locks?

Snapshot isolation in Oracle
• Based on multiversion concurrency control
• Used in Oracle, PostgreSQL, MS SQL Server, etc.
• Intuition: uses a “private snapshot” or “local copy”
• If no conflict make global or abort

• More efficient than locks, but may lead to
aborts
• Other methods: Timestamp-based

