
Modeling Language GNU MathProgLanguage Referen
eDraft Edition, for GLPK Version 4.16May 2007

Andrew MakhorinMos
ow Aviation Institute, Mos
ow, Russia

The GLPK pa
kage is part of the GNU Proje
t released under the aegis of GNU.Copyright

 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Andrew Makhorin, Departmentfor Applied Informati
s, Mos
ow Aviation Institute, Mos
ow, Russia. All rights reserved.Free Software Foundation, In
., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.Permission is granted to make and distribute verbatim
opies of this manual provided the
opyright noti
e and this permission noti
e are preserved on all
opies.Permission is granted to
opy and distribute modi�ed versions of this manual under the
onditions for verbatim
opying, provided also that the entire resulting derived work isdistributed under the terms of a permission noti
e identi
al to this one.Permission is granted to
opy and distribute translations of this manual into another lan-guage, under the above
onditions for modi�ed versions.

iTable of Contents1 Introdu
tion . 11.1 Linear programming problem . 11.2 Model obje
ts . 21.3 Stru
ture of model des
ription . 32 Coding model des
ription 42.1 Symboli
 names . 42.2 Numeri
 literals . 52.3 String literals . 52.4 Keywords . 52.5 Delimiters . 62.6 Comments . 63 Expressions . 73.1 Numeri
 expressions . 73.2 Symboli
 expressions . 113.3 Indexing expressions and dummy indi
es . 123.4 Set expressions . 153.5 Logi
al expressions . 183.6 Linear expressions . 204 Statements . 234.1 Set statement . 234.2 Parameter statement . 244.3 Variable statement . 264.4 Constraint statement . 274.5 Obje
tive statement . 284.6 Solve statement . 294.7 Che
k statement . 304.8 Display statement . 304.9 Printf statement . 314.10 For statement . 325 Model data . 335.1 Coding data se
tion . 345.2 Set data blo
k . 345.3 Parameter data blo
k . 37Appendix A Solving models with glpsol 41Appendix B Example model des
ription 42

Chapter 1: Introdu
tion 11 Introdu
tionGNU MathProg is a modeling language intended for des
ribing linear mathemati
al pro-gramming models.1Model des
riptions written in the GNU MathProg language
onsist of a set of statementsand data blo
ks
onstru
ted by the user from the language elements des
ribed in thisdo
ument.In a pro
ess
alled translation, a program
alled the model translator analyzes the modeldes
ription and translates it into internal data stru
tures, whi
h may be then used eitherfor generating mathemati
al programming problem instan
e or dire
tly by a program
alledthe solver to obtain numeri
 solution of the problem.1.1 Linear programming problemIn MathProg it is assumed that the linear programming (LP) problem has the followingstatement: minimize (or maximize)z =
1x1 +
2x2 + : : : +
nxn +
0 (1)subje
t to linear
onstraintsL1 � a11x1 + a12x2 + : : : + a1nxn � U1L2 � a21x1 + a22x2 + : : : + a2nxn � U2: : : : : : : : : : : : : :Lm � am1x1 + am2x2 + : : :+ amnxn � Um (2)and bounds of variablesl1 � x1 � u1l2 � x2 � u2: : : :ln � xn � un (3)where:x1, x2, . . . , xn are variables;z is the obje
tive fun
tion;
1,
2, . . . ,
n are
oeÆ
ients of the obje
tive fun
tion;
0 is the
onstant term (\shift") of the obje
tive fun
tion;a11, a12, . . . , amn are
onstraint
oeÆ
ients;L1, L2, . . . , Lm are lower
onstraint bounds;U1, U2, . . . , Um are upper
onstraint bounds;l1, l2, . . . , ln are lower bounds of variables;u1, u2, . . . , un are upper bounds of variables.1 The GNU MathProg language is a subset of the AMPL language. Its GLPK implementation is mainlybased on the paper: Robert Fourer, David M. Gay, and Brian W. Kernighan, \A Modeling Languagefor Mathemati
al Programming." Management S
ien
e 36 (1990) pp. 519-54.

Chapter 1: Introdu
tion 2Bounds of variables and
onstraint bounds
an be �nite as well as in�nite. Besides, lowerbounds
an be equal to
orresponding upper bounds. Thus, the following types of variablesand
onstraints are allowed:�1 < x < +1 Free (unbounded) variablex � l Variable with lower boundx � u Variable with upper boundl � x � u Double-bounded variablex = l (= u) Fixed variable�1 <P ajxj < +1 Free (unbounded) linear formP ajxj � L Inequality
onstraint \greater than or equal to"P ajxj � U Inequality
onstraint \less than or equal to"L �P ajxj � U Double-bounded inequality
onstraintP ajxj = L (= U) Equality
onstraintIn addition to pure LP problems MathProg allows mixed integer linear programming(MIP) problems, where some (or all) stru
tural variables are restri
ted to be integer.1.2 Model obje
tsIn MathProg the model is des
ribed in terms of sets, parameters, variables,
onstraints, andobje
tives, whi
h are
alled model obje
ts.The user introdu
es parti
ular model obje
ts using the language statements. Ea
h modelobje
t is provided with a symboli
 name that uniquely identi�es the obje
t and is intendedfor referen
ing purposes.Model obje
ts, in
luding sets,
an be multidimensional arrays built over indexing sets.Formally, n-dimensional array A is the mapping:A : �! �; (4)where � � S1 � S2 � : : : � Sn is a subset of the Cartesian produ
t of indexing sets, � is aset of the array members. In MathProg the set � is
alled subs
ript domain. Its membersare n-tuples (i1; i2; : : : ; in), where i1 2 S1, i2 2 S2, . . . , in 2 Sn.If n = 0, the Cartesian produ
t above has exa
tly one element (namely, 0-tuple), so itis
onvenient to think s
alar obje
ts as 0-dimensional arrays whi
h have one member.The type of array members is determined by the type of
orresponding model obje
t asfollows:Model obje
t Array memberSet Elemental plain setParameter Number or symbolVariable Elemental variableConstraint Elemental
onstraintObje
tive Elemental obje
tiveIn order to refer to a parti
ular obje
t member the obje
t should be provided withsubs
ripts. For example, if a is 2-dimensional parameter built over I � J , a referen
e to itsparti
ular member
an be written as a[i, j ℄, where i 2 I and j 2 J . It is understood thats
alar obje
ts being 0-dimensional need no subs
ripts.

Chapter 1: Introdu
tion 31.3 Stru
ture of model des
riptionIt is sometimes desirable to write a model whi
h, at various points, may require di�erentdata for ea
h problem to be solved using that model. For this reason in MathProg themodel des
ription
onsists of two parts: model se
tion and data se
tion.Model se
tion is a main part of the model des
ription that
ontains de
larations of modelobje
ts and is
ommon for all problems based on the
orresponding model.Data se
tion is an optional part of the model des
ription that
ontains data spe
i�
 fora parti
ular problem.Depending on what is more
onvenient model and data se
tions
an be pla
ed eitherin one �le or in two separate �les. The latter feature allows to have arbitrary number ofdi�erent data se
tions to be used with the same model se
tion.

Chapter 2: Coding model des
ription 42 Coding model des
riptionModel des
ription is
oded in plain text format using ASCII
hara
ter set. Valid
hara
tersa

eptable in the model des
ription are the following:� alphabeti

hara
ters:A B C D E F G H I J K L M N O P Q R S T U V W X Y Za b
 d e f g h i j k l m n o p q r s t u v w x y z _� numeri

hara
ters:0 1 2 3 4 5 6 7 8 9� spe
ial
hara
ters:! " # & ' () * + , - . / : ; < = > [℄ ^ { | }� white-spa
e
hara
ters:SP HT CR NL VT FFWithin string literals and
omments any ASCII
hara
ters (ex
ept
ontrol
hara
ters)are valid.White-spa
e
hara
ters are non-signi�
ant. They
an be used freely between lexi
al unitsto improve readability of the model des
ription. They are also used to separate lexi
al unitsfrom ea
h other if there is no other way to do that.Synta
ti
ally model des
ription is a sequen
e of lexi
al units in the following
ategories:� symboli
 names;� numeri
 literals;� string literals;� keywords;� delimiters;�
omments.The lexi
al units of the language are dis
ussed below.2.1 Symboli
 namesSymboli
 name
onsists of alphabeti
 and numeri

hara
ters, the �rst of whi
h must bealphabeti
. All symboli
 names are distin
t (
ase sensitive).Examplesalpha123This_is_a_name_P123_ab
_321Symboli
 names are used to identify model obje
ts (sets, parameters, variables,
on-straints, obje
tives) and dummy indi
es.All symboli
 names (ex
ept names of dummy indi
es) must be unique, i.e. the modeldes
ription must have no obje
ts with the same name. Symboli
 names of dummy indi
esmust be unique within the s
ope, where they are valid.

Chapter 2: Coding model des
ription 52.2 Numeri
 literalsNumeri
 literal has the form xxEsyy, where xx is a real number with optional de
imal point,s is the sign + or -, yy is an integer de
imal exponent. The letter E is
ase insensitive and
an be
oded as e.Examples1233.1415956.E+5.78123.456e-7Numeri
 literals are used to represent numeri
 quantities. They have obvious �xedmeaning.2.3 String literalsString literal is a sequen
e of arbitrary
hara
ters en
losed either in single quotes or indouble quotes. Both these forms are equivalent.If the single quote is a part of a string literal en
losed in single quotes, it must be
odedtwi
e. Analogously, if the double quote is a part of string literal en
losed in double quotes,it must be
oded twi
e.Examples'This is a string'"This is another string"'1 + 2 = 3''That''s all'"She said: ""No"""String literals are used to represent symboli
 quantities.2.4 KeywordsKeyword is a sequen
e of alphabeti

hara
ters and possibly some spe
ial
hara
ters. Allkeywords fall into two
ategories: reserved keywords, whi
h
annot be used as symboli
names, and non-reserved keywords, whi
h being re
ognized by
ontext
an be used assymboli
 names.Reserved keywords are the following:and else mod unionby if not within
ross in ordiff inter symdiffdiv less thenNon-reserved keywords are des
ribed in following se
tions.All the keywords have �xed meaning, whi
h will be explained on dis
ussion of
orre-sponding synta
ti

onstru
tions, where the keywords are used.

Chapter 2: Coding model des
ription 62.5 DelimitersDelimiter is either a single spe
ial
hara
ter or a sequen
e of two spe
ial
hara
ters asfollows:+ ^ == ! :)- & >= && ; [* < > || := |/ <= <> . .. {** = != , (}If delimiter
onsists of two
hara
ters, there must be no spa
es between the
hara
ters.All the delimiters have �xed meaning, whi
h will be explained on dis
ussion
orrespond-ing synta
ti

onstru
tions, where the delimiters are used.2.6 CommentsFor do
umenting purposes the model des
ription
an be provided with
omments, whi
hhave two di�erent forms. The �rst form is a single-line
omment, whi
h begins with the
hara
ter # and extends until end of line. The se
ond form is a
omment sequen
e, whi
his a sequen
e of any
hara
ters en
losed between /* and */.Examplesset s{1..10}; # This is a
omment/* This is another
omment */Comments are ignored by the model translator and
an appear anywhere in the modeldes
ription, where white-spa
e
hara
ters are allowed.

