
Chapter 2

Classic Mechanism Design

Mechanism design is the sub-�eld of microeconomics and game theory that considers how

to implement good system-wide solutions to problems that involve multiple self-interested

agents, each with private information about their preferences. In recent years mecha-

nism design has found many important applications; e.g., in electronic market design, in

distributed scheduling problems, and in combinatorial resource allocation problems.

This chapter provides an introduction to the the game-theoretic approach to mechanism

design, and presents important possibility and impossibility results in the literature. There

is a well-understood sense of what can and cannot be achieved, at least with fully rational

agents and without computational limitations. The next chapter discusses the emerging

�eld of computational mechanism design, and also surveys the economic literature on lim-

ited communication and agent bounded-rationality in mechanism design. The challenge

in computational mechanism design is to design mechanisms that are both tractable (for

agents and the auctioneer) and retain useful game-theoretic properties. For a more general

introduction to the mechanism design literature, MasColell et al. [MCWG95] provides a

good reference. Varian [Var95] provides a gentle introduction to the role of mechanism

design in systems of computational agents.

In a mechanism design problem one can imagine that each agent holds one of the

\inputs" to a well-formulated but incompletely speci�ed optimization problem, perhaps a

constraint or an objective function coe�cient, and that the system-wide goal is to solve

the speci�c instantiation of the optimization problem speci�ed by the inputs. Consider for

example a network routing problem in which the system-wide goal is to allocate resources

to minimize the total cost of delay over all agents, but each agent has private information

about parameters such as message size and its unit-cost of delay. A typical approach
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in mechanism design is to provide incentives (for example with suitable payments) to

promote truth-revelation from agents, such that an optimal solution can be computed to

the distributed optimization problem.

Groves mechanisms [Gro73] have a central role in classic mechanism design, and promise

to remain very important in computational mechanism design. Indeed, Groves mechanisms

have a focal role in my dissertation, providing strong guidance for the design of mechanisms

in the combinatorial allocation problem. Groves mechanisms solve problems in which the

goal is to select an outcome, from a set of discrete outcomes, that maximizes the total

value over all agents. The Groves mechanisms are strategy-proof, which means that truth-

revelation of preferences over outcomes is a dominant strategy for each agent| optimal

whatever the strategies and preferences of other agents. In addition to providing a robust

solution concept, strategy-proofness removes game-theoretic complexity from each individ-

ual agent's decision problem; an agent can compute its optimal strategy without needing

to model the other agents in the system. In fact (see Section 2.4), Groves mechanisms

are the only strategy-proof and value-maximizing (or e�cient) mechanisms amongst an

important class of mechanisms.

But Groves mechanisms have quite bad computational properties. Agents must report

complete information about their preferences to the mechanism, and the optimization

problem| to maximize value |is solved centrally once all this information is reported.

Groves mechanisms provide a completely centralized solution to a decentralized problem.

In addition to di�cult issues such as privacy of information, trust, etc. the approach

fails computationally in combinatorial domains either when agents cannot compute their

values for all possible outcomes, or when the mechanism cannot solve the centralized prob-

lem. Computational approaches attempt to retain the useful game-theoretic properties

but relax the requirement of complete information revelation. As one introduces alter-

native distributed implementations it is important to consider e�ects on game-theoretic

properties, for example the e�ect on strategy-proofness.

Here is an outline of the chapter. Section 2.1 presents a brief introduction to game

theory, introducing the most important solution concepts. Section 2.2 introduces the the-

ory of mechanism design, and de�nes desirable mechanism properties such as e�ciency,

strategy-proofness, individual-rationality, and budget-balance. Section 2.3 describes the

revelation principle, which has proved a powerful concept in mechanism design theory, and
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introduces incentive-compatibility and direct-revelation mechanisms. Section 2.4 presents

the e�cient and strategy-proof Vickrey-Clarke-Groves mechanisms, including the Gener-

alized Vickrey Auction for the combinatorial allocation problem. Sections 2.5 and 2.6

summarize the central impossibility and possibility results in mechanism design. Finally,

Section 2.7 is provides a brief discussion of optimal auction design and the con
ict between

the goals of revenue-maximization and e�ciency.

2.1 A Brief Introduction to Game Theory

Game theory [vNM47, Nas50] is a method to study a system of self-interested agents in

conditions of strategic interaction. This section provides a brief tour of important game-

theoretic solution concepts. Fudenberg & Tirole [FT91] and Osborne & Rubinstein [OR94]

provide useful introductions to the subject. Places to start for auction theory include

McAfee & McMillan [PMM87] and Wurman et al. [WWW00].

2.1.1 Basic De�nitions

It is useful to introduce the idea of the type of an agent, which determines the preferences

of an agent over di�erent outcomes of a game. This will bring clarity when we discuss

mechanism design in the next section. Let �i 2 �i denote the type of agent i, from a set of

possible types �i. An agent's preferences over outcomes o 2 O, for a set O of outcomes,

can then be expressed in terms of a utility function that is parameterized on the type. Let

ui(o; �i) denote the utility of agent i for outcome o 2 O given type �i. Agent i prefers

outcome o1 over o2 when ui(o1; �i) > ui(o2; �i).

The fundamental concept of agent choice in game theory is expressed as a strategy.

Without providing unnecessary structure, a strategy can loosely be de�ned as:

Definition 2.1 [strategy] A strategy is a complete contingent plan, or decision rule,

that de�nes the action an agent will select in every distinguishable state of the world.

Let si(�i) 2 �i denote the strategy of agent i given type �i, where �i is the set of all

possible strategies available to an agent. Sometimes the conditioning on an agent's type

is left implicit, and I write si for the strategy selected by agent i given its type.

In addition to pure, or deterministic strategies, agent strategies can also be mixed, or

stochastic. A mixed strategy, written �i 2 �(�i) de�nes a probability distribution over
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pure strategies.

Example. In a single-item ascending-price auction, the state of the world (p; x) de�nes

the current ask price p � 0 and whether or not the agent is holding the item in the

provisional allocation x 2 f0; 1g. A strategy de�nes the bid b(p; x; v) that an agent will

place for every state, (p; x) and for every value v � 0 it might have for the item. A

best-response strategy is as follows:

bBR(p; x; v) =

8<
:

p , if x = 0 and p < v

no bid , otherwise

One can imagine that a game de�nes the set of actions available to an agent (e.g. valid

bids, legal moves, etc.) and a mapping from agent strategies to an outcome (e.g. the agent

with highest bid at the end of the auction wins the item and pays that price, checkmate

to win the game, etc.)

Again, avoiding unnecessary detail, given a game (e.g. an auction, chess, etc.) we can

express an agent's utility as a function of the strategies of all the agents to capture the

essential concept of strategic interdependence.

Definition 2.2 [utility in a game] Let ui(s1; : : : ; sI ; �i) denote the utility of agent i

at the outcome of the game, given preferences �i and strategies pro�le s = (s1; : : : ; sI)

selected by each agent.

In other words, the utility, ui(�), of agent i determines its preferences over its own

strategy and the strategies of other agents, given its type �i, which determines its base

preferences over di�erent outcomes in the world, e.g. over di�erent allocations and pay-

ments.

Example. In a single-item ascending-price auction, if agent 2 has value v2 = 10 for

the item and follows strategy bBR;2(p; x; v2) de�ned above, and agent 1 has value v1 and

follows strategy bBR;1(p; x; v1), then the utility to agent 1 is:

u1 (bBR;1(p; x; v1); bBR;2(p; x; 10); 10) =

8<
:

v1 � (10 + �) , if v1 > 10

0 , otherwise

where � > 0 is the minimal bid increment in the auction and agent i's utility given

value vi and price p is ui = vi � p, i.e. equal to its surplus.
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The basic model of agent rationality in game theory is that of an expected utility

maximizer. An agent will select a strategy that maximizes its expected utility, given its

preferences �i over outcomes, beliefs about the strategies of other agents, and structure of

the game.

2.1.2 Solution Concepts

Game theory provides a number of solution concepts to compute the outcome of a game

with self-interested agents, given assumptions about agent preferences, rationality, and

information available to agents about each other.

The most well-known concept is that of a Nash equilibrium [Nas50], which states that

in equilibrium every agent will select a utility-maximizing strategy given the strategy of

every other agent. It is useful to introduce notation s = (s1; : : : ; sI) for the joint strategies

of all agents, or strategy pro�le, and s�i = (s1; : : : ; si�1; si+1; sI) for the strategy of every

agent except agent i. Similarly, let ��i denote the type of every agent except i.

Definition 2.3 [Nash equilibrium] A strategy pro�le s = (s1; : : : ; sI) is in Nash equi-

librium if every agent maximizes its expected utility, for every i,

ui(si(�i); s�i(��i); �i) � ui(s
0
i(�i); s�i(��i); �i); for all s0i 6= si

In words, every agent maximizes its utility with strategy si, given its preferences and

the strategy of every other agents. This de�nition can be extended in a straightforward

way to include mixed strategies.

