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Announcements (Thu. Oct 29)
• Gradiance4—XML, due next Thursday (11/5).

• Count() returns the number of elements returned by a Xpath
• Execute your Xpath query and see how many elements at the outermost level are returned (not the 

nested elements)

• LectureQuiz-4-ACID (today after class) due on Thursday 11/5

• HW7-MongoDB/JSON posted, due Tuesday 11/10
• To be done in project group, no collaboration outside project grp
• One submission per project group to gradescope
• Set up a common time, work on it together!
• You need to know JSON/MongoDB only for this HW, not included in Final exam  (XML/Lec 9 is 

included in Final)

• No other written/programming homework!

• Gradiance Quizzes on Transactions due on Thursday 11/12
• Try to solve early when a quiz is posted

• Final project submission due Monday 11/16 (LDOC)
• See project doc file on what to submit

• Tuesday Nov 3 – Election day
• Class on – watch the video later if you cannot attend-- Lecture (Transaction Concurrency 

Control/Recovery) included in Final – Gradiance quiz deadline moved

Mark your calendars 
for the HW deadlines!



Relational Model

Query in SQL

Query in RA

E/R diagram
(design from 

scratch)

Normal Forms
(refine design)

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-Reduce Parallel DBMS

Basics
Concurrency

Control Recovery

Where are we now?
Relational model and queries Database Design

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next



So  far:  One query/update
One machine

Multiple query/updates
One machine

One query/update
Multiple machines

Multiple query/updates, multiple machines: 
Distributed transactions, Two-Phase Commit protocol, .. (not covered) 

Transactions Parallel query processing
Map-Reduce, Spark, ..
Distributed query processing



Why should we care about running 
multiple queries/updates/programs on a 
machine concurrently?



Motivation: Concurrent Execution

• Concurrent execution of user programs is essential 
for good DBMS performance.
• Disk accesses are frequent, and relatively slow
• it is important to keep the CPU busy by working on several 

user programs concurrently
• short transactions may finish early if interleaved with long 

ones

• May increase system throughput (avg. #transactions 
per unit time)

• May decrease response time (avg. time to complete a 
transaction)



Transactions

• A transaction is the DBMS’s abstract view of a user 
program
• a sequence of reads and write
• DBMS only cares about R/W of “elements” (tuples, 

tables, etc)

• the same program executed multiple times would 
be considered as different transactions

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END



Example
• Consider two transactions:

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

• Intuitively, the first transaction is transferring $100 from B’s account 
to A’s account.  The second is crediting both accounts with a 6% 
interest payment

• There is no guarantee that T1 will execute before T2 or vice-versa, if 
both are submitted together.  

• However, the net effect must be equivalent to these two transactions 
running serially in some order



Are these interleaving (schedule) good?

• Schedule 1:
T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B

T1: A=A+100,   B=B-100   
T2: A=1.06*A, B=1.06*B

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

• Schedule 2:

• Schedule 3:
T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B  



Example: View of DBMS

T1: A=A+100,   B=B-100   
T2: A=1.06*A, B=1.06*B

v The DBMS’s view (and Notations!):
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

• Schedule 2:

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

C1 = “Commit” by Transaction  T1. 
A1 = “Abort” by Transaction  T1

• Two possible
representation
of schedules
• No message  

passing
• Fixed set of

objects (for 
now)

(next slide)



Commit and Abort

• A transaction might commit after completing all its 
actions
• or it could abort (or be aborted by the DBMS) after 

executing some actions

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END



Concurrency Control and Recovery

• Concurrency Control
• (Multiple) users submit (multiple) transactions
• Concurrency is achieved by the DBMS, which interleaves actions 

(reads/writes of DB objects) of various transactions
• user should think of each transaction as executing by itself one-at-a-time
• The DBMS needs to handle concurrent executions

• Recovery
• Due to crashes, there can be “partial” transactions

• DBMS needs to ensure that they are not visible to other transactions

• Also there can be some “completed” transactions with updated data 
still in memory (not yet to disk) and therefore lost in a crash
• DBMS needs to ensure that the updates eventually go to disk

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END



ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability

Recall our 
Disk-memory diagram!



Atomicity

• A user can think of a transaction as always executing all its 
actions in one step, or not executing any actions at all
• Users do not have to worry about the effect of incomplete 

transactions

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

Transactions  can  be aborted (terminated) by the DBMS or by  itself
• because of some anomalies during execution (and then restarts)
• the system may crash (say no power supply)
• may decide to abort itself encountering an unexpected situation

e.g. read an unexpected data value or unable to access disks

Ensured by recovery methods using “Logs”  by  “undo”-ing incomplete tr.