Chapter 3: Expressions 73 ExpressionsExpression is a rule for
omputing a value. In model des
ription expressions are used as
onstituents of
ertain statements.In general
ase expressions
onsist of operands and operators.Depending on the type of the resultant value all expressions fall into the following
ate-gories:� numeri
 expressions;� symboli
 expressions;� indexing expressions;� set expressions;� logi
al expressions;� linear expressions.3.1 Numeri
 expressionsNumeri
 expression is a rule for
omputing a single numeri
 value represented in the formof
oating-point number.The primary numeri
 expression may be a numeri
 literal, dummy index, unsubs
riptedparameter, subs
ripted parameter, built-in fun
tion referen
e, iterated numeri
 expression,
onditional numeri
 expression, or another numeri
 expression en
losed in parentheses.Examples1.23 (numeri
 literal)j (dummy index)time (unsubs
ripted parameter)a['May 2003',j+1℄ (subs
ripted parameter)abs(b[i,j℄) (fun
tion referen
e)sum{i in S diff T} alpha[i℄ * b[i,j℄ (iterated expression)if i in I then 2 * p else q[i+1℄ (
onditional expression)(b[i,j℄ + .5 *
) (parenthesized expression)More general numeri
 expressions
ontaining two or more primary numeri
 expressionsmay be
onstru
ted by using
ertain arithmeti
 operators.Examplesj+12 * a[i-1,j+1℄ - b[i,j℄sum{j in J} a[i,j℄ * x[j℄ + sum{k in K} b[i,k℄ * x[k℄(if i in I then 2 * p else q[i+1℄) / (a[i,j℄ + 1.5)Numeri
 literalsIf the primary numeri
 expression is a numeri
 literal, the resultant value is obvious.Dummy indi
esIf the primary numeri
 expression is a dummy index, the resultant value is
urrent valueassigned to the dummy index.

Chapter 3: Expressions 8Unsubs
ripted parametersIf the primary numeri
 expression is an unsubs
ripted parameter (whi
h must be 0-dimen-sional), the resultant value is the value of the parameter.Subs
ripted parametersThe primary numeri
 expression, whi
h refers to a subs
ripted parameter, has the followingsynta
ti
 form:name[i1; i2; : : : ; in℄;where name is the symboli
 name of the parameter, i1, i2, . . . , in are subs
ripts.Ea
h subs
ript must be a numeri
 or symboli
 expression. The number of subs
riptsin the subs
ript list must be the same as the dimension of the parameter with whi
h thesubs
ript list is asso
iated.A
tual values of subs
ript expressions are used to identify a parti
ular member of theparameter that determines the resultant value of the primary expression.Fun
tion referen
esIn MathProg there are the following built-in fun
tions whi
h may be used in numeri
 ex-pressions:abs(x) absolute valueatan(x) trigonometri
 ar
tangent ar
tan x (in radians)atan(y, x) trigonometri
 ar
tangent ar
tan y/x (in radians)
ard(x)
ardinality (the number of elements) of set x
eil(x) smallest integer not less than x (\
eiling of x")
os(x) trigonometri

osine
os x (in radians)floor(x) largest integer not greater than x (\
oor of x")exp(x) base-e exponential exlength(x) length of
hara
ter string xlog(x) natural logarithm log xlog10(x)
ommon (de
imal) logarithm log10 xmax(x1; x2; : : : ; xn) the largest of values x1, x2, . . . , xnmin(x1; x2; : : : ; xn) the smallest of values x1, x2, . . . , xnround(x) rounding x to nearest integerround(x, n) rounding x to n fra
tional de
imal digitssin(x) trigonometri
 sine sin x (in radians)sqrt(x) square root pxtrun
(x) trun
ating x to nearest integertrun
(x, n) trun
ating x to n fra
tional de
imal digitsIrand224() pseudo-random integer uniformly distributed in [0; 224)Uniform01() pseudo-random number uniformly distributed in [0; 1)Uniform(a, b) pseudo-random number uniformly distributed in [a, b)Normal01() Gaussian pseudo-random variate with � = 0 and � = 1Normal(�; �) Gaussian pseudo-random variate with given � and �Arguments of all built-in fun
tions (ex
ept
ard and length) must be numeri
 expres-sions. The argument of
ard must be a set expression. The argument of length must be asymboli
 expression.

Chapter 3: Expressions 9The resultant value of the numeri
 expression, whi
h is a fun
tion referen
e, is the resultof applying the fun
tion to its argument(s).Note that ea
h pseudo-random generator fun
tion have a latent argument (i.e. someinternal state), whi
h is
hanged whenever the fun
tion has been applied. Thus, if thefun
tion is applied repeatedly even to identi
al arguments, due to the side e�e
t di�erentresultant values are always produ
ed.Iterated expressionsIterated numeri
 expression is a primary numeri
 expression, whi
h has the following syn-ta
ti
 form:iterated-operator indexing-expression integrandwhere iterated-operator is the symboli
 name of the iterated operator to be performed (seebelow), indexing expression is an indexing expression whi
h introdu
es dummy indi
es and
ontrols iterating, integrand is a numeri
 expression that parti
ipates in the operation.In MathProg there are four iterated operators, whi
h may be used in numeri
 expressions:sum summation X(i1;:::;in)2�x(i1; : : : ; in)prod produ
tion Y(i1;:::;in)2�x(i1; : : : ; in)min minimum min(i1;:::;in)2�x(i1; : : : ; in)max maximum max(i1;:::;in)2�x(i1; : : : ; in)where i1, . . . , in are dummy indi
es introdu
ed in the indexing expression, � is the domain,a set of n-tuples spe
i�ed by the indexing expression whi
h de�nes parti
ular values assignedto the dummy indi
es on performing the iterated operation, x(i1; : : : ; in) is the integrand,a numeri
 expression whose resultant value depends on the dummy indi
es.The resultant value of an iterated numeri
 expression is the result of applying of theiterated operator to its integrand over all n-tuples
ontained in the domain.Conditional expressionsConditional numeri
 expression is a primary numeri
 expression, whi
h has one of thefollowing two synta
ti
 forms:if b then x else yif b then xwhere b is an logi
al expression, x and y are numeri
 expressions.The resultant value of the
onditional expression depends on the value of the logi
alexpression that follows the keyword if. If it takes on the value true, the value of the
ondi-tional expression is the value of the expression that follows the keyword then. Otherwise, ifthe logi
al expression takes on the value false, the value of the
onditional expression is thevalue of the expression that follows the keyword else. If the redu
ed form of the
onditionalexpression is used and the logi
al expression takes on the value false, the resultant value ofthe
onditional expression is zero.

Chapter 3: Expressions 10Parenthesized expressionsAny numeri
 expression may be en
losed in parentheses that synta
ti
ally makes it primarynumeri
 expression.Parentheses may be used in numeri
 expressions, as in algebra, to spe
ify the desiredorder in whi
h operations are to be performed. Where parentheses are used, the expressionwithin the parentheses is evaluated before the resultant value is used.The resultant value of the parenthesized expression is the same as the value of theexpression en
losed within parentheses.Arithmeti
 operatorsIn MathProg there are the following arithmeti
 operators, whi
h may be used in numeri
expressions:+ x unary plus- x unary minusx + y additionx - y subtra
tionx less y positive di�eren
e (if x < y then 0 else x � y)x * y multipli
ationx / y divisionx div y quotient of exa
t divisionx mod y remainder of exa
t divisionx ** y, x ^ y exponentiation (raise to power)where x and y are numeri
 expressions.If the expression in
ludes more than one arithmeti
 operator, all operators are performedfrom left to right a

ording to the hierar
hy of operations (see below) with the only ex
eptionthat the exponentiaion operators are performed from right to left.The resultant value of the expression, whi
h
ontains arithmeti
 operators, is the resultof applying the operators to their operands.Hierar
hy of operationsThe following list shows the hierar
hy of operations in numeri
 expressions:Operation Hierar
hyEvaluation of fun
tions (abs,
eil, et
.) 1stExponentiation (**, ^) 2ndUnary plus and minus (+, -) 3rdMultipli
ation and division (*, /, div, mod) 4thIterated operations (sum, prod, min, max) 5thAddition and subtra
tion (+, -, less) 6thConditional evaluation (if . . . then . . . else) 7thThis hierar
hy is used to determine whi
h of two
onse
utive operations is performed�rst. If the �rst operator is higher than or equal to the se
ond, the �rst operation isperformed. If it is not, the se
ond operator is
ompared to the third, et
. When the endof the expression is rea
hed, all of the remaining operations are performed in the reverseorder.

Chapter 3: Expressions 113.2 Symboli
 expressionsSymboli
 expression is a rule for
omputing a single symboli
 value represented in the formof
hara
ter string.The primary symboli
 expression may be a string literal, dummy index, unsubs
riptedparameter, subs
ripted parameter, built-in fun
tion referen
e,
onditional symboli
 expres-sion, or another symboli
 expression en
losed in parentheses.It is also allowed to use a numeri
 expression as the primary symboli
 expression, inwhi
h
ase the resultant value of the numeri
 expression is automati
ally
onverted to thesymboli
 type.Examples'May 2003' (string literal)j (dummy index)p (unsubs
ripted parameter)s['ab
',j+1℄ (subs
ripted parameter)substr(name[i℄,k+1,3) (fun
tion referen
e)if i in I then s[i,j℄ else t[i+1℄ (
onditional expression)((10 * b[i,j℄) & '.bis') (parenthesized expression)More general symboli
 expressions
ontaining two or more primary symboli
 expressionsmay be
onstru
ted by using the
on
atenation operator.Examples'ab
[' & i & ',' & j & '℄'"from " &
ity[i℄ & " to " &
ity[j℄The prin
iples of evaluation of symboli
 expressions are
ompletely analogous to thatones given for numeri
 expressions (see above).Fun
tion referen
esIn MathProg there are the following built-in fun
tions whi
h may be used in symboli
expressions:substr(x, y) substring of x starting from position ysubstr(x, y, z) substring of x starting from position y and having length zThe �rst argument of substrmust be a symboli
 expression while its se
ond and optionalthird arguments must be numeri
 expressions.The resultant value of the symboli
 expression, whi
h is a fun
tion referen
e, is the resultof applying the fun
tion to its arguments.Symboli
 operatorsCurrently in MathProg there is the only symboli
 operator:x & ywhere x and y are symboli
 expressions. This operator means
on
atenation of its twosymboli
 operands, whi
h are
hara
ter strings.

