
An overview of
Big Data Processing:

Map-Reduce
&

Parallel DBMS
Introduction to Databases

CompSci 316 Fall 2020

Relational Model

Query in SQL

Query in RA

E/R diagram
(design from

scratch)

Normal Forms
(refine design)

Storage Index

Join algo/Sorting Execution/
Optimization

XML NOSQL
JSON/MongoDB

Map-Reduce Parallel DBMS

Basics
Concurrency

Control Recovery

Where are we now?
Relational model and queries Database Design

Beyond Relational Model

Transactions

(Basic) Big Data Processing

DBMS Internals and Query Processing

Covered

To be covered
Next

So far: One query/update
One machine

Multiple query/updates
One machine

One query/update
Multiple machines

Multiple query/updates, multiple machines:
Distributed transactions, Two-Phase Commit protocol, .. (not covered)

Transactions Parallel query processing
Map-Reduce, Spark, ..
Distributed query processing

3

An overview of Map-Reduce

4

Announcements (Thu. Nov 12)
• Approx. current class standing posted

• Please submit course evaluations on DukeHub!
• Due by Nov 19, 2020 (Thursday), 11:59 pm

• Please read carefully and submit Final Exam
Policy/Logistics (Communication) by 11/18 (Wed)

• Last Gradiance quiz due today (Thurs)
• Project due Monday 11/16
• There will be a discussion session on Monday 11/16

LDOC

MapReduce: motivation

• Many problems can be processed in this pattern:
• Given a lot of unsorted data
• Map: extract something of interest from each record
• Shuffle: group the intermediate results in some way
• Reduce: further process (e.g., aggregate, summarize,

analyze, transform) each group and write final results
(Customize map and reduce for problem at hand)

FMake this pattern easy to program and
efficient to run
• Original Google paper in OSDI 2004
• Hadoop is most popular open-source implementation
• Spark still supports it

6

M/R programming model

• Input/output: each a collection of key/value pairs
• Programmer specifies two functions
• map 𝑘!, 𝑣! → list 𝑘", 𝑣"

• Processes each input key/value pair, and produces a list of
intermediate key/value pairs

• reduce 𝑘", list 𝑣" → list 𝑣#
• Processes all intermediate values associated with the same key,

and produces a list of result values (usually just one for the key)

7

Simple Example: Map-Reduce

• Word counting
• Inverted indexes

Ack:
Slide by Prof. Shivnath Babu

8

A similar M/R example: word count
• Expected input: a huge file (or collection of many

files) with millions of lines of English text
• Expected output: list of (word, count) pairs
• Implementation
• map _, line → list word, count

• Given a line, split it into words, and output 𝑤, 1 for each word
𝑤 in the line

• reduce word, list count → word, count
• Given a word 𝑤 and list 𝐿 of counts associated with it, compute
𝑠 = ∑!"#$%∈' count and output 𝑤, 𝑠

• Optimization: before shuffling, map can pre-aggregate
word counts locally so there is less data to be shuffled
• This optimization can be implemented in Hadoop as a

“combiner”

9

M/R execution

Data not necessary local
Distributed file system (e.g., HDFS)

M M M M M

R R R

Distributed file system

Final results go
to distributed
file systemReduce tasks:

Map tasks:

Shuffle:

Each map
task gets
an input
“split”

Intermediate
results go to
local disk

10

M/R execution timeline

• When there are more tasks than workers, tasks
execute in “waves”
• Boundaries between waves are usually blurred

• Reduce tasks can’t start until all map tasks are done

M

M

M M

M

M

R

R

R

R

R

RM M

M M

time

11

Issues with M/R

• Numbers of map and reduce tasks
• Larger is better for load balancing
• But more tasks add overhead and communication

• Worker failure
• Master pings workers periodically
• If one is down, reassign its split/region to another

worker

• “Straggler”: a machine that is exceptionally slow
• Pre-emptively run the last few remaining tasks

redundantly as backup

12

Why did we need a new
programming model “Spark”?
• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted more:
•More complex, multi-stage iterative applications

(graph algorithms, machine learning)
•More interactive ad-hoc queries
•More real-time online processing
• All three of these apps require fast data sharing

across parallel jobs

13

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO

14

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network and disk

15

In addition, stores all intermediate results and lineage as
Resilient Distributed Datasets (RDDs) to avoid Recomputation from scratch after crashes

An overview of
Parallel Databases

16

Parallel processing

• Improve performance by executing multiple
operations in parallel
• Cheaper to scale than relying on a single

increasingly more powerful processor

17

Speedup

• Increase # processors → how much faster can we
solve the same problem?
• Overall problem size is fixed

18

processors

sp
ee

du
p

1

1×

lin
ear s

peedup (id
eal) reality

Scaleup

• Increase # processors and problem size
proportionally → can we solve bigger problems in
the same time?
• Per-processor problem size is fixed

