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Abstract

We provide a single reduction that demonstrates that in normal-form games: 1) it
is NP-complete to determine whether Nash equilibria with certain natural prop-
erties exist (these results are similar to those obtained by Gilboa and Zemel [17]),
2) more significantly, the problems of maximizing certain properties of a Nash
equilibrium are inapproximable (unless P = NP), and 3) it is #P-hard to count
the Nash equilibria. We also show that determining whether a pure-strategy Bayes-
Nash equilibrium exists in a Bayesian game isNP-complete, and that determining
whether a pure-strategy Nash equilibrium exists in a Markov (stochastic) game is
PSPACE-hard even if the game is unobserved (and that this remains NP-hard if
the game has finite length). All of our hardness results hold even if there are only
two players and the game is symmetric.

JEL Classification: C63; C70; C72; C73

1 Introduction
Game theory provides a normative framework for analyzing strategic interactions. How-
ever, in order for anyone to play according to the solutions that it prescribes, these
solutions must be computed. There are many different ways in which this can hap-
pen: a player can consciously solve the game (possibly with the help of a computer1);
some players can perhaps eyeball the game and find the solution by intuition, even

∗This work appeared as an oral presentation at the Second World Congress of the Game Theory Society
(GAMES-04), and a short, early version was also presented at the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI-03). The material in this paper is based upon work supported by the National
Science Foundation under grants IIS-0234694, IIS-0427858, IIS-0234695, and IIS-0121678, as well as two
Sloan Fellowships and an IBM Ph.D. Fellowship. We thank the reviewers for numerous helpful comments.

†Corresponding author.
1The player might also be a computer, for example, a poker-playing computer program. Indeed, at least

for some variants of poker, the top computer programs are based around computing a game-theoretic solution
(usually, a minimax strategy).
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without being aware of the general solution concept; and in some cases, the players
can converge to the solution by following simple learning rules. In each case, some
computational machinery (respectively, one player’s conscious brain, a computer, one
player’s subconscious brain, or the system consisting of all players together) arrives at
the solution using some procedure, or algorithm.

Some of the most basic computational problems in game theory concern the com-
putation of Nash equilibria of a finite normal-form game. An example problem is to
compute one Nash equilibrium—any equilibrium will do. What are good algorithms
for solving such a problem? Certainly, we want the algorithm to always return a cor-
rect solution. Moreover, we are interested in how fast the algorithm returns a solution.
Generally, as the size of the game (more generally, the problem instance) increases, so
does the running time of the algorithm. Whether the algorithm is practical for solving
larger instances depends on how rapidly its running time increases. An algorithm is
generally considered efficient if its running time is at most a polynomial function of
the size of the instance (game). There are certainly other properties that one may want
the algorithm to have—for example, one may be interested in learning algorithms that
are simple enough for people to use—but the algorithm should at least be correct and
computationally efficient.

The same computational problem may admit both efficient and inefficient algo-
rithms. The theory of computational complexity aims to analyze the inherent com-
plexity of the problem itself: how fast is the fastest (correct) algorithm for a given
problem? P is the class of problems that admit at least one efficient (polynomial-time)
algorithm.2 While many problems have been proved to be in P (generally by explic-
itly giving an algorithm and proving a bound on its running time), it is extremely rare
that someone proves that a problem is not in P . Instead, to show that a problem is
hard, computer scientists generally prove results of the form: “If this problem can be
solved efficiently, then so can every member of the class X of problems.” This is usu-
ally shown using a reduction from one problem to another (we will give more detail
on reductions in Section 2). If this has been proven, the problem is said to be X -hard
(and X -complete if, additionally, the problem has also been shown to lie in X ). The
strength of such a hardness result depends on the class X used. Usually, the class
NP is used (we will describe NP in more detail in Section 2), and most problems of
interest turn out to be either in P or NP-hard. NP contains P , and it is generally
considered unlikely that P = NP . Exhibiting a polynomial-time algorithm for an
NP-hard problem (thereby showing P = NP) would constitute a truly major upset:
among other things, it would (at least in a theoretical sense, and possibly in a practical
sense) break current approaches to cryptography, and it would allow a computer to find
a proof of any theorem that has a proof of reasonable length.

The problem of finding just one Nash equilibrium of a finite normal-form game
is one of the rare interesting problems that have neither been shown to be in P , nor
shown to be NP-hard. Not too long ago, it was dubbed “a most fundamental com-
putational problem whose complexity is wide open” and “together with factoring, [...]

2To define P formally (which we will not do here), one must also formally define a model of compu-
tation. Fortunately, the class of polynomial-time solvable problems is quite robust to changes in the model
of computation. Nevertheless, it is in principle possible that humans have a more powerful computational
architecture, and hence that they can solve problems outside P efficiently.
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the most important concrete open question on the boundary of P today” [39]. A re-
cent sequence of breakthrough papers [6, 7, 11, 13] shows that the problem is PPAD-
complete, even in the two-player case. (An earlier result shows that the problem is
no easier if all utilities are required to be in {0, 1} [1].) This gives some evidence
that the problem is indeed hard, although not nearly as much is known about the class
PPAD as about NP . The best-known algorithm for finding a Nash equilibrium, the
Lemke-Howson algorithm [28], has been shown to indeed have exponential running
time on some instances (and is therefore not a polynomial-time algorithm) [45]. More
recent algorithms for computing Nash equilibria have focused on guessing which of
the players’ pure strategies receive positive probability in the equilibrium: after this
guess, only a simple linear feasibility problem needs to be solved [14, 42, 44]. These
algorithms clearly require exponentially many guesses, and hence exponential time, on
some instances, although they are often quite fast in practice.

The interest in the problem of computing a single Nash equilibrium has in large
part been driven by the fact that it posed a challenge to complexity theorists. However,
from the perspective of a game theorist, this is not always the relevant computational
problem. One may, for example, be more interested in what the best equilibrium of the
game is (for some definition of “best”), or whether a given pure strategy is played in any
equilibrium, etc. Gilboa and Zemel [17] have demonstrated that many of these prob-
lems are in fact NP-hard. In Section 3, we continue this line of research by providing
a single reduction that proves many results of this type. One important improvement
over Gilboa and Zemel’s results is that our reduction also shows inapproximability re-
sults: for example, not even an equilibrium that is approximately optimal can be found
in polynomial time, unless P = NP .3 We also use the reduction to show that counting
the number of Nash equilibria (or connected sets of Nash equilibria) is #P-hard.

We proceed to prove some additional results (not based on the main reduction).
In Section 4, we consider Bayesian games and show that determining whether a pure-
strategy Bayes-Nash equilibrium exists isNP-complete. Finally, in Section 5 we show
that determining whether a pure-strategy Nash equilibrium exists in a Markov game is
PSPACE-hard even if the game is unobserved, and that this remains NP-hard if
the game has finite length. (“Unobserved” means that the players never receive any
information about what happened earlier in the game.) All of the hardness results in
this paper hold even if there are only two players and the game is symmetric. These
results suggest that for sufficiently large games, we cannot expect the players to always
play according to these solution concepts, whether they are naı̈ve learning players or
sophisticated game theorists armed with state-of-the-art computing equipment.