Although the Nash solution concept is fundamental to game theory, it makes very

strong assumptions about agents' information and beliefs about other agents, and also

loses power in games with multiple equilibria. To play a Nash equilibrium in a one-shot

game every agent must have perfect information (and know every other agent has the

same information, etc., i.e. common knowledge) about the preferences of every other

agent, agent rationality must also be common knowledge, and agents must all select the

same Nash equilibrium.

A stronger solution concept is a dominant strategy equilibrium. In a dominant strategy

equilibrium every agent has the same utility-maximizing strategy, for all strategies of other

agents.
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Definition 2.4 [Dominant-strategy] Strategy si is a dominant strategy if it (weakly)

maximizes the agent's expected utility for all possible strategies of other agents,

ui(si; s�i; �i) � ui(s
0
i; s�i; �i); for all s0i 6= si, s�i 2 ��i

In other words, a strategy si is a dominant strategy for an agent with preferences �i if

it maximizes expected utility, whatever the strategies of other agents.

Example. In a sealed-bid second-price (Vickrey auction), the item is sold to the highest

bidder for the second-highest price. Given value vi, bidding strategy

bi(vi) = vi

is a dominant strategy for agent i because its utility is

ui(bi; b
0; vi) =

8<
:

vi � b0 , if bi > b0

0 otherwise

for bid bi and highest bid from another agent b0. By case analysis, when b0 < vi then any

bid bi � b0 is optimal, and when b0 � vi then any bid bi < b0 is optimal. Bid bi = vi solves

both cases.

Dominant-strategy equilibrium is a very robust solution concept, because it makes

no assumptions about the information available to agents about each other, and does not

require an agent to believe that other agents will behave rationally to select its own optimal

strategy. In the context of mechanism design, dominant strategy implementations of social

choice functions are much more desirable than Nash implementations (which in the context

of the informational assumptions at the core of mechanism design are essentially useless).

A third solution concept is Bayesian-Nash equilibrium. In a Bayesian-Nash equilibrium

every agent is assumed to share a common prior about the distribution of agent types,

F (�), such that for any particular game the agent pro�les are distributed according to F (�).

In equilibrium every agent selects a strategy to maximize expected utility in equilibrium

with expected-utility maximizing strategies of other agents.

Definition 2.5 [Bayesian-Nash] A strategy pro�le s = (s1(�); : : : ; sI(�)) is in Bayesian-

Nash equilibrium if for every agent i and all preferences �i 2 �i

ui(si(�i); s�i(�); �i) � ui(s
0
i(�i); s�i(�); �i); for all s0i(�) 6= si(�)
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where ui is used here to denote the expected utility over distribution F (�) of types.

Comparing Bayesian-Nash with Nash equilibrium, the key di�erence is that agent i's

strategy si(�i) must be a best-response to the distribution over strategies of other agents,

given distributional information about the preferences of other agents. Agent i does not

necessarily play a best-response to the actual strategies of the other agents.

Bayesian-Nash makes more reasonable assumptions about agent information than Nash,

but is a weaker solution concept than dominant strategy equilibrium. Remaining problems

with Bayesian-Nash include the existence of multiple equilibria, information asymmetries,

and rationality assumptions, including common-knowledge of rationality.

The solution concepts, of Nash, dominant-strategy, and Bayesian-Nash, hold in both

static and dynamic games. In a static game every agent commits to its strategy simulta-

neously (think of a sealed-bid auction for a simple example). In a dynamic game actions

are interleaved with observation and agents can learn information about the preferences

of other agents during the course of the game (think of an iterative auction, or stages in

a negotiation). Additional re�nements to these solution concepts have been proposed to

solve dynamic games, for example to enforce sequential rationality (backwards induction)

and to remove non-credible threats o� the equilibrium path. One such re�nement is sub-

game perfect Nash, another is perfect Bayesian-Nash (which applies to dynamic games of

incomplete information), see [FT91] for more details.

Looking ahead to mechanism design, an ideal mechanism provides agents with a dom-

inant strategy and also implements a solution to the multi-agent distributed optimization

problem. We can state the following preference ordering across implementation concepts:

dominant � Bayesian-Nash � Nash. In fact, a Nash solution concept in the context of a

mechanism design problem is essentially useless unless agents are very well-informed about

each others' preferences, in which case it is surprising that the mechanism infrastructure

itself is not also well-informed.

2.2 Mechanism Design: Important Concepts

The mechanism design problem is to implement an optimal system-wide solution to a

decentralized optimization problem with self-interested agents with private information

about their preferences for di�erent outcomes.

29



Recall the concept of an agent's type, �i 2 �i, which determines its preferences over

di�erent outcomes; i.e. ui(o; �i) is the utility of agent i with type �i for outcome o 2 O.

The system-wide goal in mechanism design is de�ned with a social choice function,

which selects the optimal outcome given agent types.

Definition 2.6 [Social choice function] Social choice function f : �1 � : : :��I ! O

chooses an outcome f(�) 2 O, given types � = (�1; : : : ; �I).

In other words, given agent types � = (�1; : : : ; �I), we would like to choose outcome

f(�). The mechanism design problem is to implement \rules of a game", for example

de�ning possible strategies and the method used to select an outcome based on agent

strategies, to implement the solution to the social choice function despite agent's self-

interest.

Definition 2.7 [mechanism] A mechanism M = (�1; : : : ;�I ; g(�)) de�nes the set of

strategies �i available to each agent, and an outcome rule g : �1�: : :��I ! O, such that

g(s) is the outcome implemented by the mechanism for strategy pro�le s = (s1; : : : ; sI).

In words, a mechanism de�nes the strategies available (e.g., bid at least the ask price,

etc.) and the method used to select the �nal outcome based on agent strategies (e.g., the

price increases until only one agent bids, then the item is sold to that agent for its bid

price).

Game theory is used to analyze the outcome of a mechanism. Given mechanism M

with outcome function g(�), we say that a mechanism implements social choice function

f(�) if the outcome computed with equilibrium agent strategies is a solution to the social

choice function for all possible agent preferences.

Definition 2.8 [mechanism implementation] Mechanism M = (�1; : : : ;�I ; g(�)) im-

plements social choice function f(�) if g(s�1(�1); : : : ; s
�
I(�I)) = f(�), for all (�1; : : : ; �I) 2

�1 � : : : � �I , where strategy pro�le (s�1; : : : ; s
�
I) is an equilibrium solution to the game

induced by M.

The equilibrium concept is deliberately left unde�ned at this stage, but may be Nash,

Bayesian-Nash, dominant- or some other concept; generally as strong a solution concept

as possible.

To understand why the mechanism design problem is di�cult, consider a very naive

mechanism, and suppose that the system-wide goal is to implement social choice function
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f(�). The mechanism asks agents to report their types, and then simply implements the

solution to the social choice function that corresponds with their reports, i.e. the outcome

rule is equivalent to the social choice function, g(�̂) = f(�̂) given reported types �̂ =

(�̂1; : : : ; �̂I). But, there is no reason for agents to report their true types! In a Bayesian-

Nash equilibrium each agent will choose to announce a type �̂i to maximize its expected

utility, and solve:

max
�0
i
2�i

E��i
ui(�

0
i; s�i(��i); �i)

given distributional information about the types of other agents, and under the assump-

tion that the other agents are also following expected-utility maximizing strategies. This

announced type �̂i need not equal the agent's true type.

Looking ahead, the mechanism design problem is to design a mechanism| a set of

possible agent strategies and an outcome rule |to implement a social choice function with

desirable properties, in as strong a solution concept as possible; i.e. dominant is preferred

to Bayesian-Nash because it makes less assumptions about agents.

2.2.1 Properties of Social Choice Functions

Many properties of a mechanism are stated in terms of the properties of the social choice

function that the mechanism implements. A good place to start is to outline a number of

desirable properties for social choice functions.

A social choice function is Pareto optimal (or Pareto e�cient) if it implements outcomes

for which no alternative outcome is strongly preferred by at least one agent, and weakly

preferred by all other agents.

Definition 2.9 [Pareto optimal] Social choice function f(�) is Pareto optimal if for

every o0 6= f(�), and all types � = (�1; : : : ; �I),

ui(o
0; �i) > ui(o; �i) ) 9j 2 I uj(o

0; �j) < uj(o; �j)

In other words, in a Pareto optimal solution no agent can every be made happier

without making at least one other agent less happy.

A very common assumption in auction theory and mechanism design, and one which I

will follow in my dissertation, is that agents are risk neutral and have quasi-linear utility

functions.
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Definition 2.10 [Quasi-linear Preferences] A quasi-linear utility function for agent i

with type �i is of the form:

ui(o; �i) = vi(x; �i)� pi

where outcome o de�nes a choice x 2 K from a discrete choice set and a payment pi by the

agent.

The type of an agent with quasi-linear preferences de�nes its valuation function, vi(x),

i.e. its value for each choice x 2 K. In an allocation problem the alternatives K rep-

resent allocations, and the transfers represent payments to the auctioneer. Quasi-linear

preferences make it straightforward to transfer utility across agents, via side-payments.

Example. In an auction for a single-item, the outcome de�nes the allocation, i.e. which

agent gets the item, and the payments of each agent. Assuming that agent i has value

vi = $10 for the item, then its utility for an outcome in which it is allocated the item is

ui = vi� p = 10� p, and the agent has positive utility for the outcome so long as p < $10.