19

processors & problem size

ef
fe

ct
iv

e
un

it
sp

ee
d

vs
. b

as
el

in
e

1

1× linear scaleup (ideal)

reality

Why linear speedup/scaleup is hard
20

Why linear speedup/scaleup is hard

• Startup
• Overhead of starting useful work on many processors

• Communication
• Cost of exchanging data/information among processors

• Interference
• Contention for resources among processors

• Skew
• Slowest processor becomes the bottleneck

21

Shared-nothing architecture

• Most scalable (vs. shared-memory and shared-disk)
• Minimizes interference by minimizing resource sharing
• Can use commodity hardware

• Also most difficult to program

22

Disk Disk Disk

Mem Mem Mem

Proc Proc Proc

Interconnection network

Horizontal data partitioning

• Split a table 𝑅 into 𝑝 chunks, each stored at one of
the 𝑝 processors
• Splitting strategies:
• Round robin or block-partitioning distributes tuples

arbitrarily but each processor gets the same amount of
data (e.g., can assign the 𝑖-th row to chunk 𝑖 mod 𝑝)
• Hash-based partitioning on attribute 𝐴 assigns row 𝑟 to

chunk ℎ 𝑟. 𝐴 mod 𝑝
• Range-based partitioning on attribute 𝐴 partitioning the

range of 𝑅. 𝐴 values into 𝑝 ranges, and assigns row 𝑟 to
the chunk whose corresponding range contains 𝑟. 𝐴

23

Practice Problem: Parallel DBMS

24

Example problem: Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N =
3 machines.

Pick an efficient plan that leverages the parallelism as much as possible.

• SELECT a, max(b) as topb
• FROM R
• WHERE a > 0
• GROUP BY a

25

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)
26

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc

27

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

sa>0 sa>0 sa>0

28

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

sa>0 sa>0 sa>0

29

ga, max(b) -> b ga, max(b) -> b ga, max(b) -> b

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

sa>0 sa>0 sa>0

Hash on a Hash on a Hash on a

30

ga, max(b) -> b ga, max(b) -> b ga, max(b) -> b

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

sa>0 sa>0 sa>0

Hash on a Hash on a Hash on a

31

ga, max(b) -> b ga, max(b) -> b ga, max(b) -> b

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b) -> b ga, max(b) -> b ga, max(b) -> b

Hash on a Hash on a Hash on a

ga, max(b) -> topb ga, max(b) -> topb ga, max(b) -> topb

32

Benefit of hash-partitioning

• What would change if we hash-partitioned R on R.a
before executing the same query on the previous
parallel DBMS and MR

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

33

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aPrev: block-partition

scan scan scan

sa>0 sa>0 sa>0

ga, max(b)->
b

ga, max(b)->
b

ga, max(b)->
b

Hash on a Hash on a Hash on a

ga, max(b) -> topb ga, max(b) -> topb ga, max(b) -> topb

34

• It would avoid the data re-shuffling phase
• It would compute the aggregates locally

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

35
Hash-partition on a for R(a, b)

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

sa>0 sa>0 sa>0

ga, max(b) -> topb ga, max(b) -> topb ga, max(b) -> topb

36

A brief summary of three approaches

• “DB”: parallel DBMS, e.g., Teradata
• Same abstractions (relational data model, SQL, transactions) as a

regular DBMS
• Parallelization handled behind the scene, automatic optimizations
• Transactions supported

• “BD (Big Data)” 10 years go: MapReduce, e.g., Hadoop
• Easy scaling out (e.g., adding lots of commodity servers) and

failure handling
• Input/output in files, not tables
• Parallelism exposed to programmers
• Mostly manual optimization
• No transactions/updates

• “BD” today: Spark
• Compared to MapReduce: smarter memory usage, recovery, and

optimization
• Higher-level DB-like abstractions (but still no

updates/transactions)

37

What are the “NOSQL” systems?
38

They have the ability to
• horizontally scale “simple read/write operations”

throughput over many servers (e.g., joins are expensive or
not supported)
• replicate and to distribute (partition) data over many servers
• a weaker concurrency model than ACID (BASE – Basically

Available, Soft state, Eventually consistent)
• Efficiently use distributed indexes and RAM for data storage
• dynamically add new attributes to data records (like JSON)

• Example: MongoDB, CouchDB, Dynamo, MemBase…

Conclusions
• We discussed using a database system (queries), designing a database,

database internals, and approaches to handling big data

• There are many more traditional and new DB topics that we could not cover
– happy to discuss after semester/send pointers!
• Recursion in SQL
• Data mining and exploration
• Query optimization
• Distributed DBMS
• NOSQL and new database systems
• Data cleaning and uncertainty in data
• …..

• If you are interested in database research or projects, we would be happy to
discuss with you!

• Good luck!

39