2 Brief review of reductions and complexity
A key concept in computational complexity theory is that of a reduction from one
problem A to another problem B. Informally, a reduction maps every instance of
computational problem A to a corresponding instance of computational problem B, in

3It should be noted that this is different from the problem of computing an approximate equilibrium [12,
31], that is, a strategy profile from which individual players have only a small incentive to deviate. The
problems that we consider require an exact equilibrium that approximately optimizes some objective.
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such a way that the answer to the former instance can be easily inferred from the answer
to the latter instance. Moreover, we require that this mapping is itself easy to compute.
If such a reduction exists, then we know that, in a sense, problem A is computationally
at most as hard to solve as problem B: if we had an efficient algorithm for problem B,
then we could use the reduction together with this algorithm to solve problem A.

The most directly useful reductions are those that reduce a problem of interest to
a problem for which we already have an efficient algorithm. However, another (back-
ward) use of reductions is to reduce a problem that is known or conjectured to be hard
to the problem of interest. Such a reduction tells us that we cannot hope to find an
efficient algorithm for the problem of interest without (implicitly) also finding such an
algorithm for the hard problem.

Certain problems have been shown to be hard for a large class of problems (such
asNP). Problem A is hard for class X if any problem in X can be reduced to problem
A. Thus, exhibiting an efficient algorithm for the hard problem entails exhibiting an
efficient algorithm for every problem in the class. Once one problem A has been shown
hard for a class, the task of proving that another problem B is hard for the same class
generally becomes much easier: we can do so by reducing A to B. A problem is
complete for a class if 1) it is hard for the class and 2) the problem is itself in the class.

The class for which problems are most often shown to be hard (or complete) isNP .
NP is the class of all decision problems (problems that require a “yes” or “no” answer)
such that if the answer to a problem instance is “yes”, then there exists a polynomial-
sized certificate for that instance that proves that the answer is “yes”. More precisely,
such a certificate can be used to check that the answer is “yes” in polynomial time.
The most famous complete problem for NP is satisfiability (SAT). An instance of
satisfiability is given by a Boolean formula in conjunctive normal form (CNF)—that
is, an “AND” of “ORs” of ground literals (Boolean variables and their negations). We
are asked whether there exists some assignment of truth values to the variables such
that the formula evaluates to true. For example, the formula (x1 ∨x2)∧ (−x1)∧ (x1 ∨
−x2 ∨ −x3) is satisfiable by setting x1 to false, x2 to true, and x3 to false. (This
assignment is also a certificate for the instance, since it is easy to check that it makes
the formula evaluate to true.) However, if we add a fourth clause (x1 ∨ −x2 ∨ x3),
then the formula is no longer satisfiable. Satisfiability was the first problem shown to
be NP-complete [10], but many other problems have been shown NP-complete since
then (often by reducing satisfiability to them).

There are other classes of problems that are even larger4 than NP , and for which
natural problems are sometimes shown to be hard, constituting even stronger evidence
that there is no efficient algorithm for the problem. One of these classes is #P , the
class of problems counting how many solutions a particular instance has. (It is required
that solutions can be verified efficiently.) An example problem in #P is counting
how many satisfying assignments a CNF formula has. (This problem is in fact #P-
complete [50].) Another class is PSPACE , the class of problems that can be solved
using only polynomial space.

4Technically, for the classes we mention here, all we know is that they are no smaller than NP—they
may in fact coincide with NP . However, exhibiting such a coincidence would again constitute a major
upset.
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3 The main reduction and its implications
In this section, we give our main reduction, which maps every instance of satisfiabil-
ity (given by a formula in conjunctive normal form) to a finite symmetric two-player
normal-form game. This reduction has no direct complexity implications for the prob-
lem of finding one (any) Nash equilibrium. However, it has significant implications for
many related problems. Most significantly, it shows that, for many properties, deciding
whether an equilibrium with that property exists is NP-hard. For example, it shows
that deciding whether an equilibrium with social welfare at least k is NP-hard (hence
it is also hard to find the social-welfare maximizing equilibrium, arguably a key prob-
lem in equilibrium selection). As another example, it shows that deciding whether a
certain pure strategy occurs in the support of at least one Nash equilibrium isNP-hard.
This has indirect implications for the problem of finding one Nash equilibrium: sev-
eral recent algorithms for that problem operate by guessing the equilibrium supports
and subsequently checking whether the guess is correct [14, 42, 44]. The result above
implies that it is NP-hard to determine whether such an algorithm can safely restrict
attention to guesses in which a particular pure strategy is included in the support.

These are not the first results of this nature; Gilboa and Zemel provide a number of
NP-hardness results in the same spirit [17]. Our reduction demonstrates (sometimes
stronger versions of) most of their hardness results, as well as some new ones. Signifi-
cantly, for the problems that concern an optimization (e.g., maximizing social welfare),
we show not only NP-hardness but also inapproximability: unless P = NP , there is
no polynomial-time algorithm that always returns a Nash equilibrium that is close to
obtaining the optimal value. We also use the reduction to show that counting the num-
ber of equilibria of a game is #P-hard. (One may argue that it is impossible to have a
good overview of all the Nash equilibria of a game if one cannot even count them.)

For completeness, we review the following basic definitions.

Definition 1 In a normal-form game, we are given a set of players A, and for each
player i ∈ A, a (pure) strategy set Σi and a utility function ui : Σ1×Σ2×. . .×Σ|A| →
R.

We will assume throughout that games have finite size.

Definition 2 A mixed strategy σi for player i is a probability distribution over Σi. A
special case of a mixed strategy is a pure strategy, where all of the probability mass is
on one element of Σi.

Definition 3 (Nash [36]) Given a normal-form game, a Nash equilibrium (NE) is vec-
tor of mixed strategies, one for each player i, such that no player has an incentive
to deviate from her mixed strategy given that the others do not deviate. That is, for
any i and any alternative mixed strategy σ′i, we have E[ui(s1, s2, . . . , si, . . . , s|A|)] ≥
E[ui(s1, s2, . . . , s

′
i, . . . , s|A|)], where each sj is drawn from σj , and s′i from σ′i.

It is well-known that every finite game has at least one Nash equilibrium [36]. We
are now ready to present our reduction.5

5The reduction presented here is somewhat different from the reduction given in the earlier (IJCAI-03)
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Definition 4 Let φ be a Boolean formula in conjunctive normal form (representing a
SAT instance). Let V be its set of variables (with |V | = n), L the set of corresponding
literals (a positive and a negative one for each variable6), and C its set of clauses.
The function v : L → V gives the variable corresponding to a literal, e.g., v(x1) =
v(−x1) = x1. We define Gε(φ) to be the following finite symmetric 2-player game in
normal form. Let Σ = Σ1 = Σ2 = L ∪ V ∪ C ∪ {f}. Let the utility functions be

• u1(l1, l2) = u2(l2, l1) = n− 1 for all l1, l2 ∈ L with l1 6= −l2;

• u1(l,−l) = u2(−l, l) = n− 4 for all l ∈ L;

• u1(l, x) = u2(x, l) = n− 4 for all l ∈ L, x ∈ Σ− L− {f};

• u1(v, l) = u2(l, v) = n for all v ∈ V , l ∈ L with v(l) 6= v;

• u1(v, l) = u2(l, v) = 0 for all v ∈ V , l ∈ L with v(l) = v;

• u1(v, x) = u2(x, v) = n− 4 for all v ∈ V , x ∈ Σ− L− {f};

• u1(c, l) = u2(l, c) = n for all c ∈ C, l ∈ L with l /∈ c;

• u1(c, l) = u2(l, c) = 0 for all c ∈ C, l ∈ L with l ∈ c;

• u1(c, x) = u2(x, c) = n− 4 for all c ∈ C, x ∈ Σ− L− {f};

• u1(x, f) = u2(f, x) = 0 for all x ∈ Σ− {f};

• u1(f, f) = u2(f, f) = ε;

• u1(f, x) = u2(x, f) = n− 1 for all x ∈ Σ− {f}.