Chapter 3: Expressions 12Hierar
hy of operationsThe following list shows the hierar
hy of operations in symboli
 expressions:Operation Hierar
hyEvaluation of numeri
 operations 1st-7thCon
atenation (&) 8thConditional evaluation (if . . . then . . . else) 9thThis hierar
hy has the same meaning as explained in Se
tion \Numeri
 expressions".3.3 Indexing expressions and dummy indi
esIndexing expression is an auxiliary
onstru
tion, whi
h spe
i�es a plain set of n-tuples andintrodu
es dummy indi
es. It has two synta
ti
 forms:{ entry1; entry2; : : : ; entrym }{ entry1; entry2; : : : ; entrym : predi
ate }where entry1; entry2; : : : ; entrym are indexing entries, predi
ate is a logi
al expression whi
hspe
i�es an optional predi
ate.Ea
h indexing entry in the indexing expression has one of the following three forms:t in S(t1; t2; : : : ; tk) in SSwhere t1; t2; : : : ; tk are indi
es, S is a set expression (dis
ussed in the next se
tion), whi
hspe
i�es the basi
 set.The number of indi
es in the indexing entry must be the same as the dimension of thebasi
 set S, i.e. if S
onsists of 1-tuples, the �rst form must be used, and if S
onsists ofn-tuples, where n > 1, the se
ond form must be used.If the �rst form of the indexing entry is used, the index t
an be a dummy index only.If the se
ond form is used, the indi
es t1; t2; : : : ; tk
an be either dummy indi
es or somenumeri
 or symboli
 expressions, where at least one index must be a dummy index. Thethird, redu
ed form of the indexing entry has the same e�e
t as if there were t (if S is1-dimensional) or t1; t2; : : : ; tk (if S is n-dimensional) all spe
i�ed as dummy indi
es.Dummy index is an auxiliary model obje
t, whi
h a
ts like an individual variable. Valuesassigned to dummy indi
es are
omponents of n-tuples from basi
 sets, i.e. some numeri
and symboli
 quantities.For referen
ing purposes dummy indi
es
an be provided with symboli
 names. However,unlike other model obje
ts (sets, parameters, et
.) dummy indi
es do not need to beexpli
itly de
lared. Ea
h unde
lared symboli
 name being used in the indexing position ofan indexing entry is re
ognized as the symboli
 name of
orresponding dummy index.Symboli
 names of dummy indi
es are valid only within the s
ope of the indexing ex-pression, where the dummy indi
es were introdu
ed. Beyond the s
ope the dummy indi
esare
ompletely ina

essible, so the same symboli
 names may be used for other purposes,in parti
ular, to represent dummy indi
es in other indexing expressions.The s
ope of indexing expression, where impli
it de
larations of dummy indi
es are valid,depends on the
ontext, in whi
h the indexing expression is used:

Chapter 3: Expressions 131. If the indexing expression is used in iterated operator, its s
ope extends until the endof the integrand.2. If the indexing expression is used as a primary set expression, its s
ope extends untilthe end of this indexing expression.3. If the indexing expression is used to de�ne the subs
ript domain in de
larations of somemodel obje
ts, its s
ope extends until the end of the
orresponding statement.The indexing me
hanism implemented by means of indexing expressions is best explainedby some examples dis
ussed below.Let there be three sets:A = {4, 7, 9}B = {(1,Jan), (1,Feb), (2,Mar), (2,Apr), (3,May), (3,Jun)}C = {a, b,
}where A and C
onsist of 1-tuples (singles), B
onsists of 2-tuples (doubles). And
onsiderthe following indexing expression:{i in A, (j,k) in B, l in C}where i, j, k, and l are dummy indi
es.Although MathProg is not a pro
edural language, for any indexing expression an equiv-alent algorithmi
 des
ription
ould be given. In parti
ular, the algorithmi
 des
ription ofthe indexing expression above is the following:for all i 2 A dofor all (j; k) 2 B dofor all l 2 C doa
tion;where the dummy indi
es i, j, k, l are
onse
utively assigned
orresponding
omponentsof n-tuples from the basi
 sets A, B, C, and a
tion is some a
tion that depends on the
ontext, where the indexing expression is used. For example, if the a
tion were printing
urrent values of dummy indi
es, the output would look like follows:i = 4 j = 1 k = Jan l = ai = 4 j = 1 k = Jan l = bi = 4 j = 1 k = Jan l =
i = 4 j = 1 k = Feb l = ai = 4 j = 1 k = Feb l = b: : : : : : : : : : : :i = 9 j = 3 k = Jun l = bi = 9 j = 3 k = Jun l =
Let the example indexing expression be used in the following iterated operation:sum{i in A, (j,k) in B, l in C} p[i,j,k,l℄where p[i, j, k, l ℄ may be a 4-dimensional numeri
 parameter or some numeri
 expressionwhose resultant value depends on i, j, k, and l. In this
ase the a
tion is summation, so theresultant value of the primary numeri
 expression is:Xi2A;(j;k)2B;l2C(pijkl):

Chapter 3: Expressions 14Now let the example indexing expression be used as a primary set expression. In this
ase the a
tion is gathering all 4-tuples (quadruples) of the form (i, j, k, l) in one set, sothe resultant value of su
h operation is simply the Cartesian produ
t of the basi
 sets:A�B � C = f(i; j; k; l) : i 2 A; (j; k) 2 B; l 2 Cg:Note that in this
ase the same indexing expression might be written in the redu
ed form:{A, B, C}be
ause the dummy indi
es i, j, k, and l are not referen
ed and therefore their symboli
names are not needed.Finally, let the example indexing expression be used as the subs
ript domain in thede
laration of a 4-dimensional model obje
t, say, a numeri
 parameter:par p{i in A, (j,k) in B, l in C} ... ;In this
ase the a
tion is generating the parameter members, where ea
h member has theform p[i, j, k, l ℄.As was said above, some indi
es in the se
ond form of indexing entries may be numeri
or symboli
 expressions, not only dummy indi
es. In this
ase resultant values of su
h ex-pressions play role of some logi
al
onditions to sele
t only that n-tuples from the Cartesianprodu
t of basi
 sets, whi
h satisfy these
onditions.Consider, for example, the following indexing expression:{i in A, (i-1,k) in B, l in C}where i, k, l are dummy indi
es, and i�1 is a numeri
 expression. The algorithmi
 de
srip-tion of this indexing expression is the following:for all i 2 A dofor all (j; k) 2 B and j = i� 1 dofor all l 2 C doa
tion;Thus, if this indexing expression were used as a primary set expression, the resultant setwould be the following:{(4,May,a), (4,May,b), (4,May,
), (4,Jun,a), (4,Jun,b), (4,Jun,
)}.Should note that in this
ase the resultant set
onsists of 3-tuples, not of 4-tuples, be
ausein the indexing expression there is no dummy index that
orresponds to the �rst
omponentof 2-tuples from the set B.The general rule is: the number of
omponents of n-tuples de�ned by an indexing ex-pression is the same as the number of dummy indi
es in that indexing expression, wherethe
orresponden
e between dummy indi
es and
omponents on n-tuples in the resultantset is positional, i.e. the �rst dummy index
orresponds to the �rst
omponent, the se
onddummy index
orresponds to the se
ond
omponent, et
.In many
ases it is needed to sele
t a subset from the Cartesian produ
t of some sets.This may be attained by using an optional logi
al predi
ate, whi
h is spe
i�ed in indexingexpression after the last or the only indexing entry.Consider, for another example, the following indexing expression:

Chapter 3: Expressions 15{i in A, (j,k) in B, l in C: i <= 5 and k <> 'Mar'}where the logi
al expression following the
olon is a predi
ate. The algorithmi
 des
riptionof this indexing expression is the following:for all i 2 A dofor all (j; k) 2 B dofor all l 2 C doif i � 5 and k 6= `Mar ' thena
tion;Thus, if this indexing expression were used as a primary set expression, the resultant setwould be the following:{(4,1,Jan,a), (4,1,Feb,a), (4,2,Apr,a), . . . , (4,3,Jun,
)}.If no predi
ate is spe
i�ed in the indexing expression, the one, whi
h takes on the valuetrue, is assumed.3.4 Set expressionsSet expression is a rule for
omputing an elemental set, i.e. a
olle
tion of n-tuples, where
omponents of n-tuples are numeri
 and symboli
 quantities.The primary set expression may be a literal set, unsubs
ripted set, subs
ripted set,\arithmeti
" set, indexing expression, iterated set expression,
onditional set expression, oranother set expression en
losed in parentheses.Examples{(123,'aa'), (i,'bb'), (j-1,'

')} (literal set)I (unsubs
ripted set)S[i-1,j+1℄ (subs
ripted set)1..t-1 by 2 (\arithmeti
" set){t in 1..T, (t+1,j) in S: (t,j) in F} (indexing expression)setof{i in I, j in J}(i+1,j-1) (iterated expression)if i < j then S[i℄ else F diff S[j℄ (
onditional expression)(1..10 union 21..30) (parenthesized expression)More general set expressions
ontaining two or more primary set expressions may be
onstru
ted by using
ertain set operators.Examples(A union B) inter (I
ross J)1..10
ross (if i < j then {'a', 'b', '
'} else {'d', 'e', 'f'})Literal setsLiteral set is a primary set expression, whi
h has the following two synta
ti
 forms:fe1; e2; : : : ; emgf(e11; : : : ; e1n); (e21; : : : ; e2n); : : : ; (em1; : : : ; emn)gwhere e1, . . . , em, e11, . . . , emn are numeri
 or symboli
 expressions.If the �rst form is used, the resultant set
onsists of 1-tuples (singles) enumerated withinthe
urly bra
es. It is allowed to spe
ify an empty set, whi
h has no 1-tuples.

Chapter 3: Expressions 16If the se
ond form is used, the resultant set
onsists of n-tuples enumerated within the
urly bra
es, where a parti
ular n-tuple
onsists of
orresponding
omponents enumeratedwithin the parentheses. All n-tuples must have the same number of
omponents.Unsubs
ripted setsIf the primary set expression is an unsubs
ripted set (whi
h must be 0-dimensional), theresultant set is an elemental set asso
iated with the
orresponding set obje
t.Subs
ripted setsThe primary set expression, whi
h refers to a subs
ripted set, has the following synta
ti
form: name[i1; i2; : : : ; in℄;where name is the symboli
 name of the set obje
t, i1, i2, . . . , in are subs
ripts.Ea
h subs
ript must be a numeri
 or symboli
 expression. The number of subs
riptsin the subs
ript list must be the same as the dimension of the set obje
t with whi
h thesubs
ript list is asso
iated.A
tual values of subs
ript expressions are used to identify a parti
ular member of theset obje
t that determines the resultant set.\Arithmeti
" setThe primary set expression, whi
h is an \arithmeti
" set, has the following two synta
ti
forms:t0 .. tf by Ætt0 .. tfwhere t0, t1, and Æt are numeri
 expressions (the value of Æt must not be zero). The se
ondform is equivalent to the �rst form, where Æt = 1.If Æt > 0, the resultant set is determined as follows:ft : 9k 2 Z(t = t0 + kÆt; t0 � t � tf)gOtherwise, if Æt < 0, the resultant set is determined as follows:ft : 9k 2 Z(t = t0 + kÆt; tf � t � t0)gIndexing expressionsIf the primary set expression is an indexing expression, the resultant set is determined asdes
ribed in Se
tion \Indexing expressions and dummy indi
es" (see above).Iterated expressionsIterated set expression is a primary set expression, whi
h has the following synta
ti
 form:setof indexing-expression integrandwhere indexing-expression is an indexing expression whi
h introdu
es dummy indi
es and
ontrols iterating, integrand is either a single numeri
 or symboli
 expression or a list ofnumeri
 and symboli
 expressions separated by
ommae and en
losed in parentheses.