Risk neutrality follows because an expected utility maximizing agent will pay as much

as the expected value of an item. For example in a situation in which it will receive the

item with value $10 with probability �, an agent would be happy to pay as much as $10�

for the item.

With quasi-linear agent preferences we can separate the outcome of a social choice

function into a choice x(�) 2 K and a payment pi(�) made by each agent i:

f(�) = (x(�); p1(�); : : : ; pI(�))

for preferences � = (�1; : : : ; �I).

The outcome rule, g(s), in a mechanism with quasi-linear agent preferences, is decom-

posed into a choice rule, k(s), that selects a choice from the choice set given strategy pro�le

s, and a payment rule ti(s) that selects a payment for agent i based on strategy pro�le s.

Definition 2.11 [quasi-linear mechanism] A quasi-linear mechanism

M = (�1; : : : ;�I ; k(�); t1(�); : : : ; tI(�)) de�nes: the set of strategies �i available to each

agent; a choice rule k : �1 � : : : � �I ! K, such that k(s) is the choice implemented

for strategy pro�le s = (s1; : : : ; sI); and transfer rules ti : �1 � : : : � �I ! R, one for

each agent i, to compute the payment ti(s) made by agent i.
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Properties of social choice functions implemented by a mechanism can now be stated

separately, for both the choice selected and the payments.

A social choice function is e�cient if:

Definition 2.12 [allocative e�ciency] Social choice function f(�) = (x(�); p(�)) is

allocatively-e�cient if for all preferences � = (�1; : : : ; �I)

IX
i=1

vi(x(�); �i) �
X
i

vi(x
0; �i); for all x0 2 K (E�)

It is common to state this as allocative e�ciency, because the choice sets often de�ne

an allocation of items to agents. An e�cient allocation maximizes the total value over all

agents.

A social choice function is budget-balanced if:

Definition 2.13 [budget-balance] Social choice function f(�) = (x(�); p(�)) is budget-

balanced if for all preferences � = (�1; : : : ; �I)

IX
i=1

pi(�) = 0 (BB)

In other words, there are no net transfers out of the system or into the system. Taken

together, allocative e�ciency and budget-balance imply Pareto optimality.

A social-choice function is weak budget-balanced if:

Definition 2.14 [weak budget-balance] Social choice function f(�) = (x(�); p(�)) is

weakly budget-balanced if for all preferences � = (�1; : : : ; �I)

IX
i=1

pi(�) � 0 (WBB)

In other words, there can be a net payment made from agents to the mechanism, but

no net payment from the mechanism to the agents.

2.2.2 Properties of Mechanisms

Finally, we can de�ne desirable properties of mechanisms. In describing the properties of a

mechanism one must state: the solution concept, e.g. Bayesian-Nash, dominant, etc.; and

the domain of agent preferences, e.g. quasi-linear, monotonic, etc.
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The de�nitions follow quite naturally from the concept of implementation (see de�nition

2.8) and properties of social choice functions. A mechanism has property P if it implements

a social choice function with property P.

For example, consider the de�nition of a Pareto optimal mechanism:

Definition 2.15 [Pareto optimal mechanism] Mechanism M is Pareto optimal if it

implements a Pareto optimal social choice function f(�).

Technically, this is ex post Pareto optimality; i.e. the outcome is Pareto optimal for

the speci�c agent types. A weaker form of Pareto optimality is ex ante, in which there is

no outcome that at least one agent strictly prefers and all other agents weakly prefer in

expectation.

Similarly, a mechanism is e�cient if it selects the choice x(�) 2 K that maximizes total

value:

Definition 2.16 [e�cient mechanism] Mechanism M is e�cient if it implements an

allocatively-e�cient social choice function f(�).

Corresponding de�nitions follow for budget-balance and weak budget-balance. In the

case of budget-balance it is important to make a careful distinction between ex ante and

ex post budget balance.

Definition 2.17 [ex ante BB] Mechanism M is ex ante budget-balanced if the equi-

librium net transfers to the mechanism are balanced in expectation for a distribution over

agent preferences.

Definition 2.18 [ex post BB] Mechanism M is ex post budget-balanced if the equilib-

rium net transfers to the mechanism are non-negative for all agent preferences, i.e. every

time.

Another important property of a mechanism is individual-rationality, sometimes known

as \voluntary participation" constraints, which allows for the idea that an agent is often

not forced to participate in a mechanism but can decide whether or not to participate.

Essentially, individual-rationality places constraints on the level of expected utility that

an agent receives from participation.

Let ui(�i) denote the expected utility achieved by agent i outside of the mechanism,

when its type is �i. The most natural de�nition of individual-rationality (IR) is interim

IR, which states that the expected utility to an agent that knows its own preferences but
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has only distributional information about the preferences of the other agents is at least its

expected outside utility.

Definition 2.19 [individual rationality] A mechanismM is (interim) individual-rational

if for all preferences �i it implements a social choice function f(�) with

ui(f(�i; ��i)) � ui(�i) (IR)

where ui(f(�i; ��i)) is the expected utility for agent i at the outcome, given distributional

information about the preferences ��i of other agents, and ui(�i) is the expected utility

for non-participation.

In other words, a mechanism is individual-rational if an agent can always achieve as

much expected utility from participation as without participation, given prior beliefs about

the preferences of other agents.

In a mechanism in which an agent can withdraw once it learns the outcome ex post IR

is more appropriate, in which the agent's expected utility from participation must be at

least its best outside utility for all possible types of agents in the system. In a mechanism

in which an agent must choose to participate before it even knows its own preferences

then ex ante IR is appropriate; ex ante IR states that the agent's expected utility in the

mechanism, averaged over all possible preferences, must be at least its expected utility

without participating, also averaged over all possible preferences.

One last important mechanism property, de�ned for direct-revelation mechanisms, is

incentive-compatibility. The concept of incentive compatibility and direct-revelation mech-

anisms is very important in mechanism design, and discussed in the next section in the

context of the revelation principle.

2.3 The Revelation Principle, Incentive-Compatibility, and

Direct-Revelation

The revelation principle states that under quite weak conditions any mechanism can be

transformed into an equivalent incentive-compatible direct-revelation mechanism, such that

it implements the same social-choice function. This proves to be a powerful theoretic tool,

leading to the central possibility and impossibility results of mechanism design.

A direct-revelation mechanism is a mechanism in which the only actions available to
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agents are to make direct claims about their preferences to the mechanism. An incentive-

compatible mechanism is a direct-revelation mechanism in which agents report truthful

information about their preferences in equilibrium. Incentive-compatibility captures the

essence of designing a mechanism to overcome the self-interest of agents| in an incentive-

compatible mechanism an agent will choose to report its private information truthfully,

out of its own self-interest.

Example. The second-price sealed-bid (Vickrey) auction is an incentive-compatible (ac-

tually strategy-proof) direct-revelation mechanism for the single-item allocation problem.

Computationally, the revelation principle must be viewed with great suspicion. Direct-

revelation mechanisms are often too expensive for agents because they place very high

demands on information revelation. An iterative mechanism can sometimes implement

the same outcome as a direct-revelation mechanism but with less information revelation

and agent computation. The revelation principle restricts what we can do, but does not

explain how to construct a mechanism to achieve a particular set of properties. This is

discussed further in Chapter 3.

2.3.1 Incentive Compatibility and Strategy-Proofness

In a direct-revelation mechanism the only action available to an agent is to submit a claim

about its preferences.

Definition 2.20 [direct-revelation mechanism] A direct-revelation mechanism M =

(�1; : : : ;�I ; g(�)) restricts the strategy set �i = �i for all i, and has outcome rule g :

�1 � : : : � �I ! O which selects an outcome g(�̂) based on reported preferences �̂ =

(�̂1; : : : ; �̂I).

In other words, in a direct-revelation mechanism the strategy of agent i is to report

type �̂i = si(�i), based on its actual preferences �i.

A truth-revealing strategy is to report true information about preferences, for all pos-

sible preferences:

Definition 2.21 [truth-revelation] A strategy si 2 �i is truth-revealing if si(�i) = �i

for all �i 2 �i.

In an incentive-compatible (IC) mechanism the equilibrium strategy pro�le s� = (s�1;
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: : : ; s�I) has every agent reporting its true preferences to the mechanism. We �rst de�ne

Bayesian-Nash incentive-compatibility:

Definition 2.22 [Bayesian-Nash incentive compatible] A direct-revelation mechanism

M is Bayesian-Nash incentive-compatible if truth-revelation is a Bayesian-Nash equilib-

rium of the game induced by the mechanism.

In other words, in an incentive-compatible mechanism every agent's expected utility

maximizing strategy in equilibrium with every other agent is to report its true preferences.

A mechanism is strategy-proof (or dominant-strategy incentive-compatible) if truth-

revelation is a dominant-strategy equilibrium:

Definition 2.23 [strategy-proof] A direct-revelation mechanismM is strategy-proof if

it truth-revelation is a dominant-strategy equilibrium.