We will show in Theorem 1 that each satisfying assignment of φ corresponds to a
Nash equilibrium of Gε(φ), and that there is one additional equilibrium. The following
example illustrates this.

Example 1 The following table shows the game Gε(φ) where φ = (x1∨−x2)∧(−x1∨
x2).

x1 x2 +x1 −x1 +x2 −x2 (x1 ∨ −x2) (−x1 ∨ x2) f

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1

+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1
−x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1
−x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1

(x1 ∨ −x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(−x1 ∨ x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1

f 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε,ε

version of this work. The reason is that the new reduction presented here implies inapproximability results
that the original reduction does not.

6Thus, if xi is a variable, +xi and −xi are literals. Often, the + is dropped from the positive literal
(especially when writing CNF formulas), but it is helpful for distinguishing positive literals from variables.
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The only two solutions to the SAT instance defined by φ is to either set both vari-
ables to true, or both to false. The only equilibria of the game Gε(φ) are those where:
1. both players randomize uniformly over {+x1,+x2}; 2. both players randomize
uniformly over {−x1,−x2}; 3. both players play f .

We are now ready to prove the result in general.

Theorem 1 If (l1, l2, . . . , ln) (where v(li) = xi) satisfies φ, then there is a Nash equi-
librium of Gε(φ) where both players play li with probability 1

n , with expected utility
n − 1 for each player. The only other Nash equilibrium is the one where both players
play f , and receive expected utility ε each.

Proof: We first demonstrate that these combinations of mixed strategies indeed do
constitute Nash equilibria. If (l1, l2, . . . , ln) (where v(li) = xi) satisfies φ and the
other player plays li with probability 1

n , playing one of these li as well gives utility
n − 1. On the other hand, playing the negation of one of these li gives utility 1

n (n −
4)+ n−1

n (n−1) < n−1. Playing some variable v gives utility 1
n (0)+ n−1

n (n) = n−1
(since one of the li that the other player sometimes plays has v(li) = v). Playing some
clause c gives utility at most 1

n (0) + n−1
n (n) = n − 1 (since at least one of the li that

the other player sometimes plays occurs in clause c, since the li satisfy φ). Finally,
playing f gives utility n − 1. It follows that playing any one of the li that the other
player sometimes plays is an optimal response, and hence that both players playing
each of these li with probability 1

n is a Nash equilibrium. Clearly, both players playing
f is also a Nash equilibrium since playing anything else when the other plays f gives
utility 0.

Now we demonstrate that there are no other Nash equilibria. If the other player
always plays f , the unique best response is to also play f since playing anything else
will give utility 0. Otherwise, given a mixed strategy for the other player, consider a
player’s expected utility given that the other player does not play f . (That is, the prob-
ability distribution over the other player’s strategies is proportional to the probability
distribution constituted by that player’s mixed strategy, except f occurs with probabil-
ity 0). If this expected utility is less than n− 1, the player is strictly better off playing
f (which gives utility n − 1 when the other player does not play f , and also performs
better than the original strategy when the other player does play f ). So this cannot
occur in equilibrium.

As we pointed out, here are no Nash equilibria where one player always plays f
but the other does not, so suppose both players play f with probability less than one.
Consider the expected social welfare (E[u1 +u2]), given that neither player plays f . It
is easily verified that there is no outcome with social welfare greater than 2n−2. Also,
any outcome in which one player plays an element of V or C has social welfare at most
n − 4 + n < 2n − 2. It follows that if either player ever plays an element of V or C,
the expected social welfare given that neither player plays f is strictly below 2n − 2.
By linearity of expectation it follows that the expected utility of at least one player
is strictly below n − 1 given that neither player plays f , and by the above reasoning,
this player would be strictly better off playing f instead of her randomization over
strategies other than f . It follows that no element of V or C is ever played in a Nash
equilibrium.

7



So, we can assume both players only put positive probability on strategies in L ∪
{f}. Then, if the other player puts positive probability on f , playing f is a strictly
better response than any element of L (since f does as at least as well against any
strategy in L, and strictly better against f ). It follows that the only equilibrium where
f is ever played is the one where both players always play f .

Now we can assume that both players only put positive probability on elements of
L. Suppose that for some l ∈ L, the probability that a given player plays either l or −l
is less than 1

n . Then the expected utility for the other player of playing v(l) is strictly
greater than 1

n (0)+ n−1
n (n) = n− 1, and hence this cannot be a Nash equilibrium. So

we can assume that for any l ∈ L, the probability that a given player plays either l or
−l is precisely 1

n .
If there is an element of L such that player 1 puts positive probability on it and

player 2 on its negation, both players have expected utility less than n − 1 and would
be better off switching to f . So, in a Nash equilibrium, if player 1 plays l with some
probability, player 2 must play l with probability 1

n , and thus player 1 must play l
with probability 1

n . Thus we can assume that for each variable, exactly one of its
corresponding literals is played with probability 1

n by both players. It follows that
in any Nash equilibrium (besides the one where both players play f ), literals that are
sometimes played indeed correspond to an assignment to the variables.

All that is left to show is that if this assignment does not satisfy φ, it does not
correspond to a Nash equilibrium. Let c ∈ C be a clause that is not satisfied by the as-
signment, that is, none of its literals are ever played. Then playing c would give utility
n, and both players would be better off playing this.

From Theorem 1, it follows that there exists a Nash equilibrium in Gε(φ) where
each player gets utility n− 1 if and only if φ is satisfiable; otherwise, the only equilib-
rium is the one where both players play f and each of them gets ε. Suppose n− 1 > ε.
Then, any sensible definition of welfare optimization would prefer the first kind of
equilibrium. Because determining whether φ is satisfiable is NP-hard, it follows that
determining whether a “good” equilibrium exists is NP-hard for any such definition.
Additionally, the first kind of equilibrium is, in various senses, an optimal outcome for
the game, even if the players were to cooperate; hence, finding out whether such an
optimal equilibrium exists is NP-hard. More significantly, given that n − 1 is signif-
icantly larger than ε, there is no efficient algorithm that always returns an equilibrium
that is “close” to optimal (assuming P6=NP): either an optimal equilibrium is found,
or we have to settle for the equilibrium that gives each player ε.