Consistency

• Each transaction, when run by itself with no concurrent 
execution of other actions, must preserve the consistency 
of the database
• e.g. if you transfer money from the savings account to the checking 

account, the total amount still remains the same

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

Responsibility of programmer’s code 
and ensured by DBMS through other properties



Isolation

• A user should be able to understand a transaction 
without considering the effect of any other 
concurrently running transaction
• even if the DBMS interleaves their actions
• transaction are “isolated or protected” from other 

transactions

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

Often ensured by  “Locks”, 
and other concurrency control approaches



Durability

• Once the DBMS informs the user that a 
transaction has been successfully completed, 
its effect should persist 
• even if the system crashes before all its changes 

are reflected on disk

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

Ensured by recovery methods using “Logs”  by  
“redo”-ing complete/committed tr.

End of lecture on 10/29



Announcements (Tue. Nov 3)
• Today’s attendance goes to everyone

Deadlines:

• Thursday 11/5: 
• (1) Gradiance4—XML due
• (2) LectureQuiz-4-ACID due

• Tuesday 11/10 
• HW7-MongoDB/JSON due
• One submission per project group to gradescope, no collaboration outside 

project group
• You need to know JSON/MongoDB only for this HW, not included in Final exam

• Thursday 11/12 
• Two Gradiance Quizzes on Transactions due
• To be released on Thursday 11/5

• Monday 11/16 (LDOC)
• Final project submission due



Schedule

• An actual or potential sequence for executing 
actions as seen by the DBMS

• A list of actions from a set of transactions
• includes READ, WRITE, ABORT, COMMIT

• Two actions from the same transaction T MUST 
appear in the schedule in the same order that they 
appear in T
• cannot reorder actions from a given transaction



Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions 
of different transactions

• Equivalent schedules:  For any database state, the effect (on 
the set of objects in the database) of executing the first 
schedule is identical to the effect of executing the second 
schedule

• Serializable schedule:  A schedule that is equivalent to some 
serial execution of the committed transactions
• Note: If each transaction preserves consistency, every serializable 

schedule preserves consistency



Serial Schedule

• If the actions of different 
transactions are not 
interleaved
• transactions are executed 

from start to finish one by 
one

• Simple, but advantages of 
concurrent  execution lost

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT



Serializable Schedule
• Equivalent to “some” serial schedule

• However, no guarantee on T1-> T2 or T2 -> T1

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

COMMIT

COMMIT

serial schedule serializable schedules

T1 T2

R(A)

W(A)

R(A)

R(B)

W(B)

W(A)

R(B)

W(B)

COMMIT

COMMIT

(Later, how to check for serializability)



Anomalies with Interleaved Execution

• Conflicts  may arise if one  transaction wants to write  to a  
data that another transaction  reads/writes

• Write-Read (WR) – reading uncommitted or “dirty” data
• Read-Write (RW) – unrepeatable reads
• Write-Write (WW) – overwriting uncommitted data or “lost 

updates”

• No conflict with RR if no write is involved



SQL transactions
• A transaction is automatically started when a user 

executes an SQL statement
• Subsequent statements in the same session are 

executed as part of this transaction
• Statements see changes made by earlier ones in the 

same transaction
• Statements in other concurrently running transactions 

do not
• COMMIT command commits the transaction
• Its effects are made final and visible to subsequent 

transactions
• ROLLBACK command aborts the transaction
• Its effects are undone



Fine prints

• Schema operations (e.g., CREATE TABLE) implicitly 
commit the current transaction

• Many DBMS support an AUTOCOMMIT feature, 
which automatically commits every single 
statement
• You can turn it on/off through the API



SQL isolation levels

• Strongest isolation level: SERIALIZABLE
• Complete isolation

• Weaker isolation levels: 
• REPEATABLE READ, 
• READ COMMITTED, 
• READ UNCOMMITTED
• Increase performance by eliminating overhead and 

allowing higher degrees of concurrency
• Trade-off: sometimes you get the “wrong” answer



READ UNCOMMITTED
• Can read “dirty” data (WR conflict)
• A data item is dirty if it is written by an uncommitted 

transaction
• Problem: What if the transaction that wrote the 

dirty data eventually aborts?
• Example: wrong average
• -- T1: -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142;

SELECT AVG(pop)
FROM User;

ROLLBACK;
COMMIT;



READ COMMITTED
• No dirty reads, but non-repeatable reads possible 

(RW conflicts)
• Reading the same data item twice can produce different 

results
• Example: different averages
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

SELECT AVG(pop)
FROM User;
COMMIT;



REPEATABLE READ

• Reads are repeatable, but may see phantoms
• Example: different average (still!)
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

INSERT INTO User
VALUES(789, 'Nelson',

10, 0.1);
COMMIT;