Strategy-proofness is a very useful property, both game-theoretically and computation-

ally. Dominant-strategy implementation is very robust to assumptions about agents, such

as the information and rationality of agents. Computationally, an agent can compute its

optimal strategy without modeling the preferences and strategies of other agents.

A simple equivalence exists between the outcome function g(�̂) in a direct-revelation

mechanism, which selects an outcome based on reported types �̂ and the social choice

function f(�) implemented by the mechanism, i.e. computed in equilibrium.

Proposition 2.1 (incentive-compatible implementation). An incentive-compatible

direct-revelation mechanism M implements social choice function f(�) = g(�), where g(�)

is the outcome rule of the mechanism.

In other words, in an incentive-compatible mechanism the outcome rule is precisely

the social choice function implemented by the mechanism. In Section 2.4 we introduce the

Groves mechanisms, which are strategy-proof e�cient mechanisms for agents with quasi-

linear preferences, i.e. the choice rule k(�̂) computes the e�cient allocation given reported

types �̂ and an agent's dominant strategy is truth-revelation.
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2.3.2 The Revelation Principle

The revelation principle states that under quite weak conditions any mechanism can be

transformed into an equivalent incentive-compatible direct-revelation mechanism that im-

plements the same social-choice function. The revelation principle is an important tool for

the theoretical analysis of what is possible, and of what is impossible, in mechanism design.

The revelation principle was �rst formulated for dominant-strategy equilibria [Gib73], and

later extended by Green & La�ont [GJJ77] and Myerson [Mye79, Mye81].

One interpretation of the revelation principle is that incentive-compatibility comes

for free. This is not to say that truth-revelation is easy to achieve, but simply that if

an indirect-revelation and/or non-truthful mechanism solves a distributed optimization

problem, then we would also expect a direct-revelation truthful implementation.

The revelation principle for dominant strategy implementation states that any social

choice function than is implementable in dominant strategy is also implementable in a

strategy-proof mechanism. In other words it is possible to restrict attention to truth-

revealing direct-revelation mechanisms.

Theorem 2.1 (Revelation Principle). Suppose there exists a mechanism (direct or

otherwise) M that implements the social-choice function f(�) in dominant strategies. Then

f(�) is truthfully implementable in dominant strategies, i.e. in a strategy-proof mechanism.

Proof. If M = (�1; : : : ;�I ; g(�)) implements f(�) in dominant strategies, then there

exists a pro�le of strategies s�(�) = (s�1(�); : : : ; s
�
I(�)) such that g(s�(�)) = f(�) for all �,

and for all i and all �i 2 �i,

ui(g(s
�
i (�i); s�i); �i) � ui(g(ŝi; s�i); �i)

for all ŝi 2 �i and all s�i 2 ��i, by de�nition of dominant strategy implementation.

Substituting s��i(��i) for s�i and s�i (�̂i) for ŝi, we have:

ui(g(s
�
i (�i); s

�
�i(��i)); �i) � ui(g(s

�
i (�̂i; s

�
�i(��i)); �i)

for all �̂i 2 �i and all ��i 2 ��i. Finally, since g(s
�(�)) = f(�) for all �, we have:

ui(f(�i; ��i); �i) � ui(f(�̂i; ��i); �i)
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for all �̂i 2 �i and all ��i 2 ��i. This is precisely the condition required for f(�) to be truth-

fully implementable in dominant strategies in a direct-revelation mechanism. The outcome

rule in the strategy-proof mechanism, g : �1� : : :��I ! O, is simply equal to the social

choice function f(�).

The intuition behind the revelation principle is as follows. Suppose that it is possible

to simulate the entire system| the bidding strategies of agents and the outcome rule |

of an indirect mechanism, given complete and perfect information about the preferences

of every agent. Now, if it is possible to claim credibly that the \simulator" will implement

an agent's optimal strategy faithfully, given information about the preferences (or type)

of the agent, then it is optimal for an agent to truthfully report its preferences to the new

mechanism.

This dominant-strategy revelation principle is quite striking. In particular, it suggests

that to identify which social choice functions are implementable in dominant strategies, we

need only identify those functions f(�) for which truth-revelation is a dominant strategy

for agents in a direct-revelation mechanism with outcome rule g(�) = f(�).

A similar revelation principle can be stated in Bayesian-Nash equilibrium.

Theorem 2.2 (Bayesian-Nash Revelation Principle). Suppose there exists a mecha-

nism (direct or otherwise) M that implements the social-choice function f(�) in Bayesian-

Nash equilibrium. Then f(�) is truthfully implementable in a (Bayesian-Nash) incentive-

compatible direct-revelation mechanism.

In other words, if the goal is to implement a particular social choice function in

Bayesian-Nash equilibrium, it is su�cient to consider only incentive-compatible direct-

revelation mechanisms.

The proof closely follows that of the dominant-strategy revelation principle. One prob-

lem with the revelation principle for Bayesian-Nash implementation is that the distribution

over agent types must be common knowledge to the direct-revelation mechanism, in addi-

tion to the agents.
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2.3.3 Implications

With the revelation principle in hand we can prove impossibility results over the space

of direct-revelation mechanisms, and construct possibility results over the space of direct-

revelation mechanisms.

However, the revelation principle ignores computational considerations and should not

be taken as a statement that it is su�cient to consider only direct-revelation mechanisms

in practical mechanism design. The revelation principle states what can be achieved,

what cannot be achieved, but without stating the computational structure to achieve a

particular set of properties. In particular, in my dissertation I argue that iterative and

indirect mechanisms are important in many combinatorial applications, and can provide

tractable solutions to problems in which single-shot direct-revelation mechanisms fail.

Rather, the revelation principle provides a rich structure to the mechanism design

problem, focusing goals and delineating what is and is not possible. For example, if a

particular direct-revelation mechanism M is the only mechanism with a particular com-

bination of properties, then any mechanism, including iterative and indirect mechanisms,

must implement the same outcome (e.g. allocation and payments) as mechanism M for

the same agent preferences.

For example:

� Suppose that the only direct mechanisms with useful properties P1, P2 and P3 are

in the class of mechanisms M0. It follows that any mechanism m with properties

P1, P2 and P3 must be \outcome equivalent" to a direct mechanism in M0, in the

sense that m must implement the same outcome as a mechanism in this class for all

possible agent types.

� Suppose that no direct mechanism has properties P1, P2 and P3. It follows that

there can be no mechanism (direct or otherwise) with properties P1, P2 and P3.

The next section introduces an important family of mechanisms with dominant-strategy

solutions.
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2.4 Vickrey-Clarke-Groves Mechanisms

In seminal papers, Vickrey [Vic61], Clarke [Cla71] and Groves [Gro73], proposed the

Vickrey-Clarke-Groves family of mechanisms, often simply called the Groves mechanisms,

for problems in which agents have quasi-linear preferences. The Groves mechanisms are

allocatively-e�cient and strategy-proof direct-revelation mechanisms.

In special cases there is a Groves mechanism that is also individual-rational and satis�es

weak budget-balance, such that the mechanism does not require an outside subsidy to

operate. This is the case, for example, in the Vickrey-Clarke-Groves mechanism for a

combinatorial auction.

In fact, the Groves family of mechanisms characterize the only mechanisms that are

allocatively-e�cient and strategy-proof [GJJ77] amongst direct-revelation mechanisms.

Theorem 2.3 (Groves Uniqueness). The Groves mechanisms are the only allocatively-

e�cient and strategy-proof mechanisms for agents with quasi-linear preferences and general

valuation functions, amongst all direct-revelation mechanisms.

The revelation principle extends this uniqueness to general mechanisms, direct or oth-

erwise. Given the premise that iterative mechanisms often have preferable computational

properties in comparison to sealed-bid mechanisms, this uniquenss suggests a focus on

iterative Groves mechanisms because:

any iterative mechanism that achieves allocative e�ciency in dominant-strategy imple-

mentation must implement a Groves outcome.

In fact, we will see in Chapter 7 that an iterative mechanism that implements the

Vickrey outcome can have slightly weaker properties than those of a single-shot Vickrey

scheme.

Krishna & Perry [KP98] and Williams [Wil99] have recently proved the uniqueness of

Groves mechanisms among e�cient and Bayesian-Nash mechanisms.

2.4.1 The Groves Mechanism

Consider a set of possible alternatives, K, and agents with quasi-linear utility functions,

such that

ui(k; pi; �i) = vi(k; �i)� pi
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where vi(k; �i) is the agent's value for alternative k, and pi is a payment by the agent to

the mechanism. Recall that the type �i 2 �i is a convenient way to express the valuation

function of an agent.

In a direct-revelation mechanism for quasi-linear preferences we write the outcome

rule g(�̂) in terms of a choice rule, k : �1 � : : : � �I ! K, and a payment rule,

ti : �1 � : : :��I ! R, for each agent i.

In a Groves mechanism agent i reports type �̂i = si(�i), which may not be its true type.

Given reported types �̂ = (�̂1; : : : ; �̂I), the choice rule in a Groves mechanism computes:

k�(�̂) = argmax
k2K

X
i

vi(k; �̂i) (1)

Choice k� is the selection that maximizes the total reported value over all agents.