In the remainder of this section, we prove a variety of corollaries of Theorem 1
that illustrate these and other points. We start with corollaries that do not involve an
optimization problem. All of these corollaries show NP-completeness of a problem,
meaning that the problem is both NP-hard and in NP . Technically, only the NP-
hardness part is a corollary of Theorem 1 in each case. Membership in NP follows
because, for the case of two players, if an equilibrium with the desired property exists,
then the supports in this equilibrium constitute a polynomial-length certificate. This is
because given the supports, the remainder of the problem can be solved using linear
programming (and linear programs can be solved in polynomial time [23]).
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Corollary 1 Even in symmetric 2-player games, it isNP-complete to determine whether
there exists a Pareto-optimal Nash equilibrium. (A distribution over outcomes is Pareto-
optimal if there is no other distribution over outcomes such that every player has at
least the same expected utility, and at least one player has strictly greater expected
utility.)

Proof: For ε < 1 and n ≥ 2, any Nash equilibrium in Gε(φ) corresponding to a satis-
fying assignment is Pareto-optimal, whereas the Nash equilibrium that always exists is
not Pareto-optimal. Thus, a Pareto optimal Nash equilibrium exists if and only if φ is
satisfiable.

Corollary 2 (Gilboa and Zemel [17]) Even in symmetric 2-player games, it is NP-
complete to determine whether there is more than one Nash equilibrium.

Proof: For any φ, Gε(φ) has additional Nash equilibria (besides the one that always
exists) if and only if φ is satisfiable.

Corollary 3 (Gilboa and Zemel [17]) 7 Even in symmetric 2-player games, it is NP-
complete to determine whether there is a Nash equilibrium where player 1 sometimes
plays a given x ∈ Σ1.

Proof: For any φ, in Gε(φ), there is a Nash equilibrium where player 1 sometimes
plays +x1 if and only if there is a satisfying assignment to φ with x1 set to true. But
determining whether this is the case is NP-complete.

Corollary 4 (Gilboa and Zemel [17]) 8 Even in symmetric 2-player games, it is NP-
complete to determine whether there is a Nash equilibrium where player 1 never plays
a given x ∈ Σ1.

Proof: For any φ, in Gε(φ), there is a Nash equilibrium where player 1 never plays f
if and only if φ is satisfiable.

Definition 5 A strong Nash equilibrium [2] is a vector of mixed strategies for the play-
ers so that no nonempty subset of the players can change their strategies to make all
players in the subset better off.

Corollary 5 Even in symmetric 2-player games, it isNP-complete to determine whether
a strong Nash equilibrium exists.

7Gilboa and Zemel [17] only stated weaker versions of Corollaries 3 and 4, but their proof technique can
in fact be used to prove the results in their full strength.

8See previous footnote.
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Proof: For ε < 1 and n ≥ 2, any Nash equilibrium in Gε(φ) corresponding to a sat-
isfying assignment is a strong Nash equilibrium, whereas the Nash equilibrium that
always exists is not strong. Thus, a strong Nash equilibrium exists if and only if φ is
satisfiable.

The next few corollaries concern optimization problems, such as maximizing social
welfare, or maximizing the number of pure strategies in the supports of the equilibrium.
For such problems, an important question is whether they can be approximately solved.
For example, is it possible to find, in polynomial time, a Nash equilibrium that has at
least half as great a social welfare as the social-welfare maximizing Nash equilibrium?
Or—a nonconstructive version of the same problem—can we, in polynomial time, find
a number k such that there exists a Nash equilibrium with social welfare at least k, and
there is no Nash equilibrium with social welfare greater than 2k? (The latter problem
does not require constructing a Nash equilibrium, so it is conceivable that there is a
polynomial-time algorithm for this problem even if it is hard to construct any Nash
equilibrium.) We will not give approximation algorithms in this subsection; rather,
we will derive certain inapproximability results from Theorem 1. In each case, we
will show that even the nonconstructive problem is hard (and therefore the constructive
problem is hard as well).

Before presenting our results, we first make one subtle technical point, namely that
it is unreasonable to expect an approximation algorithm to work even when the game
has some negative utilities in it. For suppose we had an algorithm that approximated
(say) social welfare to some positive ratio, even when there are some negative utilities
in the game. Then we can “boost” its results, as follows. Suppose the algorithm returns
a social welfare of 2r on a game, and suppose this is less than the social welfare of the
best Nash equilibrium. If we subtract r from all utilities in the game, the game remains
the same for all strategic purposes (it has the same set of Nash equilibria). But now
the result returned by the approximation algorithm on the original game corresponds
to a social welfare of 0, which does not satisfy the approximation ratio. It follows that
running the approximation algorithm on the transformed game must give a better result
(which we can easily transform back to the original game).

For this reason, we require our hardness results to only use reductions to games
where 0 is the lowest possible utility in the game. Strictly speaking, our main reduction
does not have this property, as can be seen from Example 1. Nevertheless, Gε(φ) does
have this property whenever n ≥ 4. (We recall that n is the number of variables in φ.)
Hence, our reduction does in fact suffice, because satisfiability remains an NP-hard
problem even under the restriction n ≥ 4.9

9Incidentally, the Gilboa and Zemel [17] reduction uses negative utilities, and, unlike in the reduction in
this paper, those utilities become more negative as the size of the instance increases. Specifically, their game
contains utilities of −nk2 (their reduction is from CLIQUE, where an instance consists of a graph with n
vertices and a target clique size of k). Of course, we can add nk2 to every utility in their game so that all
utilities become nonnegative, and doing this will not change the game strategically. If we do this, then, in
the resulting game, there exists a Nash equilibrium with utility nk2 + 1 + 1/(nk2) for each player if there
is a clique of size k, but in any case there exists a Nash equilibrium with utility nk2 for each player. Hence,
the reduction by Gilboa and Zemel does not imply any (significant) inapproximability. Similarly, our earlier
(IJCAI-03) reduction contained utilities of 2− n, and could therefore not be used to obtain any (significant)
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We are now ready to present the remaining corollaries.

Corollary 6 Unless P = NP , there does not exist a polynomial-time algorithm that
approximates (to any positive ratio) the maximum social welfare obtained in a Nash
equilibrium, even in symmetric 2-player games. (This holds even if the ratio is allowed
to be a function of the size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of vari-
ables n ≥ 4), consider the game Gε(φ) where ε is set so that 2ε < r(2n− 2) (here, r is
the approximation ratio that the algorithm guarantees for games of the size of Gε(φ)).
If φ is satisfiable, then by Theorem 1, there exists an equilibrium with social welfare
2n− 2, and thus the approximation algorithm should return a social welfare of at least
r(2n − 2) > 2ε. Otherwise, by Theorem 1, the only equilibrium has social welfare
2ε, and thus the approximation algorithm should return a social welfare of at most 2ε.
Thus we can use the algorithm to solve arbitrary SAT instances.

Corollary 7 Unless P = NP , there does not exist a polynomial-time algorithm that
approximates (to any positive ratio) the maximum egalitarian social welfare obtained
in a Nash equilibrium, even in symmetric 2-player games. (This holds even if the ratio
is allowed to be a function of the size of the game. The egalitarian social welfare is the
expected utility of the worse-off player.)

Proof: The proof is similar to that of Corollary 6.

Corollary 8 Unless P = NP , there does not exist a polynomial-time algorithm that
approximates (to any positive ratio) the maximum utility for player 1 obtained in a
Nash equilibrium, even in symmetric 2-player games. (This holds even if the ratio is
allowed to be a function of the size of the game.)

Proof: The proof is similar to that of Corollary 6.