Chapter 3: Expressions 17If the integrand is a single numeri
 or symboli
 expression, the resultant set
onsists of1-tuples and is determined as follows:fx : (i1; : : : ; in) 2 �g;where x is a value of the integrand, i1, . . . , in are dummy indi
es introdu
ed in the in-dexing expression, � is the domain, a set of n-tuples spe
i�ed by the indexing expressionwhi
h de�nes parti
ular values assigned to the dummy indi
es on performing the iteratedoperation.If the integrand is a list
ontaining m numeri
 and symboli
 expressions, the resultantset
onsists of m-tuples and is determined as follows:f(x1; : : : ; xm) : (i1; : : : ; in) 2 �g;where x1, . . . , xm are values of the expressions in the integrand list, i1, . . . , in and � havethe same meaning as above.Conditional expressionsConditional set expression is a primary set expression that has the following synta
ti
 form:if b then X else Ywhere b is an logi
al expression, X and Y are set expressions, whi
h must de�ne sets of thesame dimension.The resultant value of the
onditional expression depends on the value of the logi
alexpression that follows the keyword if. If it takes on the value true, the resultant set is thevalue of the expression that follows the keyword then. Otherwise, if the logi
al expressiontakes on the value false, the resultant set is the value of the expression that follows thekeyword else.Parenthesized expressionsAny set expression may be en
losed in parentheses that synta
ti
ally makes it primary setexpression.Parentheses may be used in set expressions, as in algebra, to spe
ify the desired order inwhi
h operations are to be performed. Where parentheses are used, the expression withinthe parentheses is evaluated before the resultant value is used.The resultant value of the parenthesized expression is the same as the value of theexpression en
losed within parentheses.Set operatorsIn MathProg there are the following set operators, whi
h may be used in set expressions:X union Y union X [YX diff Y di�eren
e XnYX symdiff Y symmetri
 di�eren
e X � YX inter Y interse
tion X \ YX
ross Y
ross (Cartesian) produ
t X � Ywhere X and Y are set expressions, whi
h must de�ne sets of the identi
al dimension(ex
ept for the Cartesian produ
t).If the expression in
ludes more than one set operator, all operators are performed fromleft to right a

ording to the hierar
hy of operations (see below).

Chapter 3: Expressions 18The resultant value of the expression, whi
h
ontains set operators, is the result ofapplying the operators to their operands.The dimension of the resultant set, i.e. the dimension of n-tuples, of whi
h the resultantset
onsists of, is the same as the dimension of the operands, ex
ept the Cartesian produ
t,where the dimension of the resultant set is the sum of dimensions of the operands.Hierar
hy of operationsThe following list shows the hierar
hy of operations in set expressions:Operation Hierar
hyEvaluation of numeri
 operations 1st-7thEvaluation of symboli
 operations 8th-9thEvaluation of iterated or \arithmeti
" set (setof, ..) 10thCartesian produ
t (
ross) 11thInterse
tion (inter) 12thUnion and di�eren
e (union, diff, symdiff) 13thConditional evaluation (if . . . then . . . else) 14thThis hierar
hy is used to determine whi
h of two
onse
utive operations is performed�rst. If the �rst operator is higher than or equal to the se
ond, the �rst operation isperformed. If it is not, the se
ond operator is
ompared to the third, et
. When the endof the expression is rea
hed, all of the remaining operations are performed in the reverseorder.3.5 Logi
al expressionsLogi
al expression is a rule for
omputing a single logi
al value, whi
h
an be either true orfalse.The primary logi
al expression may be a numeri
 expression, relational expression, iter-ated logi
al expression, or another logi
al expression en
losed in parentheses.Examplesi+1 (numeri
 expression)a[i,j℄ < 1.5 (relational expression)s[i+1,j-1℄ <> 'Mar' & year (relational expression)(i+1,'Jan') not in I
ross J (relational expression)S union T within A[i℄ inter B[j℄ (relational expression)forall{i in I, j in J} a[i,j℄ < .5 * b (iterated expression)(a[i,j℄ < 1.5 or b[i℄ >= a[i,j℄) (parenthesized expression)More general logi
al expressions
ontaining two or more primary logi
al expressions maybe
onstru
ted by using
ertain logi
al operators.Examplesnot (a[i,j℄ < 1.5 or b[i℄ >= a[i,j℄) and (i,j) in S(i,j) in S or (i,j) not in T diff UNumeri
 expressionsThe resultant value of the primary logi
al expression, whi
h is a numeri
 expression, is true,if the resultant value of the numeri
 expression is non-zero. Otherwise the resultant valueof the logi
al expression is false.

Chapter 3: Expressions 19Relational expressionsIn MathProg there are the following relational operators, whi
h may be used in logi
alexpressions:x < y test on x < yx <= y test on x � yx = y, x == y test on x = yx >= y test on x � yx <> y, x != y test on x 6= yx in Y test on x 2 Y(x1; : : : ; xn) in Y test on (x1; : : : ; xn) 2 Yx not in Y, x !in Y test on x 62 Y(x1; : : : ; xn) not in Y , (x1; : : : ; xn) !in Y test on (x1; : : : ; xn) 62 YX within Y test on X � YX not within Y, X !within Y test on X 6� Ywhere x, x1, . . . , xn, y are numeri
 or symboli
 expressions, X and Y are set expression.Note:1. If x and y are symboli
 expressions, only the relational operators =, ==, <>,and !=
an be used.2. In the operations in, not in, and !in the number of
omponents in the�rst operands must be the same as the dimension of the se
ond operand.3. In the operations within, not within, and !within both operands musthave identi
al dimension.All the relational operators listed above have their
onventional mathemati
al mean-ing. The resultant value is true, if the
orresponding relation is satis�ed for its operands,otherwise false.Iterated expressionsIterated logi
al expression is a primary logi
al expression, whi
h has the following synta
ti
form: iterated-operator indexing-expression integrandwhere iterated-operator is the symboli
 name of the iterated operator to be performed (seebelow), indexing expression is an indexing expression whi
h introdu
es dummy indi
es and
ontrols iterating, integrand is a logi
al expression that parti
ipates in the operation.In MathProg there are two iterated operators, whi
h may be used in logi
al expressions:forall 8-quanti�
ation 8(i1; : : : ; in)2�[x(i1; : : : ; in)℄exists 9-quanti�
ation 9(i1; : : : ; in)2�[x(i1; : : : ; in)℄where i1, . . . , in are dummy indi
es introdu
ed in the indexing expression, � is the domain,a set of n-tuples spe
i�ed by the indexing expression whi
h de�nes parti
ular values assignedto the dummy indi
es on performing the iterated operation, x(i1; : : : ; in) is the integrand,a logi
al expression whose resultant value depends on the dummy indi
es.For 8-quanti�
ation the resultant value of the iterated logi
al expression is true, if thevalue of the integrand is true for all n-tuples
ontained in the domain, otherwise false.For 9-quanti�
ation the resultant value of the iterated logi
al expression is false, if thevalue of the integrand is false for all n-tuples
ontained in the domain, otherwise true.

Chapter 3: Expressions 20Parenthesized expressionsAny logi
al expression may be en
losed in parentheses that synta
ti
ally makes it primarylogi
al expression.Parentheses may be used in logi
al expressions, as in algebra, to spe
ify the desired orderin whi
h operations are to be performed. Where parentheses are used, the expression withinthe parentheses is evaluated before the resultant value is used.The resultant value of the parenthesized expression is the same as the value of theexpression en
losed within parentheses.Logi
al operatorsIn MathProg there are the following logi
al operators, whi
h may be used in logi
al expres-sions: not x, ! x negationx and y, x && y
onjun
tion (logi
al \and")x or y, x || y disjun
tion (logi
al \or")where x and y are logi
al expressions.If the expression in
ludes more than one logi
al operator, all operators are performedfrom left to right a

ording to the hierar
hy of operations (see below).The resultant value of the expression, whi
h
ontains logi
al operators, is the result ofapplying the operators to their operands.Hierar
hy of operationsThe following list shows the hierar
hy of operations in logi
al expressions:Operation Hierar
hyEvaluation of numeri
 operations 1st-7thEvaluation of symboli
 operations 8th-9thEvaluation of set operations 10th-14thRelational operations (<, <=, et
.) 15thNegation (not, !) 16thConjun
tion (and, &&) 17th8- and 9-quanti�
ation (forall, exists) 18thDisjun
tion (or, ||) 19thThis hierar
hy has the same meaning as explained in Se
tion \Numeri
 expressions".3.6 Linear expressionsLinear expression is a rule for
omputing so
alled linear form or simply formula, whi
h isa linear (or aÆne) fun
tion of elemental variables.The primary linear expression may be an unsubs
ripted variable, subs
ripted variable, it-erated linear expression,
onditional linear expression, or another linear expression en
losedin parentheses.It is also allowed to use a numeri
 expression as the primary linear expression, in whi
h
ase the resultant value of the numeri
 expression is automati
ally
onverted to the formulathat in
ludes the only
onstant term.

Chapter 3: Expressions 21Examplesz (unsubs
ripted variable)x[i,j℄ (subs
ripted variable)sum{j in J} (a[i℄ * x[i,j℄ + 3 * y) (iterated expression)if i in I then x[i,j℄ else 1.5 * z + 3 (
onditional expression)(a[i,j℄ * x[i,j℄ + y[i-1℄ + .1) (parenthesized expression)More general linear expressions
ontaining two or more primary linear expressions maybe
onstru
ted by using
ertain arithmeti
 operators.Examples2 * x[i-1,j+1℄ + 3.5 * y[k℄ + .5 * z(- x[i,j℄ + 3.5 * y[k℄) / sum{t in T} abs(d[i,j,t℄)Unsubs
ripted variablesIf the primary linear expression is an unsubs
ripted variable (whi
h must be 0-dimensional),the resultant formula is that unsubs
ripted variable.Subs
ripted variablesThe primary linear expression, whi
h refers to a subs
ripted variable, has the followingsynta
ti
 form:name[i1; i2; : : : ; in℄;where name is the symboli
 name of the variable, i1, i2, . . . , in are subs
ripts.Ea
h subs
ript must be a numeri
 or symboli
 expression. The number of subs
ripts inthe subs
ript list must be the same as the dimension of the variable with whi
h the subs
riptlist is asso
iated.A
tual values of subs
ript expressions are used to identify a parti
ular member of themodel variable that determines the resultant formula, whi
h is an elemental variable asso-
iated with the
orresponding member.Iterated expressionsIterated linear expression is a primary linear expression, whi
h has the following synta
ti
form:sum indexing-expression integrandwhere indexing-expression is an indexing expression whi
h introdu
es dummy indi
es and
ontrols iterating, integrand is a linear expression that parti
ipates in the operation.The iterated linear expression is evaluated exa
tly in the same way as the iteratednumeri
 expression (see Se
tion \Numeri
 expressions" above) with the ex
eption that theintegrand parti
ipated in the summation is a formula, not a numeri
 value.Conditional expressionsConditional linear expression is a primary linear expression, whi
h has one of the followingtwo synta
ti
 forms:if b then f else gif b then fwhere b is an logi
al expression, f and g are linear expressions.

Chapter 3: Expressions 22The
onditional linear expression is evaluated exa
tly in the same way as the
ondi-tional numeri
 expression (see Se
tion \Numeri
 expressions" above) with the ex
eptionthat operands parti
ipated in the operation are formulae, not numeri
 values.Parenthesized expressionsAny linear expression may be en
losed in parentheses that synta
ti
ally makes it primarylinear expression.Parentheses may be used in linear expressions, as in algebra, to spe
ify the desired orderin whi
h operations are to be performed. Where parentheses are used, the expression withinthe parentheses is evaluated before the resultant formula is used.The resultant value of the parenthesized expression is the same as the value of theexpression en
losed within parentheses.Arithmeti
 operatorsIn MathProg there are the following arithmeti
 operators, whi
h may be used in linearexpressions:+ f unary plus- f unary minusf + g additionf - g subtra
tionx * f, f * x multipli
ationf / x divisionwhere f and g are linear expressions, x is a numeri
 expression (more pre
isely, a linearexpression
ontaining the
onstant term only).If the expression in
ludes more than one arithmeti
 operator, all operators are performedfrom left to right a

ording to the hierar
hy of operations (see below).The resultant value of the expression, whi
h
ontains arithmeti
 operators, is the resultof applying the operators to their operands.Hierar
hy of operationsThe hierar
hy of arithmeti
 operations used in linear expressions is the same as for numeri
expressions (for details see Se
tion \Numeri
 expressions" above).

