Auctions &
Combinatorial Auctions

Vincent Conitzer
conitzer@cs.duke.edu

A few different 1-item auction mechanisms

° English auction:

— Each bid must be higher than previous bid
\ — Last bidder wins, pays last bid

\ .
;,Japanese auction:

, — Price rises, bidders drop out when price is too high
I — Last bidder wins at price of last dropout

& Dutch auction:

/) — Price drops until someone takes the item at that price
| * Sealed-bid auctions (direct-revelation mechanisms):
" — Each bidder submits a bid in an envelope
\k’Auctioneer opens the envelopes, highest bid wins

‘\ First-price sealed-bid auction: winner pays own bid

~ ~ . Second-price sealed bid (or Vickrey) auction: winner pays second-
highest bid

/

Complementarity and substitutability

How valuable one item is to a bidder may
depend on whether the bidder possesses
another item

Items a and b are complementary if v({a, b}) >

v(ia}) + V({b})
E. = —

iR
Items a and b are substitutes if v({a, b}) <
v(ia}) + v(ib})

N

Inefficiency of sequential auctions
* Suppose your valuation function is v(bl) =
$200, v([E) = $100, v([] 1/) = $500
* Now suppose that there are two (say, Vickrey)
auctions, the first one for {J] and the second
one for
» What should you bid in the first auction (for[J])?

« If you bid $200, you may lose to a bidder who
bids $250, only to find out that you could have
won for $200

* |f you bid anything higher, you may pay more
than $200, only to find out that & sells for
$1000

« Sequential (and parallel) auctions are inefficient

Combinatorial auctions

Simultaneously for sale: . , Wﬁ , ,
bid 1
V([|) = $500
bid 2

used in truckload transportation, industrial procurement, radio spectrum allocation, ...

The winner determination problem
(WDP)

* Choose a subset A (the accepted bids) of the
bids B,

* to maximize 2, AV,

* under the constraint that every item occurs at
most once in A

— This is assuming free disposal, i.e., not everything
needs to be allocated

WDP example
e [tems A, B,C,D, E

* Bids:

« ({A,C,D},7)

* ({B,E}L 7)

* ({C},3) » What’s an

* ({A! B, C, E}, 9) Optlmal

» ({D}, 4) solution?

« ({A, B, C}, 5) * How can we
. ({B, D}, 5) prove it is

optimal?

Price-based argument for optimality

e ltemsA,B,C,D,E + Suppose we create

+ Bids: the following “prices”
. ({A. C, D}, 7) for the items:
. ({B, E}, 7) * p(A)=0,p(B) =7,
. Ch 3 p(C) =3, p(D) = 4,

’ p(E)=0
* (1A, B, C, E}L 9) . Every bid bids at
* ({D}, 4) most the sum of the
 ({A, B, C}, 5) prices of its items, so
. ({B, D}, 5) we can't expect to

get more than 14.

Price-based argument does not

always give matching upper bound
» Clearly can get at most 2

* ltems A, B, C « |f we want to set prices that

* Bids: sum to 2, there must exist two
. ({A, B}, 2) items whose prices sum to < 2
. ({B, C}, 2) * But then there is a bid on those
. ({A, C}, 2) two items of value 2

— (Can set prices that sum to 3, so
that’'s an upper bound)

Should not be surprising, since it's an NP-
hard problem and we don’t expect short
proofs for negative answers to NP-hard
problems (we don’t expect NP = coNP)

An integer program formulation

X, equals 1 if bid b is accepted, O if it is not
maximize 2, VX,

subject to

= foreachitemj, 2., Xp =1

f each x, can take any value in [0, 1], we say that
pids can be partially accepted

n this case, this is a linear program that can be
solved in polynomial time

This requires that
— each item can be divided into fractions

— if a bidder gets a fraction f of each of the items in his bundle,
then this is worth the same fraction f of his value v, for the
bundle

Price-based argument does always
work for partially acceptable bids

* ltems A, B, C » Now can get 3, by
 Bids: accepting half of
. ({A, B, 2) each bid

. ({B, C}, 2) Put a price of 1 on
. ({A. C}. 2) each item

General proof that with partially
acceptable bids, prices always
exist to give a matching upper
bound is based on linear
programming duality