The next few corollaries use the notation o(x), which refers to functions that grow
slower than linearly in x, and Ω(x), which refers to functions that grow at least as fast
as linearly in x. The corollaries state that it is hard to maximize (even approximately)
the number of pure strategies played with positive probability (respectively, for both
players together, for the player with the smaller support, and for one player only) in a
Nash equilibrium.

Corollary 9 Unless P = NP , there does not exist a polynomial-time algorithm that
approximates (to any ratio 1/o(|Σ|)) the maximum number, in a Nash equilibrium, of
pure strategies in the players’ strategies’ supports, even in symmetric 2-player games.

inapproximability result.
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Proof: Suppose such an algorithm did exist. For any formula φ, consider the game
Gε(φ) where ε is set arbitrarily. If φ is not satisfiable, then by Theorem 1, the only
equilibrium has only one pure strategy in each player’s support, and thus the algorithm
can return a number of strategies of at most 2. On the other hand, if φ is satisfiable,
then by Theorem 1, there is an equilibrium where each player’s support has size Ω(|Σ|).
(This is assuming that n, the number of variables in φ, is Ω(|Σ|). This is only true if the
number of clauses in φ is at most linear in the number of variables, but it is known that
SAT remains NP-hard under this restriction—for example, SAT is known to remain
NP-hard even if each variable occurs in at most 3 clauses.) Because by assumption
our algorithm has an approximation ratio of 1/o(|Σ|), this means that for large enough
|Σ|, the algorithm must return a support size strictly greater than 2. Thus we can use the
algorithm to solve arbitrary SAT instances (given that the instances are large enough to
produce large enough |Σ|).

Corollary 10 Unless P = NP , there does not exist a polynomial-time algorithm that
approximates (to any ratio 1/o(|Σ|)) the maximum number, in a Nash equilibrium, of
pure strategies in the support of the player that uses fewer pure strategies than the
other, even in symmetric 2-player games.

Proof: The proof is similar to that of Corollary 9.

Corollary 11 Unless P = NP , there does not exist a polynomial-time algorithm that
approximates (to any ratio 1/o(|Σ|)) the maximum number, in a Nash equilibrium, of
pure strategies in player 1’s support, even in symmetric 2-player games.

Proof: The proof is similar to that of Corollary 9.

Versions of Corollaries 7 and 10 that do not mention inapproximability were proven
by Gilboa and Zemel [17].

The final corollary goes beyond NP-hardness, to #P-hardness. Determining
whether equilibria with certain properties exist is not always sufficient: sometimes,
we are interested in characterizing all the equilibria of a game. One rather weak such
characterization is the number of equilibria.10 We can use Theorem 1 to show that
determining this number is #P-hard.

Corollary 12 Even in symmetric 2-player games, counting the number of Nash equi-
libria is #P-hard.

Proof: The number of Nash equilibria in our game Gε(φ) is the number of satisfying
assignments of φ, plus one. Counting the number of satisfying assignments to a CNF

10The number of equilibria in normal-form games has been studied both in the worst case [33] and in the
average case [32].
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formula is #P-hard [50].

In a sense, the most interesting #P-hardness results are the ones where the corre-
sponding existence problem (does there exist at least one solution?) and search problem
(construct one solution, if one exists) are easy. This is the case, for example, for the
problem of counting the perfect matchings in a bipartite graph [50]. For the problem of
counting the Nash equilibria in a finite normal-form game, the corresponding existence
problem is trivial (at least one Nash equilibrium always exists, so the answer is always
“yes”), but the search problem is PPAD-complete.

4 Pure-strategy Nash equilibria in Bayesian games
Equilibria in pure strategies are particularly desirable because they avoid the uncom-
fortable requirement that players randomize over strategies among which they are in-
different. In normal-form games, it is easy to determine the existence of pure-strategy
equilibria: one can simply check, for each combination of pure strategies, whether it
constitutes a Nash equilibrium. This trivial algorithm runs in time that is polynomial
in the size of the normal form. However, this approach is not computationally efficient
in Bayesian games where the players have private information about their own prefer-
ences (this private information is known as the player’s type). In such games, players
can condition their actions on their types, resulting in a strategy space that is exponen-
tial in the number of types (whereas the natural representation of the Bayesian game is
not exponential in the number of types).

In this section, we show that determining whether a pure-strategy Bayes-Nash equi-
librium exists is in fact NP-complete even in symmetric two-player Bayesian games.
(A mixed-strategy equilibrium always exists, although constructing one is PPAD-
hard because normal-form games are a special case of Bayesian games.) First, we
review the standard definitions of Bayesian games and Bayes-Nash equilibrium.

Definition 6 In a Bayesian game, we are given a set of players A; for each player i, a
set of types Θi; a commonly known prior distribution φ over Θ1 × Θ2 × . . . × Θ|A|;
for each player i, a set of actions Σi; and for each player i, a utility function ui :
Θi × Σ1 × Σ2 × . . .× Σ|A| → R.

We emphasize again that we only consider finite games; in particular, we only
consider finite type spaces.

Definition 7 (Harsanyi [21]) Given a Bayesian game, a Bayes-Nash equilibrium (BNE)
is a vector of probability distributions over actions, one distribution (over Σi) for each
pair i, θi ∈ Θi, such that no player has an incentive to deviate, for any of her types,
given that the others do not deviate. That is, for any i, θi ∈ Θi, and any alternative
probability distribution σ′i,θi

over Σi, we have

Eθ−i|θi
[E[ui(θi, s1,θ1 , s2,θ2 , . . . , si,θi , . . . , s|A|,θ|A|)]]

≥ Eθ−i|θi
[E[ui(θi, s1,θ1 , s2,θ2 , . . . , s

′
i,θi

, . . . , s|A|,θ|A|)]]
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where each si,θi is drawn from σi,θi , and s′i,θi
from σ′i,θi

.

A Bayesian game can be converted to a normal-form game as follows. For every
player i, let every mapping s′i : Θi → Σi be a pure strategy in the new normal-form
game. Then, the utility function for the normal-form game is given by u′i(s

′
1, . . . , s

′
|A|) =

Eθ1,...,θ|A| [ui(θi, s
′
1(θ1), . . . , s′|A|(θ|A|)]. Assuming that no type receives 0 probability

under the prior, the Nash equilibria of this normal-form game correspond exactly to
the Bayes-Nash equilibria of the original game. However, the normal-form game is
exponentially larger (player i has |Σi||Θi| pure strategies in it), so this conversion is of
little use for solving computational problems efficiently.

We can now define the computational problem.

Definition 8 (PURE-STRATEGY-BNE) We are given a Bayesian game. We are asked
whether there exists a BNE where every distribution σi,θi

places all its mass on a single
action.

To show our NP-hardness result, we will reduce from the NP-complete SET-
COVER problem.

Definition 9 (SET-COVER) We are given a set S = {s1, . . . , sn}, subsets S1, S2, . . . , Sm

of S with
⋃

1≤i≤m Si = S, and an integer k. We are asked whether there exist
c1, c2, . . . , ck ∈ {1, . . . ,m} such that

⋃
1≤i≤k Sci

= S.

Theorem 2 PURE-STRATEGY-BNE isNP-complete, even in symmetric 2-player games
where the priors over types are uniform.