Chapter 4: Statements 234 StatementsStatements are basi
 units of the model des
ription. In MathProg all statements are dividedinto two
ategories: de
laration statements and fun
tional statements.De
laration statements (set statement, parameter statement, variable statement,
on-straint statement, and obje
tive statement) are used to de
lare model obje
ts of
ertainkinds and de�ne
ertain properties of that obje
ts.Fun
tional statements (solve statement,
he
k statement, display statement, printf state-ment, loop statement) are intended for performing some spe
i�
 a
tions.Note that de
laration statements may follow in arbitrary order whi
h does not a�e
t theresult of translation. However, any model obje
t must be de
lared before it is referen
ed inother statements.4.1 Set statement� �set name alias domain , attrib , . . . , attrib ;
 	Where: name is the symboli
 name of the set;alias is an optional string literal whi
h spe
i�es the alias of the set;domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the set;attrib, . . . , attrib are optional attributes of the set. (Commae pre
eding at-tributes may be omitted.)Optional attributes:dimen n spe
i�es dimension of n-tuples, whi
h the set
onsists of;within expressionspe
i�es a superset whi
h restri
ts the set or all its members (elemental sets)to be within this superset;:= expressionspe
i�es an elemental set assigned to the set or its members;default expressionspe
i�es an elemental set assigned to the set or its members whenever no ap-propriate data are available in the data se
tion.Examplesset V;set E within V
ross V;set step{s in 1..maxiter} dimen 2 := if s = 1 then E else step[s-1℄union setof{k in V, (i,k) in step[s-1℄, (k,j) in step[s-1℄}(i,j);set A{i in I, j in J}, within B[i+1℄
ross C[j-1℄, within D diff E,default {('ab
',123), (321,'
ba')};The set statement de
lares a set. If the subs
ript domain is not spe
i�ed, the set is asimple set, otherwise it is an array of elemental sets.

Chapter 4: Statements 24The dimen attribute spe
i�es dimension of n-tuples, whi
h the set (if it is a simple set)or its members (if the set is an array of elemental sets)
onsist of, where n must be unsignedinteger from 1 to 20. At most one dimen attribute
an be spe
i�ed. If the dimen attributeis not spe
i�ed, dimension of n-tuples is impli
itly determined by other attributes (forexample, if there is a set expression that follows := or the keyword default, the dimensionof n-tuples of the
orresponding elemental set is used). If no dimension information isavailable, dimen 1 is assumed.The within attribute spe
i�es a set expression whose resultant value is a superset usedto restri
t the set (if it is a simple set) or its members (if the set is an array of elementalsets) to be within this superset. Arbitrary number of within attributes may be spe
i�edin the same set statement.The assign (:=) attribute spe
i�es a set expression used to evaluate elemental set(s)assigned to the set (if it is a simple set) or its members (if the set is an array of elementalsets). If the assign attribute is spe
i�ed, the set is
omputable and therefore needs no datato be provided in the data se
tion. If the assign attribute is not spe
i�ed, the set must beprovided with data in the data se
tion. At most one assign or default attribute
an bespe
i�ed for the same set.The default attribute spe
i�es a set expression used to evaluate elemental set(s) as-signed to the set (if it is a simple set) or its members (if the set is an array of elementalsets) whenever no appropriate data are available in the data se
tion. If neither assign nordefault attribute is spe
i�ed, missing data will
ause an error.4.2 Parameter statement� �param name alias domain , attrib , . . . , attrib ;
 	Where: name is the symboli
 name of the parameter;alias is an optional string literal whi
h spe
i�es the alias of the parameter;domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the parameter;attrib, . . . , attrib are optional attributes of the parameter. (Commae pre
edingattributes may be omitted.)Optional attributes:integer spe
i�es that the parameter is integer;binary spe
i�es that the parameter is binary;symboli
 spe
i�es that the parameter is symboli
;relation expression(where relation is one of: < <= = == >= > <> !=)spe
i�es a
ondition that restri
ts the parameter or its members to satisfy this
ondition;in expressionspe
i�es a superset that restri
ts the parameter or its members to be in thissuperset;

Chapter 4: Statements 25:= expressionspe
i�es a value assigned to the parameter or its members;default expressionspe
i�es a value assigned to the parameter or its members whenever no appro-priate data are available in the data se
tion.Examplesparam units{raw, prd} >= 0;param profit{prd, 1..T+1};param N := 20, integer, >= 0, <= 100;param
omb 'n
hoose k' {n in 0..N, k in 0..n} :=if k = 0 or k = n then 1 else
omb[n-1,k-1℄ +
omb[n-1,k℄;param p{i in I, j in J}, integer, >= 0, <= i+j, in A[i℄ symdiff B[j℄,in C[i,j℄, default 0.5 * (i + j);param month symboli
 default 'May' in {'Mar', 'Apr', 'May'};The parameter statement de
lares a parameter. If the subs
ript domain is not spe
i�ed,the parameter is a simple (s
alar) parameter, otherwise it is a n-dimensional array.The type attributes integer, binary, and symboli
 qualify the type values whi
h
anbe assigned to the parameter as shown below:Type attribute Assigned valuesnot spe
i�ed Any numeri
 valuesinteger Only integer numeri
 valuesbinary Either 0 or 1symboli
 Any numeri
 and symboli
 valuesThe symboli
 attribute
annot be spe
i�ed along with other type attributes. Beingspe
i�ed it must pre
ede all other attributes.The
ondition attribute spe
i�es an optional
ondition that restri
ts values assigned tothe parameter to satisfy this
ondition. This attribute has the following synta
ti
 forms:< v Che
k for x < v<= v Che
k for x � v= v, == v Che
k for x = v>= v Che
k for x � v> v Che
k for x > v<> v, != v Che
k for x 6= vwhere x is a value assigned to the parameter, v is the resultant value of a numeri
 or symboli
expression spe
i�ed in the
ondition attribute. If the parameter is symboli
,
onditions inthe form of inequality are not allowed. Arbitrary number of
ondition attributes
an bespe
i�ed for the same parameter. If a value being assigned to the parameter during modelevaluation violates at least one spe
i�ed
ondition, an error is raised.The in attribute is similar to the
ondition attribute and spe
i�es a set expressionwhose resultant value is a superset used to restri
t numeri
 or symboli
 values assigned tothe parameter to be in this superset. Arbitrary number of the in attributes
an be spe
i�edfor the same parameter. If a value being assigned to the parameter during model evaluationis not in at least one spe
i�ed superset, an error is raised.

Chapter 4: Statements 26The assign (:=) attribute spe
i�es a numeri
 or symboli
 expression used to
ompute avalue assigned to the parameter (if it is a simple parameter) or its member (if the parameteris an array). If the assign attribute is spe
i�ed, the parameter is
omputable and thereforeneeds no data to be provided in the data se
tion. If the assign attribute is not spe
i�ed, theparameter must be provided with data in the data se
tion. At most one assign or defaultattribute
an be spe
i�ed for the same parameter.The default attribute spe
i�es a numeri
 or symboli
 expression used to
ompute avalue assigned to the parameter or its member whenever no appropriate data are availablein the data se
tion. If neither assign nor default attribute is spe
i�ed, missing data will
ause an error.4.3 Variable statement� �var name alias domain , attrib , . . . , attrib ;
 	Where: name is the symboli
 name of the variable;alias is an optional string literal whi
h spe
i�es the alias of the variable;domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the variable;attrib, . . . , attrib are optional attributes of the variable. (Commae pre
edingattributes may be omitted.)Optional attributes:integer restri
ts the variable to be integer;binary restri
ts the variable to be binary;>= expressionspe
i�es an lower bound of the variable;<= expressionspe
i�es an upper bound of the variable;= expression, == expressionspe
i�es a �xed value of the variable;Examplesvar x >= 0;var y{I,J};var make{p in prd}, integer, >=
ommit[p℄, <= market[p℄;var store{raw, 1..T+1} >= 0;var z{i in I, j in J} >= i+j;The variable statement de
lares a variable. If the subs
ript domain is not spe
i�ed,the variable is a simple (s
alar) variable, otherwise it is a n-dimensional array of elementalvariables.Elemental variable(s) asso
iated with the model variable (if it is a simple variable) or itsmembers (if it is an array)
orrespond to the variables in the LP/MIP problem formulation

Chapter 4: Statements 27(see Se
tion \Linear programming problem"). Note that only the elemental variables a
tu-ally referen
ed in some
onstraints and/or obje
tives are in
luded in the LP/MIP probleminstan
e to be generated.The type attributes integer and binary restri
t the variable to be integer or binary,respe
tively. If no type attribute is spe
i�ed, the variable is
ontinuous. If all variables inthe model are
ontinuous, the
orresponding problem is of LP
lass. If there is at least oneinteger or binary variable, the problem is of MIP
lass.The lower bound (>=) attribute spe
i�es a numeri
 expression for
omputing the lowerbound of the variable. At most one lower bound
an be spe
i�ed. By default all variables(ex
ept binary ones) have no lower bounds, so if a variable is required to be non-negative,its zero lower bound should be expli
itly spe
i�ed.The upper bound (<=) attribute spe
i�es a numeri
 expression for
omputing the upperbound of the variable. At most one upper bound attribute
an be spe
i�ed.The �xed value (=) attribute spe
i�es a numeri
 expression for
omputing the value,at whi
h the variable is �xed. This attribute
annot be spe
i�ed along with lower/upperbound attributes.4.4 Constraint statement� �subje
t to name alias domain : expression , = expression ;subje
t to name alias domain : expression , <= expression ;subje
t to name alias domain : expression , >= expression ;subje
t to name alias domain : expression , <= expression , <= expression ;subje
t to name alias domain : expression , >= expression , >= expression ;
 	Where: name is the symboli
 name of the
onstraint;alias is an optional string literal whi
h spe
i�es the alias of the
onstraint;domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the
onstraint;expressions are linear expressions for
omputing
omponents of the
onstraint.(Commae following expressions may be omitted.)Note: The keyword subje
t to may be redu
ed to subj to, or to s.t., or be omittedat all.Exampless.t. r: x + y + z, >= 0, <= 1;limit{t in 1..T}: sum{j in prd} make[j,t℄ <= max_prd;subje
t to balan
e{i in raw, t in 1..T}:store[i,t+1℄ - store[i,t℄ - sum{j in prd} units[i,j℄ * make[j,t℄;subje
t to rlim 'regular-time limit' {t in time}:sum{p in prd} pt[p℄ * rprd[p,t℄ <= 1.3 * dpp[t℄ *
rews[t℄;The
onstraint statement de
lares a
onstraint. If the subs
ript domain is not spe
i-�ed, the
onstraint is a simple (s
alar)
onstraint, otherwise it is a n-dimensional array ofelemental
onstraints.