Welighted independent set

« Choose subset of the vertices with maximum total
weight,

« Constraint: no two vertices can have an edge
between them

* NP-hard (generalizes regular independent set)

The winner determination problem as a
weighted independent set problem

« Each bid is a vertex
* Draw an edge between two vertices if they share an item

bid 2

. /V() = $700
V(&) =$300 |

v([T] @) = 8500

« Optimal allocation = maximum weight independent set

« Can model any weighted independent set instance as a CA
winner determination problem (1 item per edge (or clique))

« Weighted independent set is NP-hard, even to solve
approximately [Hastad 96] - hence, so is WDP
— [Sandholm 02] noted that this inapproximability applies to the WDP

Dynamic programming approach
to WDP [Rothkopf et al. 98]

* For every subset S of |, compute w(S) = the
maximum total value that can be obtained

when allocating only items in S

* Then= W(S) = max {maxi Vi(S)’ maXS’: S’ is a subset of
S, and there exists a bid on S’ W(S,) 0 W(S \ S,)}

* Requires exponential time

Bids on connected sets of items in a tree
Suppose items are organized in a tree

item B item E |

‘ item A item C '\| tem F ‘
\‘ —— item G‘

item H‘

Suppose each bid is on a connected set of items

— E.g. {A, B, C, G}, but not {A, B, G}

Then the WDP can be solved in polynomial time (using
dynamic programming) [Sandholm & Suri 03]

Tree does not need to be given: can be constructed from the
bids in polynomial time if it exists [Conitzer, Derryberry, Sandholm 04]

More generally, WDP can also be solved in polynomial time for

graphs of bounded treewidth [Conitzer, Derryberry, Sandholm 04]
— Even further generalization given by [Gottlob, Greco 07]

Maximum weighted matching
(not necessarily on bipartite graphs)

* Choose subset of the edges with maximum total
weight,

« Constraint: no two edges can share a vertex

 Still solvable in polynomial time

Bids with few items [Rothkopf et al. 98]

* |f each bid is on a bundle of at most two items,

* then the winner determination problem can be solved
In polynomial time as a maximum weighted matching
problem

— 3-item example:

Value of
Value of highest | Ihighes,t bid
bid on {A, B} _| : on {B} ,
. | ||tem BI IBsdummyl
item A
Value of
: highest bid
Value of highest
: on {B, C} Value of
bid A
id on {A} highest bid
, Value of . on {C} :
| A's dummy | highest bid |tem C I I C’s dummy |

on {A, C}

 |If each bid is on a bundle of three items, then the
winner determination problem is NP-hard again

Variants [sandholm et al. 2002]:
combinatorial reverse auction

* [n @ combinatorial reverse auction (CRA),
the auctioneer seeks to buy a set of
items, and bidders have values for the

different bundles that they may sell the
auctioneer

" minimize 2, VX,
= subject to
= for each item j, 2. i p X, 2 1

WDP example (as CRA)

* ltemsA,B,C,D, E
* Bids:

* (A, C, D}, 7)

* ({B, E}, 7)

* ({C}, 3)

 ({A, B, C, E}, 9)

* ({D}, 4)

* ({A, B, C}, 5)

* ({B, D}, 9)

Variants:
multi-unit CAs/CRAS

Multi-unit variants of CAs and CRAs: multiple
units of the same item are for sale/to be
bought, bidders can bid for multiple units

Let g, be number of units of item j in bid b, q;
total number of units of | available/demanded

maximize Z, v X,
subject to

= for each item j, 2, qpx, < q|
minimize Z, VX,

subject to

= for each item j, 2, q,X, 2 q

Multi-unit WDP example

(as CA/CRA)

. Items: 3A, 2B, 4C, 1D, 3E
. Bids:

. ({1A, 1C, 1D}, 7)

. ({2B, 1E}, 7)

* ({2C}, 3)

. ({2A, 1B, 2C, 2E}, 9)

* ({20}, 4)

. ({3A, 1B, 2C}, 5)

. ({2B, 2D}, 5)

e e N N i

Variants: (multi-unit)
combinatorial exchanges

« Combinatorial exchange (CE): bidders can
simultaneously be buyers and sellers

— Example bid: “If | receive 3 units of A and -5 units of
B (i.e., | have to give up 5 units of B), that is worth
$100 to me.”