Proof: To show membership in NP , we observe that, given an action for each type
for each player, it is easy to verify whether these constitute a BNE: we merely need to
check that for each player i, for each type θi, the corresponding action maximizes i’s
expected utility (with respect to θi, given the (conditional) distribution over −i’s types
and given −i’s strategy). This is done by computing the expected utility for θi for each
possible action for i. (As an aside, we cannot simply examine every (pure) strategy for
each player, since there are exponentially many pure strategies. Effectively, the above
only examines the strategies that deviate for only a single type, and this is sufficient.)

To show NP-hardness, we reduce an arbitrary SET-COVER instance to the fol-
lowing PURE-STRATEGY-BNE instance. Let there be two players, with Θ = Θ1 =
Θ2 = {θ1, . . . , θk}. The priors over types are uniform. Furthermore, Σ = Σ1 =
Σ2 = {S1, S2, . . . , Sm, s1, s2, . . . , sn}. The utility functions we choose actually do
not depend on the types, so we omit the type argument in their definitions. They are as
follows:

• u1(Si, Sj) = u2(Sj , Si) = 1 for all Si and Sj ;

• u1(Si, sj) = u2(sj , Si) = 1 for all Si and sj /∈ Si;

• u1(Si, sj) = u2(sj , Si) = 2 for all Si and sj ∈ Si;

• u1(si, sj) = u2(sj , si) = −3k for all si and sj ;

14



• u1(sj , Si) = u2(Si, sj) = 3 for all Si and sj /∈ Si;

• u1(sj , Si) = u2(Si, sj) = −3k for all Si and sj ∈ Si.

We now show the two instances are equivalent. First suppose there exist c1, c2, . . . , ck ∈
{1, . . . ,m} such that

⋃
1≤i≤k Sci = S. Suppose both players play as follows: when

their type is θi, they play Sci
. We claim that this is a BNE. For suppose the other

player employs this strategy. Then, because for any sj , there is at least one Sci such that
sj ∈ Sci , we have that the expected utility of playing sj is at most 1

k (−3k)+ k−1
k 3 < 0.

It follows that playing any of the Sj (which gives utility 1) is optimal. So there is a
pure-strategy BNE.

On the other hand, suppose that there is a pure-strategy BNE. We first observe that
in no pure-strategy BNE, both players play some element of S for some type: for if
the other player sometimes plays some sj , the utility of playing some si is at most
1
k (−3k) + k−1

k 3 < 0, whereas playing some Si instead guarantees a utility of at least
1. So there is at least one player who never plays any element of S. Now suppose the
other player sometimes plays some sj . We know there is some Si such that sj ∈ Si. If
the former player plays this Si, this will give her a utility of at least 1

k2+ k−1
k 1 = 1+ 1

k .
Since she must do at least this well in the equilibrium, and she never plays elements
of S, she must sometimes receive utility 2. It follows that there exist Sa and sb ∈ Sa

such that the former player sometimes plays Sa and the latter sometimes plays sb. But
then, playing sb gives the latter player a utility of at most 1

k (−3k) + k−1
k 3 < 0, and

she would be better off playing some Si instead. This contradiction implies that no
element of S is ever played in any pure-strategy BNE.

Now, in our given pure-strategy equilibrium, consider the set of all the Si that are
played by player 1 for some type. Clearly there can be at most k such sets. We claim
they cover S. For if they do not cover some element sj , the expected utility of playing
sj for player 2 is 3 (because player 1 never plays any element of S). But this means
that player 2 (who never plays any element of S either) is not playing optimally. This
contradiction implies that there exists a set cover.

5 Pure-strategy Nash equilibria in stochastic (Markov)
games

We now shift our attention from one-shot games to games with multiple stages. There
has already been some research into the complexity of playing repeated and sequential
games. For example, determining whether a particular automaton is a best response
is NP-complete [3]; it is NP-complete to compute a best-response automaton when
the automata under consideration are bounded [38]; the problem of whether a given
player with imperfect recall can guarantee herself a given payoff using pure strategies
is NP-complete [25]; and in general, best-responding to an arbitrary strategy can even
be noncomputable [24, 35]. In this section, we present a PSPACE-hardness result on
the existence of a pure-strategy equilibrium.
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Markov (or stochastic) games constitute an important type of multi-stage games.
In such games, there is an underlying set of states, and the game shifts between these
states from stage to stage [15, 47, 48]. At every stage, each player’s payoff depends
not only on the players’ actions, but also on the state. Furthermore, the probability of
transitioning to a given state is determined by the current state and the players’ current
actions. It should be noted that PSPACE-hardness results are known for alternating-
move games such as generalized Go [30] or QSAT [49]; however, if we were to formu-
late such a game as a Markov game, we would require an exponential number of states,
so these results do not imply PSPACE-hardness for (straightforwardly represented)
Markov games. Still, one might suspect that Markov games are hard to solve because
the strategy spaces are extremely rich. However, in this section we show PSPACE-
hardness for a variant where the strategy spaces are quite simple: in this variant, the
players cannot condition their actions on events in the game.

Definition 10 A Markov game consists of

• A set of players A;

• A set of states S, among which the game transits, one of which is the starting
state;

• For each player i, a set of actions Σi that can be played in any state;

• A transition probability function p : S × Σ1 × . . . × Σ|A| × S → [0, 1], where
p(s1, a1, . . . , a|A|, s2) gives the probability of the game being in state s2 in the
next stage, given that the current state of the game is s1 and the players play
actions a1, . . . , a|A|;

• For each player i, a payoff function ui : S × Σ1 × . . .Σ|A| → R, where
ui(s, a1, . . . , a|A|) gives the payoff to player i when the players play actions
a1, . . . , a|A| in state s;

• A discount factor δ such that the total utility of player i is
∑∞

k=0 δkui(sk, ak
1 , . . . , ak

|A|),
where sk is the state of the game at stage k and the players play actions ak

1 , . . . , ak
|A|

in stage k.

In general, a player is not always aware of the current state of the game, the actions
the others played in previous stages, or even the payoffs that the player has accumu-
lated. In the extreme case, players never receive any information about any of these.
We call such a Markov game unobserved. It is relatively easy to specify a pure strat-
egy in an unobserved Markov game, because there is nothing on which the player can
condition her actions. Hence, a strategy for player i is “simply” an infinite sequence
of actions {ak

i }. In spite of this apparent simplicity of the game, we show that de-
termining whether pure-strategy equilibria exist is extremely hard. We do not need to
worry about issues of credible threats and subgame perfection in this setting, so we can
simply use Nash equilibrium as our solution concept.

Definition 11 (PURE-STRATEGY-UNOBSERVED-MARKOV-NE) We are given
an unobserved Markov game. We are asked whether there exists a Nash equilibrium
where all the strategies are pure.
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We show that this computational problem is PSPACE-hard, by reducing from
PERIODIC-SAT, which is PSPACE-complete [37].

Definition 12 (PERIODIC-SAT) We are given a CNF formula φ(0) over the vari-
ables {x0

1, . . . , x
0
n} ∪ {x1

1, . . . , x
1
n}. For any k ∈ N, let φ(k) be the same formula,

except that all the superscripts are incremented by k (so that each φ(k) is implicitly
defined by φ(0)). We are asked whether there exists an assignment of truth values to
the variables

⋃
k∈N{xk

1 , . . . , xk
n} such that φ(k) is satisfied for every k ∈ N.