Chapter 4: Statements 28Elemental
onstraint(s) asso
iated with the model
onstraint (if it is a simple
onstraint)or its members (if it is an array)
orrespond to the linear
onstraints in the LP/MIP problemformulation (see Se
tion \Linear programming problem").If the
onstraint has the form of equality or single inequality, i.e. in
ludes two expres-sions, one of whi
h follows the
olon and other follows the relation sign =, <=, or >=, bothexpressions in the statement
an be linear expressions. If the
onstraint has the form ofdouble inequality, i.e. in
ludes three expressions, the middle expression
an be a linearexpression while the leftmost and rightmost ones
an be only numeri
 expressions.Generating the model is, generally speaking, generating its
onstraints, whi
h are al-ways evaluated for the entire subs
ript domain. Evaluating
onstraints leads, in turn, toevaluating other model obje
ts su
h as sets, parameters, and variables.Constru
ting the a
tual linear
onstraint in
luded in the problem instant
e, whi
h (
on-straint)
orresponds to a parti
ular elemental
onstraint, is performed as follows.If the
onstraint has the form of equality or single inequality, evaluation of both linearexpressions gives two resultant linear forms:f = a1x1 + a2x2 + : : :+ anxn + a0;g = b1x1 + b2x2 + : : :+ bnxn + b0;where x1, x2, : : : , xn are elemental variables, a1, a2, : : : , an, b1, b2, : : : , bn are numeri

oeÆ
ients, a0 and b0 are
onstant terms. Then all linear terms of f and g are
arried tothe left-hand side, and the
onstant terms are
arried to the right-hand side that gives the�nal elemental
onstraint in the standard form:(a1 � b1)x1 + (a2 � b2)x2 + : : : + (an � bn)xn8<:=��9=; b0 � a0:If the
onstraint has the form of double inequality, evaluation of the middle linear ex-pression gives the resultant linear form:f = a1x1 + a2x2 + : : :+ anxn + a0;and evaluation of the leftmost and rightmost numeri
 expressions gives two numeri
 values land u. Then the
onstant term of the linear form is
arried to both left-hand and right-handsides that gives the �nal elemental
onstraint in the standard form:l � a0 � a1x1 + a2x2 + : : :+ anxn � u� a0:4.5 Obje
tive statement� �minimize name alias domain : expression ;maximize name alias domain : expression ;
 	Where: name is the symboli
 name of the obje
tive;alias is an optional string literal whi
h spe
i�es the alias of the obje
tive;

Chapter 4: Statements 29domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the obje
tive;expression is an linear expression for
omputing the linear form of the obje
tiveExamplesminimize obj: x + 1.5 * (y + z);maximize total_profit: sum{p in prd} profit[p℄ * make[p℄;The obje
tive statement de
lares an obje
tive. If the subs
ript domain is not spe
i�ed,the obje
tive is a simple (s
alar) obje
tive. Otherwise it is a n-dimensional array of elementalobje
tives.Elemental obje
tive(s) asso
iated with the model obje
tive (if it is a simple obje
tive) orits members (if it is an array)
orrespond to general linear
onstraints in the LP/MIP prob-lem formulation (see Se
tion \Linear programming problem"). However, unlike
onstraintsthe
orresponding linear forms are free (unbounded).Constru
ting the a
tual linear
onstraint in
luded in the problem instan
e, whi
h (
on-straint)
orresponds to a parti
ular elemental obje
tive, is performed as follows. The linearexpression spe
i�ed in the obje
tive statement is evaluated that gives the resultant linearform: f = a1x1 + a2x2 + : : :+ anxn + a0;where x1, x2, . . . , xn are elemental variables, a1, a2, . . . , an are numeri

oeÆ
ients, a0 isthe
onstant term. Then the linear form is used to
onstru
t the �nal elemental
onstraintin the standard form: �1 < a1x1 + a2x2 + : : :+ anxn + a0 < +1:As a rule the model des
ription
ontains only one obje
tive statement that de�nes theobje
tive fun
tion (1) used in the problem instan
e. However, it is allowed to de
larearbitrary number of obje
tives, in whi
h
ase the a
tual obje
tive fun
tion is the �rstobje
tive en
ountered in the model des
ription. Other obje
tives are also in
luded in theproblem instan
e, but they do not a�e
t the obje
tive fun
tion.4.6 Solve statement� �solve ;
 	Note: The solve statement is optional and
an be used only on
e. If no solve statementis used, one is assumed at the end of the model se
tion.The solve statement
auses solving the model, i.e.
omputing numeri
 values of all modelvariables. This allows using variables in statements below the solve statement in the sameway as if they were numeri
 parameters.Note that variable,
onstraint, and obje
tive statements
annot be used below the solvestatement, i.e. all prin
ipal
omponents of the model must be des
ribed above the solvestatement.

Chapter 4: Statements 304.7 Che
k statement� �
he
k domain : expression ;
 	Where: domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the
he
k statement;expression is an logi
al expression whi
h spe
i�es the logi
al
ondition to be
he
ked. (The
olon pre
eding expression may be omitted.)Examples
he
k: x + y <= 1 and x >= 0 and y >= 0;
he
k sum{i in ORIG} supply[i℄ = sum{j in DEST} demand[j℄;
he
k{i in I, j in 1..10}: S[i,j℄ in U[i℄ union V[j℄;The
he
k statement allows
he
king the resultant value of an logi
al expression spe
i�edin the statement. If the value is false, the model translator reports an error.If the subs
ript domain is not spe
i�ed, the
he
k is performed only on
e. Spe
ifyingthe subs
ript domain allows performing multiple
he
ks for every n-tuple in the domainset. In the latter
ase the logi
al expression may in
lude dummy indi
es introdu
ed in the
orresponding indexing expression.4.8 Display statement� �display domain : item , . . . , item ;
 	Where: domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the display statement;item, . . . , item are items to be displayed. (The
olon pre
eding the �rst itemmay be omitted.)Examplesdisplay: 'x =', x, 'y =', y, 'z =', z;display sqrt(x ** 2 + y ** 2 + z ** 2);display{i in I, j in J}: i, j, a[i,j℄, b[i,j℄;The display statement evaluates all items spe
i�ed in the statement and writes theirvalues to the terminal in plain text format.If the subs
ript domain is not spe
i�ed, items are evaluated and then displayed onlyon
e. Spe
ifying the subs
ript domain
auses evaluating and displaying items for everyn-tuple in the domain set. In the latter
ase items may in
lude dummy indi
es introdu
edin the
orresponding indexing expression.Item to be displayed
an be a model obje
t (set, parameter, variable,
onstraint, obje
-tive) or an expression.If the item is a
omputable obje
t (i.e. a set or parameter provided with the assignattribute), the obje
t is evaluated over the entire domain and then its
ontent (i.e. the
ontent of the obje
t array) is displayed. Otherwise, if the item is not a
omputable obje
t,

Chapter 4: Statements 31only its
urrent
ontent (i.e. the members a
tually generated during the model evaluation) isdisplayed. Note that if the display statement is used above the solve statement and the itemis a variable, its displayed \value" means \elemental variable", not a numeri
 value, whi
hthe variable
ould have in some solution obtained by the solver. To display a numeri
 valueof a variable the display statement should be used below the solve statement. Analogously, ifthe item is a
onstraint or obje
tive, its \value" means \elemental
onstraint" or \elementalobje
tive", not a numeri
 value.If the item is an expression, the expression is evaluated and its resultant value is dis-played.4.9 Printf statement� �printf domain : format , expression , . . . , expression ;printf domain : format , expression , . . . , expression > �lename ;printf domain : format , expression , . . . , expression >> �lename ;
 	Where: domain is an optional indexing expression whi
h spe
i�es the subs
ript domainof the printf statement;format is a symboli
 expression whose value spe
i�es a format
ontrol string.(The
olon pre
eding the format expression may be omitted.)expression, . . . , expression are zero or more expressions whose values have tobe formatted and printed. Ea
h expression must be of numeri
, symboli
, orlogi
al type.�lename is a symboli
 expression whose value spe
i�es the name of a text �le,to whi
h the printf output should be redire
ted. The
ag > means
reating anew empty �le while the
ag >> means appending the output to an existing �le.If no �le name is spe
i�ed, the output is written to the terminal.Examplesprintf 'Hello, world!\n';printf: "x = %.3f; y = %.3f; z = %.3f\n", x, y, z > "result.txt";printf{i in I, j in J}: "flow from %s to %s is %d\n", i, j, x[i,j℄;printf{i in I} 'total flow from %s is %g\n', i, sum{j in J} x[i,j℄;printf{k in K} "x[%s℄ = " & (if x[k℄ < 0 then "?" else "%g"), k, x[k℄;The printf statement is similar to the display statement, however, it allows formattingthe data to be written.If the subs
ript domain is not spe
i�ed, the printf statement is exe
uted only on
e.Spe
ifying the subs
ript domain
auses exe
uting the printf statement for every n-tuplein the domain set. In the latter
ase format and expressions may in
lude dummy indi
esintrodu
ed in the
orresponding indexing expression.The format
ontrol string is a value of the symboli
 expression format spe
i�ed in theprintf statement. It is
omposed of zero or more dire
tives as follows: ordinary
hara
ters(not %), whi
h are
opied un
hanged to the output stream, and
onversion spe
i�
ations,

Chapter 4: Statements 32ea
h of whi
h
auses evaluating
orresponding expression spe
i�ed in the printf statement,formatting it, and writing the resultant value to the output stream.Conversion spe
i�
ations whi
h may be used in the format
ontrol string are the follow-ing: d, i, f, F, e, E, g, G, and s. These spe
i�
ations have the same syntax and semanti
sas in the C programming language.4.10 For statement� �for domain : statementfor domain : { statement . . . statement }
 	Where: domain is an indexing expression whi
h spe
i�es the subs
ript domain of thefor statement. (The
olon following the indexing expression may be omitted.)statement is a statement whi
h should be exe
uted under
ontrol of the forstatement;statement, . . . , statement is a sequen
e of statements (en
losed in
urly bra
es)whi
h should be exe
uted under
ontrol of the for statement.Note: Only the following statements are allowed within the for statement:
he
k,display, printf, and another for.Examplesfor {(i,j) in E: i != j}{ printf "flow from %s to %s is %g\n", i, j, x[i,j℄;
he
k x[i,j℄ >= 0;}for {i in 1..n}{ for {j in 1..n} printf " %s", if x[i,j℄ then "Q" else ".";printf("\n");}for {1..72} printf("*");The for statement
auses exe
uting a statement or a sequen
e of statements spe
i�edas part of the for statement for every n-tuple in the domain set. Thus, statements withinthe for statement may refer to dummy indi
es introdu
ed in the
orresponding indexingexpression.

Chapter 5: Model data 335 Model dataModel data in
lude elemental sets, whi
h are \values" of model sets, and numeri
 andsymboli
 values of model parameters.In MathProg there are two di�erent ways to saturate model sets and parameters withdata. One way is simply providing ne
essary data using the assign attribute. However, inmany
ases it is more pra
ti
al to separate the model itself and parti
ular data needed forthe model. For the latter reason in MathProg there is other way, when the model des
riptionis divided into two parts: model se
tion and data se
tion.Model se
tion is a main part of the model des
ription that
ontains de
larations of allmodel obje
ts and is
ommon for all problems based on that model.Data se
tion is an optional part of the model des
ription that
ontains model dataspe
i�
 for a parti
ular problem.In MathProg model and data se
tions
an be pla
ed either in one text �le or in twoseparate text �les.If both model and data se
tions are pla
ed in one �le, the �le is
omposed as follows:+------------+| statement || statement || . . . || statement || data; || data blo
k || data blo
k || . . . || data blo
k || end; |+------------+If the model and data se
tions are pla
ed in two separate �les, the �les are
omposed asfollows:+------------+ +------------+| statement | | data; || statement | | data blo
k || . . . | | data blo
k || statement | | . . . || end; | | data blo
k || | | end; |+------------+ +------------+Model file Data fileNote: If the data se
tion is pla
ed in a separate �le, the keyword data is optional andmay be omitted along with the semi
olon that follows it.