The payment rule in a Groves mechanism is de�ned as:

ti(�̂) = hi(�̂�i)�
X
j 6=i

vj(k
�; �̂j) (2.1)

where hi : ��i ! R is an arbitrary function on the reported types of every agent except

i. This freedom in selecting hi(�) leads to the description of a \family" of mechanisms.

Di�erent choices make di�erent tradeo�s across budget-balance and individual-rationality.

2.4.2 Analysis

Groves mechanisms are e�cient and strategy-proof:

Theorem 2.4 (Groves mechanisms). Groves mechanisms are allocatively-e�cient and

strategy-proof for agents with quasi-linear preferences.

Proof.

We prove that Groves mechanisms are strategy-proof, such that truth-revelation is

a dominant strategy for each agent, from which allocative e�ciency follows immediately

because the choice rule k�(�) computes the e�cient allocation (1).

The utility to agent i from strategy �̂i is:

ui(�̂i) = vi(k
�(�̂); �i)� ti(�̂)

= vi(k
�(�̂); �i) +

X
j 6=i

vj(k
�(�̂); �̂j)� hi(�̂�i)
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Ignoring the �nal term, because hi(�̂�i) is independent of an agent i's reported type,

we prove that truth-revelation �̂i = �i solves:

max
�̂i2�i

2
4vi(k�(�̂i; �̂�i); �i) +

X
j 6=i

vj(k
�(�̂i; �̂�i); �̂j)

3
5

= max
�̂i2�i

2
4vi(x; �i) +X

j 6=i

vj(x; �̂j)

3
5 (2)

where x = k�(�̂i; �̂�i) is the outcome selected by the mechanism. The only e�ect of the

agent's announced type �̂i is on x, and the agent can maximize (2) by announcing �̂i = �i

because then the mechanism computes k�(�̂i; �̂�i) to explicitly solve:

max
k2K

vi(k; �i) +
X
j 6=i

vj(k; �̂j)

Truth-revelation is the dominant strategy of agent i, whatever the reported types �̂�i of

the other agents.

The e�ect of payment ti(�̂) = (�) �
P

j 6=i vj(k
�; �̂j) is to \internalize the externality"

placed on the other agents in the system by the reported preferences of agent i. This aligns

the agents' incentives with the system-wide goal of an e�cient allocation, an agent wants

the mechanism to select the best system-wide solution given the reports of other agents

and its own true preferences.

The �rst term in the payment rule, hi(�̂�i), can be used to achieve (weak) budget-

balance and/or individual rationality. It is not possible to simply total up the payments

made to each agent in the Groves scheme and divide equally across agents, because the

total payments depend on the outcome, and therefore the reported type of each agent.

This would break the strategy-proofness of the mechanism.

2.4.3 The Vickrey Auction

The special case of Clarke mechanism for the allocation of a single item is the familiar

second-price sealed-bid auction, or Vickrey [Vic61] auction.

In this case, with bids b1 and b2 to indicate the �rst- and second- highest bids, the item

is sold to the item with the highest bid (agent 1), for a price computed as:

b1 � (b1 � b2) = b2
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i.e. the second-highest bid.

One can get some intuition for the strategy-proofness of the Groves mechanisms in this

special case. Truth-revelation is a dominant strategy in the Vickrey auction because an

agent's bid determines the range of prices that it will accept, but not the actual price it

pays. The price that an agent pays is completely independent of its bid price, and even

if an agent knows the second-highest bid it can still bid its true value because it only

pays just enough to out-bid the other agent. In addition, notice that weak budget-balance

holds, because the second-highest bid price is non-negative, and individual-rationality holds

because the second-highest bid price is no greater than the highest bid price, which is equal

to the winner agent's value in equilibrium.

2.4.4 The Pivotal Mechanism

The Pivotal, or Clarke, mechanism [Cla71] is a Groves mechanism in which the payment

rule, hi(�̂�i), is carefully set to achieve individual-rationality, while also maximizing the

payments made by the agents to the mechanism. The Pivotal mechanism also achieves

weak budget-balance whenever that is possible in an e�cient and strategy-proof mechanism

[KP98].

The Clarke mechanism [Cla71] computes the additional transfer term as:

hi(�̂�i) =
X
j 6=i

vj(k
�
�i(�̂�i); �̂j) (2.2)

where k��i(�̂�i) is the optimal collective choice for with agent i taken out of the system:

k��i(�̂�i) = argmax
k2K

X
j 6=i

vj(k; �̂j)

This is a valid additional transfer term because the reported value of the second-best

allocation without agent i is independent of the report from agent i. The strategy-proofness

and e�ciency of the Groves mechanisms are left unchanged.

The Clarke mechanism is a useful special-case because it is also individual rational in

quite general settings, which means that agents will choose to participate in the mechanism

(see Section 2.2.2).

To keep things simple, let us assume that agent i's expected utility from not partici-

pating in the mechanism is ui(�i) = 0. The Clarke mechanism is individual rational when

the following two (su�cient) conditions hold on agent preferences:
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Definition 2.24 [choice set monotonicity] The feasible choice set available to the mech-

anism K (weakly) increases as additional agents are introduced into the system.

Definition 2.25 [no negative externalities] Agent i has non-negative value, i.e.

vi(k
�
�i; �i) � 0, for any optimal solution choice, k��i(��i) without agent i, for all i and all

�i.

In other words, with choice set monotonicity an agent cannot \block" a selection, and

with no negative externalities, then any choice not involving an agent has a neutral (or

positive) e�ect on that agent.

For example, the conditions of choice-set monotonicity and no negative externalities

hold in the following settings:

� In a private goods market environment: introducing a new agent cannot make existing

trades infeasible (in fact it can only increase the range of possible trades); and with

only private goods no agent has a negative value for the trades executed between

other agents (relative to no trades).

� In a public project choice problem: introducing a new agent cannot change the range

of public projects that can be implemented; and no agent has negative value for any

public project (relative to the project not going ahead).

Proposition 2.2 (Clarke mechanism). The Pivotal (or Clarke) mechanism is (ex

post) individual-rational, e�cient, and strategy-proof when choice-set monotonicity and

no negative externalities hold and with quasi-linear agent preferences.

Proof. To show individual-rationality (actually ex post individual-rationality), we

show that the utility to agent i in the equilibrium outcome of the mechanism is always

non-negative. We can assume truth-revelation in equilibrium. The utility to agent i with

type �i is:

ui(�i; ��i) = vi(k
�(�); �i)�

0
@X

j 6=i

vj(k
�
�i(��i); �j)�

X
j 6=i

vj(k
�(�); �j)

1
A

=
X
i

vi(k
�(�); �i)�

X
j 6=i

vj(k
�
�i(��i); �j) (3)
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Expression (3) is non-negative because the value of the best solution without agent i,P
j 6=i vj(k

�
�i(��i); �j), cannot be greater than the value of the best solution with agent i,P

i vi(k
�(�); �i). This follows because any choice with agents j 6= i is also feasible with

all agents (monotonicity), and has just as much total value (no negative externalities).

The Clarke mechanism also achieves weak budget-balance in special-cases. A su�cient

condition is the no single-agent e�ect:

Definition 2.26 [no single-agent e�ect] For any collective choice k0 that is optimal in

some scenario with all agents, i.e. k0 = maxk2K
P

i vi(k; �i), for some � 2 �, then for all

i there must exist another choice k�i that is feasible without i and has as much value to

the remaining agents j 6= i.

In words, the no single-agent e�ect condition states that any one agent can be removed

from an optimal system-wide solution without having a negative e�ect on the best choice

available to the remaining agents. This condition holds in the following settings:

� In an auction with only buyers (i.e. the auctioneer holds all the items for sale), so

long as all buyers have \free disposal", such that they have at least as much value

for more items than less items.

� In a public project choice, because the set of choices available is static, however many

agents are in the system.

Proposition 2.3 (Clarke weak budget-balance). The Pivotal (or Clarke) mechanism

is (ex post) individual-rational, weak budget-balanced, e�cient and strategy-proof when

choice-set monotonicity, no negative externalities, and no single-agent e�ect hold, and

with quasi-linear agent preferences.

Proof. Again, we can assume truth-revelation in equilibrium, and prove that the

total transfers are non-negative, such that the mechanism does not require a subsidy, i.e.

X
i

ti(�) � 0

for all � 2 �. Substituting the expression for agent transfers, we have:

X
i

0
@X

j 6=i

vj(k
�
�i(��i); �j)�

X
j 6=i

vj(k
�(�); �j)

1
A � 0
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This is satis�ed in Clarke because the transfer is non-negative for every agent i, i.e.:

X
j 6=i

vj(k
�
�i(��i); �j) �

X
j 6=i

vj(k
�(�); �j); 8i

This condition holds by a simple feasibility argument with the no single-agent e�ect,

because any solution to the system with all agents remains feasible and has positive value

without any one agent.

As soon as there are buyers and sellers in a market we very quickly lose even weak

budget-balance with Groves-Clarke mechanisms. The budget-balance problem in a combi-

natorial exchange is addressed in Parkes, Kalagnanam & Eso [PKE01], where we propose

a number of methods to trade-o� strategy-proofness and allocative e�ciency for budget-

balance.