Theorem 3 PURE-STRATEGY-UNOBSERVED-MARKOV-NE isPSPACE-hard, even
when the game is symmetric and 2-player, and the transition process is deterministic.

Proof: We reduce an arbitrary PERIODIC-SAT instance to the following symmetric 2-
player PURE-STRATEGY-UNOBSERVED-MARKOV-NE instance. The state space
is S = {si}1≤i≤n ∪ {t1i,c}1<i≤2n;c∈C ∪ {t2i,c}1<i≤2n;c∈C ∪ {r}, where C is the set of
clauses in φ(0). s1 is the starting state. Furthermore, Σ = Σ1 = Σ2 = {t, f}∪C. The
transition probabilities are given by

• p(si, x
1, x2, si+1( mod n)) = 1 for 1 < i ≤ n and all x1, x2 ∈ Σ;

• p(s1, b
1, b2, s2) = 1 for all b1, b2 ∈ {t, f};

• p(s1, c, b, t
1
2,c) = 1 for all b ∈ {t, f} and c ∈ C;

• p(s1, b, c, t
2
2,c) = 1 for all b ∈ {t, f} and c ∈ C;

• p(s1, c
1, c2, r) = 1 for all c1, c2 ∈ C;

• p(tji,c, x
1, x2, tji+1,c) = 1 for all 1 < i < 2n, j ∈ {1, 2}, c ∈ C, and x1, x2 ∈ Σ;

• p(tj2n,c, x
1, x2, r) = 1 for all j ∈ {1, 2}, c ∈ C, and x1, x2 ∈ Σ;

• p(r, x1, x2, r) = 1 for all x1, x2 ∈ Σ.

Some of the utilities obtained in a given stage are as follows (we do not specify
utilities irrelevant to our analysis):

• u1(si, x
1, x2) = u2(si, x

2, x1) = 0 for 1 < i ≤ n and all x1, x2 ∈ Σ;

• u1(s1, b
1, b2) = u2(s1, b

2, b1) = 0 for all b1, b2 ∈ {t, f};

• u1(s1, c, b) = u2(s1, b, c) = 1 for all b ∈ {t, f} and c ∈ C, when setting
variable x0

1 to b does not satisfy c;

• u1(s1, c, b) = u2(s1, b, c) = −1 for all b ∈ {t, f} and c ∈ C, when setting
variable x0

1 to b does satisfy c;

• u1(s1, c
1, c2) = u2(s1, c

2, c1) = −1 for all c1, c2 ∈ C;

• u1(t1kn+i,c, x, b) = u2(t2kn+i,c, b, x) = 0 for k ∈ {0, 1}, 1 ≤ i ≤ n, all c ∈ C

and b ∈ {t, f} such that setting variable xk
i to b does not satisfy c, and all x ∈ Σ;
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• u1(t1kn+i,c, x, b) = u2(t2kn+i,c, b, x) = −4 for k ∈ {0, 1}, 1 ≤ i ≤ n, all c ∈ C

and b ∈ {t, f} such that setting variable xk
i to b does satisfy c, and all x ∈ Σ;

• u1(t1kn+i,c, x, c′) = u2(t2kn+i,c, c
′, x) = 0 for k ∈ {0, 1}, 1 ≤ i ≤ n, all

c, c′ ∈ C, and all x ∈ Σ.

Additionally, the game played in state r is some symmetric zero-sum game without
a pure-strategy equilibrium (for example, a generalization of rock-paper-scissors) with
very small payoffs. Finally, the discount factor is δ = (1

2 )
1

2n+1 (so that δ2n > 1
2 ).

We start our analysis with a few observations. First, there can be no pure-strategy
equilibrium in which state r is reached at some point, because (since r is an absorbing
state) this would require that some pure-strategy equilibrium of the game in state r were
played whenever state r occurred. (Otherwise, a player who is not best-responding in
one of these stages could simply switch to a best response in this stage, and because
the game is unobserved, the rest of the game would remain unaffected, so this would
give higher utility. This is using the fact that in a pure-strategy equilibrium, on the path
of play, every player always knows the current state, because the transition process is
deterministic.) But such an equilibrium does not exist. Second, if we ever reach one of
the tji,c states, we will inevitably reach state r at some point after this. It follows that
all pure-strategy Nash equilibria never leave the si states.

Now suppose an assignment satisfying the periodic SAT formula exists. Let both
players play as follows: in stage kn + i (with 1 ≤ i ≤ n), b ∈ {t, f} is played, where
b is the value that the variable xk

i is set to. Clearly, both players receive utility 0 with
these strategies. Does either player have an incentive to deviate? The only deviation of
any significance is to play some c ∈ C when the current state is s1. So, without loss
of generality (because of the symmetry of the game), say player 2 deviates to playing
c ∈ C in stage kn+1 (when the state is s1). We know that in the satisfying assignment,
some variable xl

i among xk
1 , . . . , xk

n, xk+1
1 , . . . , xk+1

n is set to some b such that setting
xl−k

i to b satisfies c. If it is xk
1 , which is set to b, then in stage kn + 1 player 1 plays

b, and player 2 gets payoff −1 in this stage since we are in state s1 and setting x0
1 to b

satisfies c. Otherwise, if it is xl
i with l = k +1 or i 6= 1, which is set to b, then player 2

will get payoff 1 in stage kn + 1, but in stage ln + i player 1 plays b, and player 2 gets
payoff −4 in this stage since we are in state t2(l−k)n+i,c and setting xl−k

i to b satisfies
c. The discounting is insignificant enough that this more than cancels out the 1 earned
in stage kn + 1. Player 2 will get (at most) 0 in the other stages up to the first stage
in state r, and given that we made the payoffs in the game in state r sufficiently small
relative to δ, player 2 will not earn enough in the remaining stages to cancel out her
losses so far. So there is no incentive to deviate. Thus, a pure-strategy NE exists.

On the other hand, suppose that no assignment satisfying the periodic SAT formula
exists. Let us investigate whether a Nash equilibrium could exist. We know that in
such a Nash equilibrium we never leave the si, so both players receive utility 0, and no
c is ever played in a stage with state s1. Since playing a c in one of the other stages can
have no deterrent value, we may suppose that only elements of {t, f} are played. Now
consider the following assignment to the xk

i : if player 1 plays b in stage kn+i, xk
i is set

to b. Since no assignment satisfying the periodic SAT formula exists, we know there is
some clause c and some k such that no variable xl

i among xk
1 , . . . , xk

n, xk+1
1 , . . . , xk+1

n
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is set to some b such that setting xl−k
i to b satisfies c. But then, if player 2 deviates to

play this c in stage kn+1, she will receive payoff 1 in this stage, and payoff 0 in all the
remaining stages up to the first stage in state r. Furthermore, player 2 can guarantee
herself at least payoff 0 in each stage in state r, as this state corresponds to a zero-sum
symmetric game. It follows that this deviation gives player 2 positive utility and is
hence beneficial. Thus, no pure-strategy NE exists.

A slightly simpler argument of a similar nature shows a weaker form of hardness
for the case where the game is restricted to have only finitely (linearly) many stages:

Theorem 4 PURE-STRATEGY-UNOBSERVED-MARKOV-NE isNP-hard, even when
the game is symmetric, 2-player, the transition process is deterministic, the number of
stages in the game is finite (in fact, linear in the number of states), and there is no
discounting (δ = 1).