" maximize 2, VX,
» subject to
= for each item j, 2, q,x,< 0

CE WDP example

» Bids:

« ({-1A, -1C, -1D}, -7)

. ({2B, 1E}, 7)

* ({2C}, 3)

« ({-2A, 1B, 2C, -2E}, 9)
+ ({-2D}, -4)

* ({3A, -1B, -2C}, 5)

. ({-2B, 2D}, 0)

Variants: no free disposal

« Change all inequalities to equalities

(back to 1-unit CAs) Expressing valuation

functions using bundle bids

* A bidder is single-minded if she only wants
to win one particular bundle

— Usually not the case

* But: one bidder may submit multiple
bundle bids

» Consider again valuation function v([) =
$200, v(iE) = $100, v(T @&) = $500

» \What bundle bids should one place?

 What about: v(&=) = $300, v([) = $200,
v([=)= %4007

Alternative approach:
report entire valuation function

* |.e., every bidder i reports v,(S) for every subset
S of | (the items)

* Winner determination problem:

» Allocate a subset S, of | to each bidder i to
maximize 2.v(S;) (under the constraint that for
i#, S, N S, = D)

— This is assuming free disposal, i.e., not everything
needs to be allocated

Exponentially many bundles

In general, in a combinatorial auction with set of
items | (|I| = m) for sale, a bidder could have a
different valuation for every subset S of |

— Implicit assumption: no externalities (bidder does
not care what the other bidders win)

Must a bidder communicate 2™ values?

— Impractical

— Also difficult for the bidder to evaluate every bundle
Could require v,(4d) = 0

— Does not help much

Could require: if S is a superset of S', v(S) 2
v(S') (free disposal)
— Does not help in terms of number of values

Bidding languages
Bidding language = a language for expressing valuation

functions

A good bidding language allows bidders to concisely express
natural valuation functions

Example: the OR bidding language [Rothkopf et al. 98,
DeMartini et al. 99]

Bundle-value pairs are ORed together, auctioneer may accept
any number of these pairs (assuming no overlap in items)

E.g. ({a}, 3) OR ({b, c}, 4) OR ({c, d}, 4) implies
— Avalue of 3 for {a}

— Avalue of 4 for {b, c, d}

— Avalue of 7 for {a, b, c}

Can we express the valuation function v({a, b}) = v({a}) = v({b})
= 1 using the OR bidding language?

OR language is good for expressing complementarity, bad for
expressing substitutability

XORSs

If we use XOR instead of OR, that means that only one of the
bundle-value pairs can be accepted

Can express any valuation function (simply XOR together all
bundles)

E.g. ({a}, 3) XOR ({b, c}, 4) XOR ({c, d}, 4) implies

— Avalue of 3 for {a}

— Avalue of 4 for {b, c, d}

— Avalue of 4 for {a, b, c}

Sometimes not very concise
E.g. suppose that for any S, v(S) = 2, sV({S})

— How can this be expressed in the OR language?
— What about the XOR language?

Can also combine ORs and XORs to get benefits of both [Nisan
00, Sandholm 02]

E.g. (({a}, 3) XOR ({b, c}, 4)) OR ({c, d}, 4) implies
— Avalue of 4 for {a, b, c}
— A value of 4 for {b, c, d}
— Avalue of 7 for {a, c, d}

WDP and bidding languages

Single-minded bidders bid on only one bundle

— Valuation is v for any subset including that bundle, 0
otherwise

If we can solve the WDP for single-minded bidders,

we can also solve it for the OR language

— Simply pretend that each bundle-value pair comes from a
different bidder

We can even use the same algorithm when XORs are

added, using the following trick:

— For bundle-value pairs that are XORed together, add a
dummy item to them [Fujishima et al 99, Nisan 00]

— E.g. ({a}, 3) XOR ({b, c}, 4) becomes ({a, dummy,}, 3) OR
({b, c, dummy.}, 4)

S0, we can focus on single-minded bids

