An overview of
Big Data Processing:
Map-Reduce

&
Parallel DBMS

Introduction to Databases
CompSci 316 Fall 2020

E- DUKE
COMPUTER SCIENCE

Where are we now?

Relational model and queries Database Design
E/R diagram
Query in SQL (design from Normal F(?rms
) (refine design)
Relational Model
Query in RA Beyond Relational Model
NOSQL
AML JSON/MongoDB
DBMS Internals and Query Processing
Storage Index Transactions
, Concurrenc
Basics Control y Recovery
: , Execution/
J lgo/Sort o
oin algo/Sorting Optimization
(Basic) Big Data Processing

Covered Map-Reduce Parallel DBMS
Next

To be covered

So far:|One query/update

One machine

Multiple query/updates One query/update
One machine Multiple machines
Transactions Parallel query processing

Map-Reduce, Spark, ..
Distributed query processing

Multiple query/updates, multiple machines:
Distributed transactions, Two-Phase Commit protocol, .. (not covered)

An overview of Map-Reduce

Announcements (Thu. Nov 12)

* Approx. current class standing posted

e Please submit course evaluations on DukeHub!
* Due by Nov 19, 2020 (Thursday), 11:59 pm

* Please read carefully and submit Final Exam
Policy/Logistics (Communication) by 11/18 (Wed)

* Last Gradiance quiz due today (Thurs)
* Project due Monday 11/16

* There will be a discussion session on Monday 11/16
LDOC

MapReduce: motivation & TiEEaED

* Many problems can be processed in this pattern:
* Given a lot of unsorted data
: extract something of interest from each record
: group the intermediate results in some way

: further process (e.g., aggregate, summarize,
analyze, transform) each group and write final results

(Customize map and reduce for problem at hand)

®Make this pattern easy to program and
efficient to run
* Original Google paper in OSDI 2004
* Hadoop is most popular open-source implementation
* Spark still supports it

M/R programming model

* Input/output: each a collection of key/value pairs
* Programmer specifies two functions

* Processes each input key/value pair, and produces a list of
intermediate key/value pairs

* Processes all intermediate values associated with the same key,
and produces a list of result values (usually just one for the key)

Simple Example: Map-Reduce

* Word counting
* Inverted indexes

Page A A map output

This : A
This page page A.
containg S0 s=pp> coqta|ns. A
much text s0:A
much: A
text: A
Page B B map output
My: B
My page page : B
contains text == CONtains: B
too text: B
too: B
Ack:

Reduced output

contains: A, B
much: A

My: B
page:A B
S0 A

text: A, B
This: A
too: B

Slide by Prof. Shivnath Babu

A similar M/R example: word count

* Expected input: a huge file (or collection of many
files) with millions of lines of English text

* Expected output: list of (word, count) pairs

* Implementation

* map(_,line) — list(word, count)

* Given a line, split it into words, and output (w, 1) for each word
w in the line

. reduce(word, list(count)) — (word, count)

* Given a word w and list L of counts associated with it, compute
S = X counter count and output (w, s)
* Optimization: before shuffling, map can pre-aggregate
word counts locally so there is less data to be shuffled

* This optimization can be implemented in Hadoop as a
‘““combiner”

10

M/R execution

Distributed file system
T T T T—— Finalresults go

to distributed

Reduce tasks: R R R file system
Intermediate
Shuffle: / results go to
local disk
Map tasks: Each map
task gets
an input

E j E j l(sp“t”
Data not necessary local

Distributed file system (e.g., HDFS)

]

M/R execution timeline

time
>
[wm ™][R R
L m» [™M] R R
[wm T wm] [R R

* When there are more tasks than workers, tasks
execute in “waves”
* Boundaries between waves are usually blurred

* Reduce tasks can’t start until all map tasks are done

11

Issues with M/R

* Numbers of map and reduce tasks
* Larger is better for load balancing
* But more tasks add overhead and communication

* Worker failure
* Master pings workers periodically
* If one is down, reassign its split/region to another
worker
* “Straggler”: a machine that is exceptionally slow

* Pre-emptively run the last few remaining tasks
redundantly as backup

13

Why did we need a new
programming model “Spark”?

* MapReduce greatly simplified big data analysis

* But as soon as it got popular, users wanted more:
e More complex, multi-stage iterative applications
(graph algorithms, machine learning)
e More interactive ad-hoc queries
e More real-time online processing

* All three of these apps require fast data sharing

across parallel jobs
Spark

14

Data Sharing in MapReduce

HDFS HDFS HDFS HDFS
read write read write
- — —l = : — — e e .
I— : I— .
Input

result 1
result 2
result 3

[Slow due to replication, serialization, and disk IO]

15

Data Sharing in Spark

[10-1oox faster than network and disk]

Input
] L7
one-time
processing R
L7
Input Distributed —
memory

In addition, stores all intermediate results and lineage as
Resilient Distributed Datasets (RDDs) to avoid Recomputation from scratch after crashes

An overview of
Parallel Databases

Parallel processing

* Improve performance by executing multiple
operations in parallel

* Cheaper to scale than relying on a single
increasingly more powerful processor

Speedup

* Increase # processors = how much faster can we
solve the same problem?