Proof: We reduce an arbitrary SAT instance to the following PURE-STRATEGY-
UNOBSERVED-MARKOV-NE instance. The state space is S = {s1}∪{s1

i,c}1<i≤n;c∈C∪
{s2

i,c}1<i≤n;c∈C ∪ {r} (where n is the number of variables). s1 is the starting state.
Furthermore, Σ = Σ1 = Σ2 = {t, f} ∪ C. The game always ends after n stages. (If
desired, the information of how many stages we have had can be captured in the state
without incurring an exponential blowup.) The transition probabilities are:

• p(s1, b
1, b2, r) = 1 for all b1, b2 ∈ {t, f};

• p(s1, c, b, s
1
2,c) = 1 for all b ∈ {t, f} and c ∈ C;

• p(s1, b, c, s
2
2,c) = 1 for all b ∈ {t, f} and c ∈ C;

• p(s1, c
1, c2, r) = 1 for all c1, c2 ∈ C;

• p(sj
i,c, x

1, x2, sj
i+1,c) = 1 for all 1 < i < n, j ∈ {1, 2}, c ∈ C, and x1, x2 ∈ Σ;

• p(r, x1, x2, r) = 1 for all x1, x2 ∈ Σ.

The utility functions are as follows:

• u1(s1, c, b) = u2(s1, b, c) = 1 for all b ∈ {t, f} and c ∈ C, when setting
variable x1 to b does not satisfy c;

• u1(s1, c, b) = u2(s1, b, c) = −1 for all b ∈ {t, f} and c ∈ C, when setting
variable x1 to b does satisfy c;

• u1(s1, b, c) = u2(s1, c, b) = 1 for all b ∈ {t, f} and c ∈ C, when setting
variable x1 to b does satisfy c;

• u1(s1, c
1, c2) = u2(s1, c

2, c1) = −1 for all c1, c2 ∈ C;

• u1(s1
i,c, x, b) = u2(s2

i,c, b, x) = −2 for all 1 < i ≤ n, all c ∈ C and b ∈ {t, f}
such that setting variable xi to b does satisfy c, and all x ∈ Σ;
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• u1(s2
i,c, b, x) = u2(s1

i,c, x, b) = 1 for all 1 < i ≤ n, all c ∈ C and b ∈ {t, f}
such that setting variable xi to b does satisfy c, and all x ∈ Σ;

• All other utilities are 0.

We now proceed to show that the instances are equivalent. First suppose there
exists an assignment of truth values to the variables such that every clause is satisfied.
Then, if variable xi is set to bi ∈ {t, f} in this assignment, let each player play bi in
the ith stage. This will give both players a total utility of 0. The only deviation for a
player that may change this is to play some clause c in the first stage. However, some
variable xi occurring in that clause must be set to a value that satisfies c. If it is x1, the
deviating player will receive utility −1 in the first stage, and no positive utilities after
that. Otherwise, it is some xi with i > 1, and the deviating player will receive 1 in the
first stage, but −2 in the ith stage, and no positive utilities anywhere else. It follows
that there is no incentive to deviate, and this is a pure-strategy Nash equilibrium.

Now suppose there exists a pure strategy Nash equilibrium. If both players play
a clause in the first stage, then both players would receive a utility of −1, and either
player would be better off playing some b ∈ {t, f} in the first stage, to get a total util-
ity of at least 0. So this cannot be the case in a pure-strategy equilibrium. If only one
player plays a clause c in the first stage, any best response for the other player plays a
truth value in the first stage, and plays bi in stage i whenever setting xi to bi satisfies
c. But then, the clause-playing player receives negative utility overall, and is better off
playing some b ∈ {t, f} in the first stage, to get a total utility of at least 0. So this also
cannot be the case in a pure-strategy equilibrium. It follows that in any pure-strategy
equilibrium, both players play a truth value in the first stage, and thus both players
receive a total utility of 0. However, if there were no satisfying solution to the SAT
instance, then there must be some clause c such that whenever setting xi to bi satisfies
c, player 2 does not play bi in stage i. But then, player 1 is better off playing c in the
first stage, to get a total utility of 1, contradicting the fact that we have a pure-strategy
Nash equilibrium. It follows that there exists a satisfying solution to the SAT instance.

It is instructive to compare these two hardness results to known hardness results
for partially observable Markov decision processes (POMDPs). A Markov decision
process is a Markov game with a single player. A partially observable Markov deci-
sion process is a Markov decision process in which the current state is not directly
observable, but a player may observe noisy signals about the state. Papadimitriou
and Tsitsiklis [41] show that computing the optimal policy (strategy) for a POMDP
is PSPACE-hard even with a finite horizon. (In fact, they show this for a special
kind of POMDP in which the states are partitioned, and the player always observes the
element of the partition to which the current state belongs.) Unlike Theorem 3, their
reduction makes use of both probabilistic transitions and nontrivial observations about
the current state. Papadimitriou and Tsitsiklis also mention that their reduction can be
modified to showNP-hardness for the unobserved case, leading to a result that is more
similar to our Theorem 4 (though neither result directly implies the other).
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6 Conclusions and future research
We provided a single reduction that demonstrates that in normal-form games: 1) it
is NP-complete to determine whether Nash equilibria with certain natural properties
exist (these results are similar to those obtained by Gilboa and Zemel [17]), 2) more
significantly, the problems of maximizing certain properties of a Nash equilibrium are
inapproximable (unless P = NP), and 3) it is #P-hard to count the Nash equilibria.
We also showed that determining whether a pure-strategy Bayes-Nash equilibrium ex-
ists in a Bayesian game is NP-complete, and that determining whether a pure-strategy
Nash equilibrium exists in a Markov (stochastic) game is PSPACE-hard even if the
game is unobserved (and that this remains NP-hard if the game has finite length).
All of our hardness results hold even if there are only two players and the game is
symmetric.

This paper is undoubtedly not the last word on computing game-theoretic solutions.
Solution concepts other than Nash equilibrium are also receiving attention: examples
include CURB sets [4], (iterated) dominance [8, 16], other elimination criteria [9], and
correlated equilibria [17, 40]. There is also a significant body of research on solving
extensive-form games [18, 19, 25, 26, 34, 43, 51, 52].

Another topic of interest is how the game is represented, that is, in what form
the game is presented to the solver. A polynomial-time algorithm for normal-form
games is of little use if the normal form is too large for the computer to store. In this
case, the computer needs to operate directly on a more concise representation of the
game. Examples of such representations (other than the extensive form) include graph-
ical games [22], action-graph games [5, 29], and multiagent influence diagrams [27].
While changing the way the game is represented does not change it strategically,11

it does affect the computational complexity of solving the game [20, 46]. However, as
long as the representation can capture any game, the computational problem cannot be-
come any easier than under the straightforward representation. Therefore, our hardness
results apply to such other representations as well.

Finally, we should consider the implications of complexity results in game theory
for the modeling of human behavior. It seems unreasonable to expect humans to play
according to solutions that are too hard for computers to find, so perhaps we should
consider new solution concepts. On the other hand, as rationality and computational
resources increase, it seems that the standard concepts should result in the limit.
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