2.4.5 The Generalized Vickrey Auction

The Generalized Vickrey Auction is an application of the Pivotal mechanism to the combi-

natorial allocation problem. The combinatorial allocation problem (CAP) was introduced

in Section 1.2. There are a set G of items to allocate to I agents. The set of choices

K = f(S1; : : : ; SI) : Si \ Sj = ;; Si � Gg where Si is an allocation of a bundle of items

to agent i. Given preferences (or type) �i, each agent i has a quasi-linear utility function,

ui(S; pi; �i) = vi(S; �i)�pi, for bundle S and payment pi. For notational simplicity we will

drop the \type" notation in this section, and simply write vi(S; �i) = vi(S).

The e�cient allocation computes an allocation to maximize the total value:

S� = arg max
S=(S1;::: ;SI)

X
i

vi(Si)

s.t. Si \ Sj = ;; for all i; j

The Pivotal mechanism applied to this problem is a sealed-bid combinatorial auction,

often called the Generalized Vickrey Auction (GVA). The special case for a single item is

the Vickrey auction. In the GVA each agent bids a value for all possible sets of items, and

the mechanism computes an allocation and payments.

The GVA has the following useful properties:
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Theorem 2.5 (Generalized Vickrey Auction). The GVA is e�cient, strategy-proof,

individual-rational, and weak budget-balanced for agents with quasi-linear preferences in

the combinatorial allocation problem.

Description

Each agent i 2 I submits a (possibly untruthful) valuation function, v̂i(S), to the auc-

tioneer. The outcome rule in the Pivotal mechanism computes k�(�̂), the allocation that

maximizes reported value over all agents. In the GVA this is equivalent to the auctioneer

solving a \winner-determination" problem, solving CAP with the reported values and com-

puting allocation S� = (S�1 ; : : : ; S
�
I ) to maximize reported value. Let V � denote the total

value of this allocation. Allocation S� is the allocation implemented by the auctioneer.

The payment rule in the Pivotal mechanism also requires that the auctioneer solves a

smaller CAP, with each agent i taken out in turn, to compute k��i(��i), the best allocation

without agent i. Let (S�i)
� denote this second-best allocation, and (V�i)

� denote its value.

Finally, from the Groves-Clarke payment rule ti(�̂), see (2.1) and (2.2), the auctioneer

computes agent i's payment as:

pvick(i) = (V�i)
� �
X
j 6=i

v̂j(S
�
j )

In words, an agent pays the marginal negative e�ect that its participation has on the

(reported) value of the other agents. Equivalently, the Vickrey payment can be formulated

as a discount �vick(i) from its bid price, v̂i(S
�
i ), i.e. pvick(i) = v̂i(S

�
i )��vick(i), for Vickrey

discount:

�vick(i) = V � � (V�i)
�

Analysis

E�ciency and strategy-proofness follow immediately from the properties of the Groves

mechanism. Weak budget-balance also holds; it is simple to show that each agent pays

a non-negative amount to the auctioneer by a simple feasibility argument. Individual-

rationality also holds, and agents pay no more than their value for the bundle they receive;
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Name Preferences Solution Impossible Environment
concept

GibSat general dominant Non-dictatorial general
(incl. Pareto Optimal)

Hurwicz quasi-linear dominant E�& BB simple-exchange
MyerSat quasi-linear Bayesian-Nash E�& BB & IR simple-exchange
GrLa� quasi-linear coalition-proof E� simple-exchange

Table 2.1: Mechanism design: Impossibility results. E� is ex post allocative e�ciency, BB is ex
post (and strong) budget-balance, and IR is interim individual rationality.

it is simple to show that discounts are always non-negative, again by a simple feasibility ar-

gument. Alternatively, one can verify that conditions choice-set monotonicity, no negative

externalities, and no single-agent e�ect hold for the CAP.

2.5 Impossibility Results

The revelation principle allows the derivation of a number of impossibility theorems that

outline the combinations of properties that no mechanism can achieve (with fully rational

agents) in particular types of environments. The basic approach to show impossibility is

to assume direct-revelation and incentive-compatibility, express the desired properties of

an outcome rule as a set of mathematical conditions (including conditions for incentive-

compatibility), and then show a con
ict across the conditions.

Table 2.1 describes the main impossibility results. Results are delineated by conditions

on agent preferences, the equilibrium solution concept, and the assumptions about the

environment. The \Impossible" column lists the combinations of desirable mechanism

properties that cannot be achieved in each case.

As discussed in Section 2.2.2, ex post refers to conditions tested at the outcome of

the mechanism. Interim individual-rationality means that an agent that knows its own

preferences but only has distributional information about the preferences of other agents

will choose to participate in the mechanism.

A few words about the interpretation of impossibility results are probably useful. Im-

possibility for restricted preferences in an exchange is more severe than for general prefer-

ences and general environments, because general conditions include these as special cases.
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In addition, impossibility for weak solution concepts such as Bayesian-Nash is more restric-

tive than impossibility for strong solution concepts like dominant strategy implementation.

We also need a few more de�nitions:

Definition 2.27 [dictatorial] A social-choice function is dictatorial if one (or more)

agents always receives one of its most-preferred alternatives.

Definition 2.28 [general preferences] Preferences �i are general when they provide a

complete and transitive preference ordering � on outcomes. An ordering is complete if for

all o1; o2 2 O, we have o1 � o2 or o2 � o1 (or both). An ordering is transitive if for all

o1; o2; o3 2 O, if o1 � o2 and o2 � o3 then o1 � o3.

Definition 2.29 [coalition-proof] A mechanismM is coalition-proof if truth revelation

is a dominant strategy for any coalition of agents, where a coalition is able to make side-

payments and re-distribute items after the mechanism terminates.

Definition 2.30 [general environment] A general environment is one in which there is

a discrete set of possible outcomes O and agents have general preferences.

Definition 2.31 [simple exchange] A simple exchange environment is one in which

there are buyers and sellers, selling single units of the same good.

The Gibbard [Gib73] and Satterthwaite [Sat75] impossibility theorem shows that for

a su�ciently rich class of agent preferences it is impossible to implement a satisfactory

social choice function in dominant strategies. A related impossibility result, due to Green

and La�ont [GJJ77] and Hurwicz [Hur75], demonstrates the impossibility of e�ciency and

budget-balance with dominant strategy implementation, even in quasi-linear environments.

More recently, the Myerson-Satterthwaite impossibility theorem [Mye83] extends this

impossibility to include Bayesian-Nash implementation, if interim individual-rationality is

also required. Williams [Wil99] and Krishna & Perry [KP98] provide alternative deriva-

tions of this general impossibility theorem, using properties about the Groves family of

mechanisms.

Green & La�ont [GL79] demonstrate that no allocatively-e�cient and strategy-proof

mechanism can also be safe from manipulation by coalitions, even in quasi-linear environ-

ments.

The following sections describe the results in more details.

50



2.5.1 Gibbard-Satterthwaite Impossibility Theorem

A negative result due to Gibbard [Gib73] and Satterthwaite [Sat75] states that it is im-

possible, in a su�ciently rich environment, to implement a non-dictatorial social-choice

function in dominant strategy equilibrium.

Theorem 2.6 (Gibbard-Satterthwaite Impossibility Theorem). If agents have general

preferences, and there are at least two agents, and at least three di�erent optimal outcomes

over the set of all agent preferences, then a social-choice function is dominant-strategy

implementable if and only if it is dictatorial.

Clearly all dictatorial social-choice functions must be strategy-proof. This is simple to

show because the outcome that is selected is the most preferred, or maximal outcome, for

the reported preferences of one (or more) of the agents| so an agent should report its

true preferences. For a proof in the other direction, that any strategy-proof social-choice

function must be dictatorial, see MasColell et al. [MCWG95].

Impossibility results such as Gibbard-Satterthwaite must be interpreted with great care.

In particular the results do not necessarily continue to hold in restricted environments. For

example, although no dictatorial social choice function can be Pareto optimal or e�cient,

this impossibility result does not apply directly to markets. The market environment natu-

rally imposes additional structure on preferences. In particular, the Gibbard-Satterthwaite

impossibility theorem may not hold if one of the following conditions are relaxed:

| additional constraints on agent preferences (e.g. quasi-linear)

| weaker implementation concepts, e.g. Bayesian-Nash implementation

In fact a market environment has been shown to make implementation easier. Section

2.6 introduces a number of non-dictatorial and strategy-proof mechanisms in restricted

environments; e.g. McAfee [McA92] for quasi-linear preferences in a double-auction, and

Barber�a & Jackson [BJ95] for quasi-concave preferences in a classic exchange economy.

2.5.2 Hurwicz Impossibility Theorem

The Hurwicz impossibility theorem [Hur75] is applicable to even simple exchange economies,

and for agents with quasi-linear preferences. It states that it is impossible to implement
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an e�cient and budget-balanced social choice function in dominant-strategy in market set-

tings, even without requiring individual-rationality and even with additional restrictions

on agent valuation functions.1

Hurwicz [Hur72] �rst showed a con
ict between e�ciency and strategy-proofness in a

simple two agent model. The general impossibility result follows from Green & La�ont

[GJJ77] and Hurwicz [Hur75], and more recently Hurwicz and Walker [HW90]. Green &

La�ont and Hurwicz established that no member of the Groves family of mechanisms has

budget-balance, and that the Groves family is the unique set of strategy-proof implemen-

tation rules in a simple exchange economy. I �nd it useful to refer to this result as the

Hurwicz impossibility theorem.