Chapter 5: Model data 345.1 Coding data se
tionThe data se
tion is a sequen
e of data blo
ks in various formats, whi
h are dis
ussed infollowing subse
tions. The order, in whi
h data blo
ks follow in the data se
tion, may bearbitrary, not ne
essarily the same as in whi
h the
orresponding model obje
ts follow inthe model se
tion.The rules of
oding the data se
tion are
ommonly the same as the rules of
oding themodel des
ription (for details see Se
tion \Coding model des
ription"), i.e. data blo
ksare
omposed from basi
 lexi
al units su
h as symboli
 names, numeri
 and string literals,keywords, delimiters, and
omments. However, for the sake of
onvenien
e and improvingreadability there is one deviation from the
ommon rule: if a string literal
onsists of onlyalphanumeri

hara
ters (in
luding the unders
ore
hara
ter), the signs + and -, and/or thede
imal point, it may be
oded without bordering (single or double) quotes.All numeri
 and symboli
 material provided in the data se
tion is
oded in the form ofnumbers and symbols, i.e. unlike the model se
tion no expressions are allowed in the datase
tion. Nevertheless the signs + and -
an pre
ede numeri
 literals to allow
oding signednumeri
 quantities, in whi
h
ase there must be no white-spa
e
hara
ters between the signand following numeri
 literal (if there is at least one white-spa
e, the sign and followingnumeri
 literal are re
ognized as two di�erent lexi
al units).5.2 Set data blo
k� �set name , re
ord , . . . , re
ord ;set name [symbol , . . . , symbol ℄ , re
ord , . . . , re
ord ;
 	Where: name is a symboli
 name of the set;symbol, . . . , symbol are subs
ripts whi
h spe
ify a parti
ular member of theset (if the set is an array, i.e. a set of sets);re
ord, . . . , re
ord are data re
ords.Note: Commae pre
eding data re
ords may be omitted.Data re
ords::= is a non-signi�
ant data re
ord whi
h may be used freely to improve readability;(sli
e) spe
i�es a sli
e;simple-data spe
i�es set data in the simple format;: matrix-dataspe
i�es set data in the matrix format;(tr) : matrix-dataspe
i�es set data in the transposed matrix format. (In this
ase the
olonfollowing the keyword (tr) may be omitted.)

Chapter 5: Model data 35Examplesset month := Jan Feb Mar Apr May Jun;set month "Jan", "Feb", "Mar", "Apr", "May", "Jun";set A[3,Mar℄ := (1,2) (2,3) (4,2) (3,1) (2,2) (4,4) (3,4);set A[3,'Mar'℄ := 1 2 2 3 4 2 3 1 2 2 4 4 2 4;set A[3,'Mar'℄ : 1 2 3 4 :=1 - + - -2 - + + -3 + - - +4 - + - + ;set B := (1,2,3) (1,3,2) (2,3,1) (2,1,3) (1,2,2) (1,1,1) (2,1,1);set B := (*,*,*) 1 2 3, 1 3 2, 2 3 1, 2 1 3, 1 2 2, 1 1 1, 2 1 1;set B := (1,*,2) 3 2 (2,*,1) 3 1 (1,2,3) (2,1,3) (1,1,1);set B := (1,*,*) : 1 2 3 :=1 + - -2 - + +3 - + -(2,*,*) : 1 2 3 :=1 + - +2 - - -3 + - - ;(In these examples the set month is a simple set of singles, A is a 2-dimensional array ofdoubles, and B is a simple set of triples. Data blo
ks for the same set are equivalent in thesense that they spe
ify the same data in di�erent formats.)The set data blo
k is used to spe
ify a
omplete elemental set, whi
h is assigned to a set(if it is a simple set) or one of its members (if the set is an array of sets).1Data blo
ks
an be spe
i�ed only for non-
omputable sets, i.e. sets whi
h have no assignattribute in the
orresponding set statements.If the set is a simple set, only its symboli
 name should be given in the header of the datablo
k. Otherwise, if the set is a n-dimensional array, its symboli
 name should be providedwith a
omplete list of subs
ripts separated by
ommae and en
losed in square bra
kets tospe
ify a parti
ular member of the set array. The number of subs
ripts must be the sameas the dimension of the set array, where ea
h subs
ript must be a number or symbol.The elemental set de�ned in the set data blo
k is
oded as a sequen
e of data re
ordsdes
ribed below.2Assign data re
ordThe assign (:=) data re
ord is a non-sign�
ant element. It may be used for improvingreadability of data blo
ks.1 There is another way to spe
ify data for a simple set along with data for parameters. This feature isdis
ussed in the next se
tion.2 Data re
ord is simply a te
hni
al term. It does not mean that data re
ords have any spe
ial formatting.

Chapter 5: Model data 36Sli
e data re
ordThe sli
e data re
ord is a
ontrol re
ord whi
h spe
i�es a sli
e of the elemental set de�nedin the data blo
k. It has the following synta
ti
 form:(s1 , s2 , . . . , sn)where s1, s2, . . . , sn are
omponents of the sli
e.Ea
h
omponent of the sli
e
an be a number or symbol or the asterisk (*). The numberof
omponents in the sli
e must be the same as the dimension of n-tuples in the elementalset to be de�ned. For instan
e, if the elemental set
ontains 4-tuples (quadruples), the sli
emust have four
omponents. The number of asterisks in the sli
e is
alled sli
e dimension.The e�e
t of using sli
es is the following. If a m-dimensional sli
e (i.e. a sli
e whi
hhas m asterisks) is spe
i�ed in the data blo
k, all subsequent data re
ords must spe
i�ytuples of the dimension m. Whenever a m-tuple is en
ountered, ea
h asterisk in the sli
eis repla
ed by
orresponding
omponents of the m-tuple that gives the resultant n-tuple,whi
h is in
luded in the elemental set to be de�ned. For example, if the sli
e (a,*,1,2,*)is in e�e
t, and 2-tuple (3,b) is en
ountered in a subsequent data re
ord, the resultant5-tuple in
luded in the elemental set is (a,3,1,2,b).The sli
e that has no asterisks itself de�nes a
omplete n-tuple, whi
h is in
luded in theelemental set.Being on
e spe
i�ed the sli
e e�e
ts until either a new sli
e or the end of data blo
k hasbeen en
ountered. Note that if there is no sli
e spe
i�ed in the data blo
k, a dummy one,
omponents of whi
h are all asterisks, is assumed.Simple data re
ordThe simple data re
ord de�nes one n-tuple in simple format and has the following synta
ti
form: t1 , t2 , . . . , tnwhere t1, t2, . . . , tn are
omponents of the n-tuple. Ea
h
omponent
an be a number orsymbol. Commae between
omponents are optional and may be omitted.Matrix data re
ordThe matrix data re
ord de�nes several 2-tuples (doubles) in matrix format and has thefollowing synta
ti
 form::
1
2 : : :
n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amnwhere r1, r2, . . . , rm are numbers and/or symbols whi
h
orrespond to rows of the matrix,
1,
2, . . . ,
n are numbers and/or symbols whi
h
orrespond to
olumns of the matrix, a11,a12, . . . , amn are the matrix elements, whi
h
an be either the sign + or the sign -. (Inthis data re
ord the delimiter : pre
eding the
olumn list and the delimiter := followingthe
olumn list
annot be omitted.)Ea
h element aij of the matrix data blo
k (where 1 � i � m, 1 � j � n)
orresponds to2-tuple (ri;
j). If aij is the plus sign (+), the
orresponding 2-tuple (or a longer n-tuple, if

Chapter 5: Model data 37a sli
e is used) is in
luded in the elemental set. Otherwise, if aij is the minus sign (-) sign,the
orresponding 2-tuple is not in
luded in the elemental set.Sin
e the matrix data re
ord de�nes 2-tuples, either the elemental set must
onsist of2-tuples or the sli
e
urrently used must be 2-dimensional.Transposed matrix data re
ordThe transposed matrix data re
ord has the following synta
ti
 form:(tr) :
1
2 : : :
n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amn(In this
ase the delimiter : following the keyword (tr) is optional and may be omitted.)This data re
ord is
ompletely analogous to the matrix data re
ord (see above) with theonly ex
eption that ea
h element aij of the matrix
orresponds to 2-tuple (
j ; ri).Being on
e spe
i�ed the (tr) indi
ator e�e
ts on all subsequent data re
ords until eithera sli
e or the end of data blo
k has been en
ountered.5.3 Parameter data blo
k� �param name , re
ord , . . . , re
ord ;param name default value , re
ord , . . . , re
ord ;param : tabbing-data ;param default value : tabbing-data ;
 	Where: name is a symboli
 name of the parameter;value is an optional default value of the parameter;re
ord, . . . , re
ord are data re
ords.tabbing-data spe
i�es parameter data in the tabbing format.Note: Commae pre
eding data re
ords may be omitted.Data re
ords::= is a non-signi�
ant data re
ord whi
h may be used freely to improve readability;[sli
e ℄ spe
i�es a sli
e;plain-data spe
i�es parameter data in the plain format;: tabular-dataspe
i�es parameter data in the tabular format;(tr) : tabular-dataspe
i�es parameter data in the transposed tabular format. (In this
ase the
olon following the keyword (tr) may be omitted.)

Chapter 5: Model data 38Examplesparam T := 4;param month := 1 Jan 2 Feb 3 Mar 4 Apr 5 May;param month := [1℄ 'Jan', [2℄ 'Feb', [3℄ 'Mar', [4℄ 'Apr', [5℄ 'May';param init_sto
k := iron 7.32 ni
kel 35.8;param init_sto
k [*℄ iron 7.32, ni
kel 35.8;param
ost [iron℄ .025 [ni
kel℄ .03;param value := iron -.1, ni
kel .02;param : init_sto
k
ost value :=iron 7.32 .025 -.1ni
kel 35.8 .03 .02 ;param : raw : init sto
k
ost value :=iron 7.32 .025 -.1ni
kel 35.8 .03 .02 ;param demand default 0 (tr): FRA DET LAN WIN STL FRE LAF :=bands 300 . 100 75 . 225 250
oils 500 750 400 250 . 850 500plate 100 . . 50 200 . 250 ;param trans_
ost :=[*,*,bands℄: FRA DET LAN WIN STL FRE LAF :=GARY 30 10 8 10 11 71 6CLEV 22 7 10 7 21 82 13PITT 19 11 12 10 25 83 15[*,*,
oils℄: FRA DET LAN WIN STL FRE LAF :=GARY 39 14 11 14 16 82 8CLEV 27 9 12 9 26 95 17PITT 24 14 17 13 28 99 20[*,*,plate℄: FRA DET LAN WIN STL FRE LAF :=GARY 41 15 12 16 17 86 8CLEV 29 9 13 9 28 99 18PITT 26 14 17 13 31 104 20 ;The parameter data blo
k is used to spe
ify
omplete data for a parameter (or parame-ters, if data are spe
i�ed in the tabbing format) whose name is given in the blo
k.Data blo
ks
an be spe
i�ed only for the parameters, whi
h are non-
omputable, i.e.whi
h have no assign attribute in the
orresponding parameter statements.Data de�ned in the parameter data blo
k are
oded as a sequen
e of data re
ords de-s
ribed below. Additionally the data blo
k
an be provided with the optional defaultattribute, whi
h spe
i�es a default numeri
 or symboli
 value of the parameter (parame-ters). This default value is assigned to the parameter or its members, if no appropriatevalue is de�ned in the parameter data blo
k. The default attribute
annot be used, if itis already spe
i�ed in the
orresponding parameter statement(s).Assign data re
ordThe assign (:=) data re
ord is a non-sign�
ant element. It may be used for improvingreadability of data blo
ks.