* Overall problem size is fixed

speedup

1%

1 # processors

Scaleup

* Increase # processors and problem size
proportionally — can we solve bigger problems in

the same time?
* Per-processor problem size is fixed

A

1% linear scaleup (ideal)

effective unit speed
vs. baseline

i # processors & problem size

Why linear speedup/scaleup is hard

Why linear speedup/scaleup is hard

* Startup
* Overhead of starting useful work on many processors

* Communication

* Cost of exchanging data/information among processors
* Interference

 Contention for resources among processors

e Skew
* Slowest processor becomes the bottleneck

Shared-nothing architecture

onnection net

=

=

<AL < > D <l >

* Most scalable (vs. shared-memory and shared-disk)
* Minimizes interference by minimizing resource sharing
* Can use commodity hardware

* Also most difficult to program

Horizontal data partitioning

* Split a table R into p chunks, each stored at one of
the p processors

* Splitting strategies:
* Round robin or block-partitioning distributes tuples

arbitrarily but each processor gets the same amount of
data (e.g., can assign the i-th row to chunk (i mod p))

* Hash-based partitioning on attribute A assigns row r to
chunk (h(r.A) mod p)

* Range-based partitioning on attribute A partitioning the
range of R. A values into p ranges, and assigns row r to
the chunk whose corresponding range contains r. 4

23

Practice Problem: Parallel DBMS

Example problem: Parallel DBMS

R(a,b) is horizontally partitioned across N = 3 machines.
Each machine locally stores approximately 1/N of the tuplesin R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N =
3 machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROM R

WHERE a>o0

GROUP BY a

R(a, b)

SELECT a, max(b) as topB°
FROM R

WHERE a>o

GROUP BY a

SELECT a, max(b) as topb’
R(a, b) FROM R

WHEREa>o0

GROUP BY a

Machine 1 Machine 2 Machine 3

1/3 of R

d i
d i
d i

SELECT a, max(b) as topB”
R(a, b) FROM R

WHER
GROUP BY 2

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb’
R(a, b) FROM R
WHEREa>o0

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb’
R(a, b) FROM R

WHEREa>o0

GROUP BY a

Machine 1 Machine 2 Machine 3

Machine 1

SELECT a, max(b) as topb
WHERE a>o

Machine 2

FROM R
GROUP BY a

Machine 3

SELECT a, max(b) as topb FROM R 32
R(a, b) WHERE a > 0 GROUP BY a

Ya, max(b) -> topb Ya, max(b) -> topb Ya, max(b) -> topb

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROMR

Benefit of hash-partitioning wierea»o

GROUP BY a

* What would change if we hash-partitioned R on R.a
before executing the same query on the previous
parallel DBMS and MR

SELECT a, max(b) as topb FROM R 34
(Previblockcpartition || wheRea>o GROUP BY 2

Ya, max(b) -> topb Ya, max(b) -> topb

Chshons - ehona
CTamaty Ty

Ya, max(b) -> topb

Machine 1 Machine 2 Machine 3

1/3 of R

SELECT a, max(b) as topb
Hash-partition on a for R(a, b) ()FROMPFL;

WHERE a>o0
GROUP BY a

* It would avoid the data re-shuffling phase
* It would compute the aggregates locally

SELECT a, max(b) as topb FROM R 36
HashpartitiononaforR@b) | wherea> o GROUP BY -

Ya, max(b) -> topb

Ya, max(b) -> topb Ya, max(b) -> topb

Machine 1 Machine 2 Machine 3

A brief summary of three approaches

o 6

o 6

o 6

».,

, €.8., Teradata

Same abstractions (relational data model, SQL, transactions) as a
regular DBMS

Parallelization handled behind the scene, automatic optimizations
Transactions supported

(Big Data)” 10 years go: , .g., Hadoop
Easy scalin% out (e.g., adding lots of commodity servers) and
failure handling
Input/output in files, not tables
Parallelism exposed to programmers
Mostly manual optimization
No transactions/updates

"’ today:
Compared to MapReduce: smarter memory usage, recovery, and
optimization
Higher-level DB-like abstractions (but still no
updates/transactions)

What are the “NOSQL” systems?

They have the ability to

* horizontally scale “simple read/write operations”
throughput over many servers (e.g., joins are expensive or
not supported)

* replicate and to distribute (partition) data over many servers

 a weaker concurrency model than ACID (BASE - Basically
Available, Soft state, Eventually consistent)

* Efficiently use distributed indexes and RAM for data storage
 dynamically add new attributes to data records (like JSON)

* Example: MongoDB, CouchDB, Dynamo, MemBase...

38

Conclusions

* We discussed using a database system (queries), designing a database,
database internals, and approaches to handling big data

* There are many more traditional and new DB topics that we could not cover
— happy to discuss after semester/send pointers!

* Recursionin SQL

* Data mining and exploration

* Query optimization

* Distributed DBMS

* NOSQL and new database systems

* Data cleaning and uncertainty in data

* If you are interested in database research or projects, we would be happy to
discuss with you!

e Good luck!

39