Theorem 2.7 (Hurwicz Impossibility Theorem). It is impossible to implement an ef-

�cient, budget-balanced, and strategy-proof mechanism in a simple exchange economy with

quasi-linear preferences.

This result is quite negative, and suggests that if allocative e�ciency and budget-

balance are required in a simple exchange economy, then looking for dominant strategy

solutions is not useful (via the revelation principle). Fortunately, strong budget-balance

if often not necessary, and we can achieve strategy-proofness, e�ciency and weak budget-

balance via the Vickrey-Clarke-Groves mechanisms in a number of interesting domains.

2.5.3 Myerson-Satterthwaite Impossibility Theorem

The Myerson-Satterthwaite impossibility theorem [Mye83] strengthens the Hurwicz impos-

sibility result to include Bayesian-Nash implementation, if interim individual-rationality

is also required.

Theorem 2.8 (Myerson-Satterthwaite). It is impossible to achieve allocative e�ciency,

budget-balance and (interim) individual-rationality in a Bayesian-Nash incentive-compatible

mechanism, even with quasi-linear utility functions.

1Schummer [Sch97] has recently shown that even for the case of two agents with linear preferences it is
not possible to achieve strategy-proofness and e�ciency.
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Name Pref Solution Possible Environment
Groves quasi-linear dominant E� & (IR or WBB) exchange VCG
dAGVA quasi-linear Bayesian-Nash E� & BB exchange [dG79, Arr79]
Clarke quasi-linear dominant E� & IR exchange [Cla71]
GVA quasi-linear dominant E�, IR & WBB comb auction VCG
MDP classic iterative Pareto exchange [DdlVP71, Mal72

local-Nash Rob79]
BJ95 classic dominant BB & non-dictatorial exchange [BJ95]

Quadratic classic Nash Pareto & IR exchange [GL77b]

Table 2.2: Mechanism design: Possibility results. E� is ex post allocative e�ciency, BB is ex post
strong budget-balance, WBB is ex post weak budget-balance, IR is interim individual-rationality,
Pareto is ex post Pareto-optimality.

Myerson & Satterthwaite [Mye83] demonstrate this impossibility in a two-agent one-

good example, for the case that trade is possible but not certain (e.g. the buyer and seller

have overlapping valuation ranges). Williams [Wil99] and Krishna & Perry [KP98] provide

alternative derivations of this general impossibility result, using properties of the Groves

family of mechanisms.

An immediate consequence of this result is that we can only hope to achieve at most

two of E�, IR and BB in an market with quasi-linear agent preferences, even if we look

for Bayesian-Nash implementation. The interested reader can consult La�ont & Maskin

[LM82] for a technical discussion of various approaches to achieve any two of these three

properties.

In the next section we introduce the dAGVA mechanism [Arr79, dG79], that is able

to achieve e�ciency and budget-balance, but loses individual-rationality. The dAGVA

mechanism is an \expected Groves mechanism."

2.6 Possibility Results

The central positive result is the family of Vickrey-Clarke-Groves (VCG) mechanisms,

which are allocatively-e�cient (but not budget-balanced) strategy-proof mechanisms in

quasi-linear domains. VCG mechanisms clearly demonstrate that it is possible to im-

plement non-dictatorial social choice functions in more restricted domains of preferences.

However, as expected from the impossibility results of Green & La�ont [GJJ77] and Hur-

wicz [Hur75], they are not e�cient and strong budget-balanced.

Table 2.2 summarizes the most important possibility results. A quick check con�rms
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that these possibility results are all consistent with the impossibility results of Table 2.1!

By the revelation principle we e�ectively get \incentive-compatibility" for free in direct-

revelation mechanisms, and these are all incentive-compatible except the iterative MDP

procedure.

The possibility results are delineated by agent preferences, the equilibrium solution

concept and the environment or problem domain.

We need a few additional de�nitions to explain the characterization.

Definition 2.32 [classic preferences] Classic preferences are strictly quasi-concave, con-

tinuous and increasing utility functions.

Definition 2.33 [exchange environment] Exchange simply refers to a bilateral trading

situation, with agents that have general valuation functions (including bundle values).

Contrary to impossibility results, for possibility results a strong implementation con-

cept is more useful than a weak implementation, e.g. dominant is preferred to Bayesian-

Nash, and a general environment such as an exchange is preferred to a more restricted

environment such as a combinatorial auction (which can be viewed as a one-sided ex-

change).

The Groves, Clarke (Pivotal), and GVA mechanisms have already been described

in Section 2.4. Checking back with the impossibility results: Groves mechanisms are

consistent with the Gibbard-Satterthwaite impossibility theorem because agent prefer-

ences are not general but quasi-linear;2 and Groves mechanisms are consistent with the

Hurwicz/Myerson-Satterthwaite impossibility theorems because strong budget-balance does

not hold. Groves mechanisms are not strong budget-balanced. This failure of strong

budget-balance can be acceptable in some domains; e.g., in one-sided auctions (combina-

torial or otherwise) with a single seller and multiple buyers it may be acceptable to achieve

weak budget-balance and transfer net payments to the seller.

2.6.1 E�ciency and Strong Budget-Balance: dAGVA

An interesting extension of the Groves mechanism, the dAGVA (or \expected Groves")

mechanism, due to Arrow [Arr79] and d'Aspremont & G�erard-Varet [dG79], demonstrates

that it is possible to achieve e�ciency and budget-balance in a Bayesian-Nash equilibrium,

2MasColell also notes that there are no dictatorial outcomes in this environment.
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even though this is impossible in dominant-strategy equilibrium (Hurwicz). However, the

dAGVA mechanism is not individual-rational, which we should expect by the Myerson-

Satterthwaite impossibility theorem.

Theorem 2.9 (dAGVA mechanism). The dAGVA mechanism is ex ante individual-

rational, Bayesian-Nash incentive-compatible, e�cient and (strong) budget-balanced with

quasi-linear agent preferences.

The dAGVA mechanism is a direct-revelation mechanism in which each agent an-

nounces a type �̂i 2 �i, that need not be its true type. The mechanism is an \expected-

form" Groves mechanism [Rob87, KP98].

The allocation rule is the same as for the Groves mechanism:

k�(�̂) = max
k2K

X
i

vi(k; �̂i)

The structure of the payment rule is also quite similar to that in the Groves mechanism:

ti(�̂) = hi(�̂�i)�E��i

2
4X

j 6=i

vj(k
�(�̂i; ��i); �j)

3
5

where as before h(�) is an arbitrary function on agents' types. The second term is the

expected total value for agents j 6= i when agent i announces type �̂i and agents j 6= i

tell the truth. It is a function of only agent i's announcement, not of the actual strategies

of agents j 6= i, making it a little di�erent from the formulation of agent transfers in

the Groves mechanism. In e�ect, agent i receives a transfer due to this term equal to the

expected externality of a change in its own reported type on the other agents in the system.

The Bayesian-Nash incentive-compatibility with this transfer follows from a similar

line of reasoning as the strategy-proofness of the Groves mechanisms. A proof is in the

appendix to this chapter.

The interesting thing about the dAGVA mechanism is that it is possible to choose the

hi(�) functions to satisfy budget-balance, such that
P

i ti(�) = 0 for all � 2 �i. De�ne the

\expected social welfare (or value)" of agents j 6= i when agent i announces its type �i as

SW�i(�̂i) = E��i

2
4X

j 6=i

vj(k
�(�̂i; ��i); �j)

3
5
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and note that this does not depend on announced types of agents j 6= i. The additional

term in the payment rule is de�ned, for agent i, as:

hi(�̂�i) =

�
1

I � 1

�X
j 6=i

SW�j(�̂j)

which is the \averaged" expected social welfare to every other agent given the announced

types of agents j 6= i. This gives budget-balance because each agent also pays an equal

1=(I � 1) share of the total payments made to the other agents, none of which depend on

its own announced type. See the appendix of this chapter for a proof.

The incentive properties and properties of full optimality, i.e. e�ciency and budget-

balance, make the dAGVA procedure very attractive. However, the dAGVA mechanism

has a number of problems:

(1) it may not satisfy the individual rationality constraint (even ex ante)

(2) Bayesian-Nash implementation is much weaker than dominant-strategy implemen-

tation

(3) it places high demands on agent information-revelation

Roberts [Rob87] provides a very interesting discussion of the conditions required for an

iterative method to implement the dAGVA mechanism with less information from agents.

In fact, he claims that it is impossible to �nd a successful iterative procedure because

an agent's announcement in earlier periods must also a�ect its payments in subsequent

periods, breaking incentive-compatibility.