SELECT AVG(pop)
FROM User;
COMMIT;



Summary of SQL isolation levels

• Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level
[READ ONLY | READ WRITE];
• READ UNCOMMITTED can only be READ ONLY

• PostgreSQL defaults to READ COMMITTED

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible



Bottom line

• Group reads and dependent writes into a 
transaction in your applications
• E.g., enrolling a class, booking a ticket

• Anything less than SERIALABLE is potentially very 
dangerous
• Use only when performance is critical
• READ ONLY makes weaker isolation levels a bit safer



Conflicting operations

• Two operations on the same data item conflict if at 
least one of the operations is a write
• r(X) and w(X) conflict
• w(X) and r(X) conflict
• w(X) and w(X) conflict
• r(X) and r(X) do not conflict
• r/w(X) and r/w(Y) do not conflict

• Order of conflicting operations matters
• E.g., if 𝑇!.r(A) precedes 𝑇".w(A), then conceptually, 𝑇!

should precede 𝑇"



Precedence graph

• A node for each transaction
• A directed edge from 𝑇! to 𝑇" if an operation of 𝑇!

precedes and conflicts with an operation of 𝑇" in 
the schedule

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

𝑇! 𝑇"

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

𝑇!

𝑇"

Good:
no cycle

𝑇!

𝑇"

Bad:
cycle



Conflict-serializable schedule

• A schedule is conflict-serializable iff its precedence 
graph has no cycles

• A conflict-serializable schedule is equivalent to 
some serial schedule (and therefore is “good”)
• In that serial schedule, transactions are executed in the 

“topological order” of the precedence graph (see next 
slide)
• You can get to that serial schedule by repeatedly 

swapping adjacent, non-conflicting operations from 
different transactions (see next to next slide)



Topological order to find equivalent 
serial schedule(s)
• List a node only after all its predecessors (nodes 

having a directed path to this node) are processed

Equivalent serial schedule (s)

T1, T2, T3 T1, T3, T4, T2

T1, T4, T3, T2OR 

T1, T2, T3

T2, T1, T3OR 

End of lecture on 11/3



Swapping adjacent non-conflicting actions 
to reach an equivalent serial schedule 
𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

𝑇!

𝑇"

Good:
no cycle

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(C)
w(C)

𝑇! 𝑇"

r(A)
w(A)

r(A)
r(B) 

w(A)
w(B)

r(C)
w(C)

𝑇! 𝑇"

r(A)
w(A)
r(B)

r(A)          
w(A)

w(B)
r(C)

w(C)

𝑇! 𝑇"

r(A)
w(A)
r(B)
w(B)

r(A)          
w(A)
r(C)

w(C)

SERIAL 



Locking (for Conurrency Control)

• Rules
• If a transaction wants to read an object, it must first 

request a shared lock (S mode) on that object
• If a transaction wants to modify an object, it must first 

request an exclusive lock (X mode) on that object
• Allow one exclusive lock, or multiple shared locks

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

S X

S Yes No

X No No



Basic locking is not enough

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

unlock(A)

unlock(B)
lock-X(B)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇!

𝑇"

Read 100
Write 100+1

Read 101

Write 101*2

Read 100
Write 100*2

Read 200
Write 200+1

Add 1 to both A and B
(preserve A=B)

Multiply both A and B by 2
(preserves A=B)

A ≠ B !

𝑇% 𝑇&

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)



Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks, phase 2: release locks

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

lock-X(B)

Cannot obtain the lock on B
until 𝑇! unlocks

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

2PL guarantees a
conflict-serializable

schedule



Remaining problems of 2PL
• 𝑇! has read uncommitted 

data written by 𝑇"
• If 𝑇" aborts, then 𝑇! must 

abort as well
• Cascading aborts possible if 

other transactions have read 
data written by 𝑇!
• Avoids Cascading Rollback = 

Each transaction reads only 
data written by committed 
transactions.

• Even worse, what if 𝑇! commits before 𝑇"?
• Schedule is not recoverable if the system crashes right after 
𝑇! commits

• Recoverable = Each transaction commits after all 
transactions from which it has read has committed.

𝑇! 𝑇"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Abort!



Strict 2PL

• Only release locks at commit/abort time
• A writer will block all other readers until the writer 

commits or aborts

• Used in many commercial DBMS
• Oracle is a notable exception



Isolation levels not based on locks?

Snapshot isolation in Oracle
• Based on multiversion concurrency control
• Used in Oracle, PostgreSQL, MS SQL Server, etc.
• Intuition: uses a “private snapshot” or “local copy”
• If no conflict make global or abort

• More  efficient than  locks, but may lead  to  
aborts
• Other methods: Timestamp-based