Chapter 5: Model data 39Sli
e data re
ordThe sli
e data re
ord is a
ontrol re
ord whi
h spe
i�es a sli
e of the parameter array. Ithas the following synta
ti
 form:[s1 , s2 , . . . , sn ℄where s1, s2, . . . , sn are
omponents of the sli
e.Ea
h
omponent of the sli
e
an be a number or symbol or the asterisk (|*|). Thenumber of
omponents in the sli
e must be the same as the dimension of the parameter.For instan
e, if the parameter is a 4-dimensional array, the sli
e must have four
omponents.The number of asterisks in the sli
e is
alled sli
e dimension.The e�e
t of using sli
es is the following. If a m-dimensional sli
e (i.e. a sli
e whi
h has masterisks) is spe
i�ed in the data blo
k, all subsequent data re
ords must spe
ify subs
riptsof the parameter members as if the parameter were m-dimensional, not n-dimensional.Whenever m subs
ripts are en
ountered, ea
h asterisk in the sli
e is repla
ed by
orre-sponding subs
ript that gives n subs
ripts, whi
h de�ne the a
tual parameter member. Forexample, if the sli
e [a,*,1,2,*℄ is in e�e
t, and the subs
ripts 3 and b are en
ountered ina subsequent data re
ord, the
omplete subs
ript list used to
hoose a parameter memberis [a,3,1,2,b℄.It is allowed to spe
ify a sli
e that has no asterisks. Su
h sli
e itself de�nes a
ompletesubs
ript list, in whi
h
ase the next data re
ord
an de�ne only a single value of the
orresponding parameter member.Being on
e spe
i�ed the sli
e e�e
ts until either a new sli
e or the end of data blo
k hasbeen en
ountered. Note that if there is no sli
e spe
i�ed in the data blo
k, a dummy one,
omponents of whi
h are all asterisks, is assumed.Plain data re
ordThe plain data re
ord de�nes the subs
ript list and a single value in plain format. Thisre
ord has the following synta
ti
 form:t1 , t2 , . . . , tn , vwhere t1, t2, . . . , tn are subs
ripts, v is a value. Ea
h subs
ript as well as the value
an bea number or symbol. Commae following subs
ripts are optional and may be omitted.In
ase of 0-dimensional parameter or sli
e the plain data re
ord have no subs
ripts and
onsists of a single value only.Tabular data re
ordThe tabular data re
ord de�nes several values, where ea
h value is provided with twosubs
ripts. This re
ord has the following synta
ti
 form::
1
2 : : :
n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amnwhere r1, r2, . . . , rm are numbers and/or symbols whi
h
orrespond to rows of the table,
1,
2, . . . ,
n are numbers and/or symbols whi
h
orrespond to
olumns of the table, a11,a12, . . . , amn are the table elements. Ea
h element
an be a number or symbol or the

Chapter 5: Model data 40single de
imal point. (In this data re
ord the delimiter : pre
eding the
olumn list and thedelimiter := following the
olumn list
annot be omitted.)Ea
h element aij of the tabular data blo
k (1 � i � m, 1 � j � n) de�nes two subs
ripts,where the �rst subs
ript is ri, and the se
ond one is
j . These subs
ripts are used in
onjun
tion with the
urrent sli
e to form the
omplete subs
ript list whi
h identi�es aparti
ular member of the parameter array. If aij is a number or symbol, this value isassigned to the parameter member. However, if aij is the single de
imal point, the memberis assigned a default value spe
i�ed either in the parameter data blo
k or in the parameterstatement, or, if no default value is spe
i�ed, the member remains unde�ned.Sin
e the tabular data re
ord provides two subs
ripts for ea
h value, either the parameteror the sli
e
urrently used must be 2-dimensional.Transposed tabular data re
ordThe transposed tabular data re
ord has the following synta
ti
 form:(tr) :
1
2 : : :
n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amn(In this
ase the delimiter : following the keyword (tr) is optional and may be omitted.)This data re
ord is
ompletely analogous to the tabular data re
ord (see above) with theonly ex
eption that the �rst subs
ript de�ned by the element aij is
j while the se
ond oneis ri.Being on
e spe
i�ed the (tr) indi
ator e�e
ts on all subsequent data re
ords until eithera sli
e or the end of data blo
k has been en
ountered.Tabbing data formatThe parameter data blo
k in the tabbing format has the following synta
ti
 form:param default value : s : p1 ; p2 ; : : : ; pk :=t11 ; t12 ; : : : ; t1n ; a11 ; a12 ; : : : ; a1kt21 ; t22 ; : : : ; t2n ; a21 ; a22 ; : : : ; a2k: : : : : : : : : : : : : : : : : : : :tm1 ; tm2 ; : : : ; tmn ; am1 ; am2 ; : : : ; amk ;Note: The keyword default may be omitted along with a value following it.The symboli
 name s of a set may be omitted along with the
olon following it.All
omae are optional and may be omitted.The data blo
k in the tabbing format shown above is exa
tly equivalent to the followingdata blo
ks:set s := (t11; t12; : : : ; t1n) (t21; t22; : : : ; t2n) : : : (tm1; tm2; : : : ; tmn) ;param pj default value :=[t11; t12; : : : ; t1n℄ a1j [t21; t22; : : : ; t2n℄ a2j : : : [tm1; tm2; : : : ; tmn℄ amj ;where j = 1, 2, . . . , k.

Appendix A: Solving models with glpsol 41Appendix A Solving models with glpsolThe GLPK pa
kage1 in
ludes the program glpsol, whi
h is a stand-alone LP/MIP solver.This program
an be invoked from the
ommand line or from the shell to solve modelswritten in the GNU MathProg modeling language.In order to tell the solver that the input �le
ontains a model des
ription, the option--model should be spe
i�ed in the
ommand line. For example:glpsol --model foobar.modSometimes it is ne
essary to use the data se
tion pla
ed in another �le, in whi
h
asethe following
ommand may be used:glpsol --model foobar.mod --data foobar.datNote that if the model �le also
ontains the data se
tion, that se
tion is ignored.If the model des
ription
ontains some display and/or print statements, by default theoutput goes to the terminal. In order to redire
t the output to a �le the following
ommandmay be used:glpsol --model foobar.mod --display foobar.outIf you need to look at the problem whi
h has been generated by the model translator,the option --wtxt
an be spe
i�ed in the
ommand line as follows:glpsol --model foobar.mod --wtxt foobar.txtin whi
h
ase the problem will be written to the �le foobar.txt in plain text format suitablefor visual analysis.Sometimes it is ne
essary merely to
he
k the model des
ription not solving the generatedproblem. In this
ase the option --
he
k should be given in the
ommand line, for example:glpsol --
he
k --model foobar.mod --wtxt foobar.txtIn order to write a numeri
 solution obtained by the solver the following
ommand maybe used:glpsol --model foobar.mod --output foobar.solin whi
h
ase the solution will be written to the �le foobar.sol in plain text format.Complete list of the glpsol options
an be found in the referen
e manual in
luded inthe GLPK distribution.

1 http://www.gnu.org/software/glpk/

Appendix B: Example model des
ription 42Appendix B Example model des
riptionModel des
ription written in GNU MathProgHere is a
omplete example of the model des
ription written in the GNUMathProg modelinglanguage.# A TRANSPORTATION PROBLEM## This problem finds a least
ost shipping s
hedule that meets# requirements at markets and supplies at fa
tories.## Referen
es:# Dantzig G B, "Linear Programming and Extensions."# Prin
eton University Press, Prin
eton, New Jersey, 1963,# Chapter 3-3.set I;/*
anning plants */set J;/* markets */param a{i in I};/*
apa
ity of plant i in
ases */param b{j in J};/* demand at market j in
ases */param d{i in I, j in J};/* distan
e in thousands of miles */param f;/* freight in dollars per
ase per thousand miles */param
{i in I, j in J} := f * d[i,j℄ / 1000;/* transport
ost in thousands of dollars per
ase */var x{i in I, j in J} >= 0;/* shipment quantities in
ases */minimize
ost: sum{i in I, j in J}
[i,j℄ * x[i,j℄;/* total transportation
osts in thousands of dollars */s.t. supply{i in I}: sum{j in J} x[i,j℄ <= a[i℄;/* observe supply limit at plant i */

Appendix B: Example model des
ription 43s.t. demand{j in J}: sum{i in I} x[i,j℄ >= b[j℄;/* satisfy demand at market j */data;set I := Seattle San-Diego;set J := New-York Chi
ago Topeka;param a := Seattle 350San-Diego 600;param b := New-York 325Chi
ago 300Topeka 275;param d : New-York Chi
ago Topeka :=Seattle 2.5 1.7 1.8San-Diego 2.5 1.8 1.4 ;param f := 90;end;Generated LP problemHere is the result of the translation of the example model produ
ed by the solver glpsoland written in the free MPS format.NAME transpROWSN
ostL supply[Seattle℄L supply[San-Diego℄G demand[New-York℄G demand[Chi
ago℄G demand[Topeka℄COLUMNSx[Seattle,New-York℄
ost 0.225 supply[Seattle℄ 1x[Seattle,New-York℄ demand[New-York℄ 1x[Seattle,Chi
ago℄
ost 0.153 supply[Seattle℄ 1x[Seattle,Chi
ago℄ demand[Chi
ago℄ 1x[Seattle,Topeka℄
ost 0.162 supply[Seattle℄ 1x[Seattle,Topeka℄ demand[Topeka℄ 1x[San-Diego,New-York℄
ost 0.225 supply[San-Diego℄ 1x[San-Diego,New-York℄ demand[New-York℄ 1x[San-Diego,Chi
ago℄
ost 0.162 supply[San-Diego℄ 1

Appendix B: Example model des
ription 44x[San-Diego,Chi
ago℄ demand[Chi
ago℄ 1x[San-Diego,Topeka℄
ost 0.126 supply[San-Diego℄ 1x[San-Diego,Topeka℄ demand[Topeka℄ 1RHSRHS1 supply[Seattle℄ 350 supply[San-Diego℄ 600RHS1 demand[New-York℄ 325 demand[Chi
ago℄ 300RHS1 demand[Topeka℄ 275ENDATAOptimal LP solutionHere is the optimal solution of the generated LP problem found by the solver glpsol andwritten in plain text format.Problem: transpRows: 6Columns: 6Non-zeros: 18Status: OPTIMALObje
tive:
ost = 153.675 (MINimum)No. Row name St A
tivity Lower bound Upper bound Marginal------ ------------ -- ------------- ------------- ------------- -------------1
ost B 153.6752 supply[Seattle℄B 300 3503 supply[San-Diego℄NU 600 600 < eps4 demand[New-York℄NL 325 325 0.2255 demand[Chi
ago℄NL 300 300 0.1536 demand[Topeka℄NL 275 275 0.126No. Column name St A
tivity Lower bound Upper bound Marginal------ ------------ -- ------------- ------------- ------------- -------------1 x[Seattle,New-York℄B 0 02 x[Seattle,Chi
ago℄B 300 03 x[Seattle,Topeka℄NL 0 0 0.0364 x[San-Diego,New-York℄B 325 05 x[San-Diego,Chi
ago℄NL 0 0 0.0096 x[San-Diego,Topeka℄B 275 0End of output

A
knowledgements 45A
knowledgementsThe author would like to thank the following people, who kindly read,
ommented, and
orre
ted the draft of this manual:Juan Carlos Borras <borras�
s.helsinki.fi>Harley Ma
kenzie <hjm�bigpond.
om>Robbie Morrison <robbie�a
trix.
o.nz>