2.6.2 Dominant-strategy Budget-Balance with Ine�cient Allocations

A number of mechanisms have been proposed to achieve budget-balance (perhaps weak

budget-balance) in dominant strategy mechanisms, for some loss in allocative e�ciency.

McAfee [McA92] presents a mechanism for a double auction (with multiple buyers and sell-

ers) that is strategy-proof and satis�es weak budget-balance, but for some loss in allocative

e�ciency.

Barber�a & Jackson [BJ95] characterize the set of strategy-proof social-choice func-

tions that can be implemented with budget-balance in an exchange economy with clas-

sic preferences. Comparing back with the Gibbard-Satterthwaite impossibility theorem

[Gib73, Sat75], it is possible to implement non-dictatorial social choice functions in this

restricted set of preferences, even though preferences are not quasi-linear. In fact Barber�a
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& Jackson show that it is necessary and su�cient to implement \�xed-proportion trad-

ing rules", in which (loosely speaking) agents trade in pre-speci�ed proportions. Given

Hurwicz's impossibility theorem, it is not surprising that the trading rules are not fully

allocatively-e�cient.

2.6.3 Alternative implementation Concepts

One method to extend the range of social-choice functions that can be implemented is

to consider alternative equilibrium solution concepts. In the context of direct-revelation

mechanisms (i.e. static games of incomplete information) we have already observed that

Bayesian-Nash implementation can help (e.g. in the dAGVA mechanism). One di�culty

with Bayesian-Nash implementation is that it requires more information and rationality

assumptions of agents. Similarly, we might expect that moving to a Nash implementation

concept can help again.

Groves & Ledyard [GL77] inspired much of the literature on Nash implementation.

The Quadratic mechanism is Pareto e�cient in the exchange environment with classic

preferences, in that all Nash equilibria are Pareto e�cient. In this sense, it is demon-

strated that it is possible to implement budget-balanced and e�cient outcomes with Nash

implementation, while (Myerson-Satterthwaite) this is not possible with Bayesian-Nash.

However, the Nash implementation concept is quite problematic. An agent's Nash

strategy depends on the strategies of other agents, and on complete information about

the (private) types of each agent. Clearly, it is quite unreasonable to expect agents to

select Nash strategies in a one-shot direct-revelation mechanism. The solution concepts

only make sense if placed within an iterative procedure, where agents can adjust towards

Nash strategies across rounds [Gro79].

Moore & Rupullo [MR88] consider subgame-perfect Nash implementation in dynamic

games, and show that this expands the set of social-choice functions that can be im-

plemented in strategy-proof mechanisms. Of course, introducing a new solution concept

requires a new justi�cation of the merits of the subgame-perfect re�nement to Nash equi-

librium in a dynamic game. A fascinating recent idea, due to Kalai & Ledyard [KL98]

considers \repeated implementation", in which the authors consider the implementable

social-choice functions in a repeated game, with strong results about the e�ect on imple-

mentation.
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The mechanism design literature is almost exclusively focused on direct-revelation

mechanisms and ignores the costs of information revelation and centralized computation.

One exception is the MDP planning procedure, proposed by Dr�eze & de la Vall�ee Poussin

[DdlVP71] and Malinvaud [Mal72]. The MDP mechanism is an iterative procedure, in

which in each round each agent announces \gradient" information about its preferences

for di�erent outcomes. The center adjusts the outcome towards a Pareto optimal solution

in an exchange environment with classic agent preferences. If the agents report truthful

information the MDP procedure is Pareto optimal (i.e. fully e�cient).

Dr�eze & de la Vall�ee Poussin [DdlVP71] also consider the incentives to agents for

reporting truthful information in each round, and showed that truthful revelation is a

local maximin strategy (i.e. maximizes the utility of an agent given that other agents

follow a worst-case strategy). Truth revelation is also a Nash equilibrium at termination.

In addition, Roberts [Rob79] proved that if agents play a local Nash equilibrium at

each stage in the procedure, to maximize the immediate increase in utility of the project,

then the mechanism will still converge to a Pareto optimum even though the agents do

not report truthful information. Roberts retains a myopic assumption, and studied only a

local game in which agents did not also consider the e�ect of information on future rounds.

Champsaur & Laroque [CL82] departed from this assumption of myopic behavior, and

assumed that every agent considers the Nash equilibrium over a period of T periods. The

agents forecast the strategies of other agents over T periods, and play a Nash equilibrium.

The MDP procedure is still Pareto optimal, but the main di�erence is that the center has

much less control over the �nal outcome (it is less useful as a policy tool). The outcome

for large T approaches the competitive equilibrium.

Modeling agents with a Nash equilibrium, even in the local game, still makes the

(very) unreasonable assumption that agents have complete information about each others'

preferences, for example to compute the equilibrium strategies. Roberts [Rob79] discusses

iterative procedures in which truthful revelation locally dominant at each stage. Of course,

one must expect some loss of e�ciency if strategy-proofness is the goal.

iBundle [Par99, PU00a] is an e�cient ascending-price auction for the combinatorial al-

location problem, with myopic best-response agent strategies. The auction is weak budget-

balanced, and individual-rational. Although myopic best-response is not a rational sequen-

tial strategy for an agent, it is certainly a more reasonable implementation concept than
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a local Nash strategy, requiring only price information and information about an agent's

own preferences. As discussed in Chapter 7, an extended auction, iBundle Extend&Adjust,

provably computes VCG payments in many problems. Computing the outcome of a Groves

mechanism with myopic best-response strategies makes myopic best-response a Bayesian-

Nash equilibrium of the iterative auction.

2.7 Optimal Auction Design

In a seminal paper, Myerson [Mye81] adopted a constructive approach to mechanism design

for private-values auction, in which an agent's value is independent of that of other agents.

Myerson considers an objective of revenue maximization, instead of allocative-e�ciency,

and formulates the mechanism design problem as an optimization problem. The objective

is to design an outcome function for a direct-revelation mechanism that maximizes the

expected revenue subject to constraints on: feasibility (no item can be allocated more than

once); individual-rationality (the expected utility for participation is non-negative); and

incentive-compatibility.

Focusing on direct-revelation mechanisms (following the revelation principle), Myerson

derives conditions on the allocation rule k : � ! K and the payment rules ti : � ! R

for an auction to be optimal. Without solving for explicit functional forms k(�) and ti(�)

Myerson is able to derive the revenue equivalence theorem, which essentially states that

any auction that implements a particular allocation rule k(�) must have the same expected

payments.

In general the goals of revenue-maximization and e�ciency are in con
ict. Myerson

constructs an optimal (revenue-maximizing) auction in the simple single-item case, and

demonstrates that a seller with distributional information about the values of agents can

maximize its expected revenue with an ine�cient allocation-rule. The seller announces a

non-zero reservation price, which increases its revenue in some cases but also introduces a

slight risk that the seller will miss a pro�table trade (making it ine�cient).

Krishna & Perry [KP98] develop a generalized revenue-equivalence principle:

Theorem 2.10 (generalized revenue-equivalence). In quasi-linear environments, all

Bayesian-Nash incentive-compatible mechanisms with the same choice rule k(�) are expected

revenue equivalent up to an additive constant.
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This is essentially a statement that all mechanisms that implement a particular allo-

cation rule are equivalent in their transfer rules. We have already seen a similar result,

i.e. that the Groves mechanisms are unique among e�cient & strategy-proof mechanisms

[GL87].

Krishna & Perry also show that the GVA maximizes revenue over all e�cient and

individual-rational mechanisms, even amongst mechanisms with Bayesian-Nash implemen-

tation:

Theorem 2.11 (Revenue-optimality of GVA). The GVA mechanism maximizes the

expected revenue amongst all e�cient, (Bayesian-Nash) incentive-compatible, and individual-

rational mechanisms.

It is interesting that the dominant-strategy GVA mechanism maximizes revenue over

all Bayesian-Nash incentive-compatible and e�cient mechanisms.

Ausubel & Cramton [AC98] make a simpler argument for e�cient mechanisms in the

presence of after-markets. Intuitively, in the presence of an after-market that will allow

agents to achieve an e�cient allocation outside of the auction, the auctioneer maximizes

pro�ts by providing agents with an allocation that they �nd most desirable and extracting

their surplus. A similar argument can be made in the presence of alternate markets. If

the auctioneer does not compute e�cient allocations then agents will go elsewhere.

Appendix: Proof of dAGVA properties

The intuition behind the Bayesian-Nash incentive-compatibility of the dAGVA mechanism

follows a similar line of reasoning to that for the strategy-proofness of Groves. Suppose that

the other agents announce their true types, the expected utility to agent i for announcing

its true type (given correct information about the distribution over the types of other
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agents) is:
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and this is greater than
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for all �̂i 2 �i because by reporting its true type the agent explicitly instructs the mech-

anism to compute an allocation that maximizes the inner-term of the expectation for all

possible realizations of the types ��i of the other agents.

Finally, we show that the dAGVA mechanism is budget-balanced:
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X
i
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Intuitively, each agent i receives a payment equal to SW�i(�i) for its announced type,

which is the expected social welfare e�ect on the other agents. To balance the budget each

agent also pays an equal 1=(I � 1) share of the total payments made to the other agents,

none of which depend on its own announced type.
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