Lecture notes 3: Solving linear and integer programs using the
GNU linear programming kit

Vincent Conitzer

In this set of lecture notes, we will study how to solve linear and integer programs using standard
solvers. Specifically, we will use the GNU linear programming kit (GLPK), which is available free
of charge. Other solvers (including commercial solvers) can be used similarly.

The key issue we will study here is how to represent a linear or integer program, that is, what
language (or format) we use to express the programs. We will study two different languages. The
first is straightforward. The second one is a modeling language that allows us to represent a linear or
integer program in an abstract form first—that is, using abstract sets and symbols for the parameters,
as we have done previously—after which we can instantiate the program by providing concrete
sets and concrete values for the parameters. Using the modeling language feels much more like
programming, and it has the advantage that it is very easy to modify the particular instance of
the problem. An alternative approach to using the modeling language is to write some code in a
programming language such as C or Java that automatically generates the linear or integer program
(in the basic language) based on some input. This approach can be useful, especially in the context
of a bigger project; but often the modeling language suffices, and it is much easier and faster to use.
Linear and integer programs written in the modeling language, with concrete instantiations of the
sets and parameters, can easily be converted to linear programs in the basic language.

1 The basic (.1p) language

In the basic language, the integer program for the painting problem instance can be represented as
follows:

maximize

3x1 + 2x2
subject to
4x1 + 2x2 < 15
x1 + 2x2 < 8
x1 + x2 <5
bounds

x1>0

x2>0

integer

x1

x2

end

Note the use of strict inequalities instead of weak inequalities, even though they are in fact still
interpreted as weak inequalities. If integrality is not required, then the lines



integer
x1
x2

can be dropped.

If all of this is placed into a file called painting.1lp, we can solve it by entering the command:
glpsol --cpxlp painting.lp -o painting.out
This places the output in a file called painting.out. The resulting output is the following:

Problem:

Rows: 3

Columns: 2 (2 integer, O binary)
Non-zeros: 6

Status: INTEGER OPTIMAL

Objective: obj = 12 (MAXimum) 12.5 (LP)

No. Row name Activity Lower bound Upper bound

1r.4 14 15

r.5 8 8

3 r.6 5 5

No. Column name Activity Lower bound Upper bound
1 x1 2 0
x2 3 0

Integer feasibility conditions:

INT.PE: max.abs.err. = 0.00e+00 on row O
max.rel.err. 0.00e+00 on row O
High quality

INT.PB: max.abs.err. = 0.00e+00 on row O
max.rel.err. 0.00e+00 on row O
High quality

End of output

The optimal solution to the problem instance can be read off from the column activities (2 and
3), and the objective value is given higher up (12). From the row activities we can also see how
much of each paint color is being used.

Minimize can also be used instead of Maximize.

2 The modeling (.mod) language

We now arrive at the more interesting modeling language. The easiest way to learn how to use this
language is to look at some example programs. Here is the painting problem again:



set PAINTINGS;
set COLORS;

var quantity_produced{j in PAINTINGS}, >=0, integer;
param selling price{j in PAINTINGS};

param paint_available{i in COLORS};

param paint_needed{i in COLORS, j in PAINTINGS};

maximize revenue: sum{j in PAINTINGS} selling price[jl*quantity_produced[j];

s.t. enough_paint{i in COLORS}: sum{j in PAINTINGS}
paint_needed[i,jl*quantity_produced[j] <= paint_available[i];

data;

set PAINTINGS := pl p2;
set COLORS := blue green red;

param selling_price := pl 3 p2 2;
param paint_available := blue 15 green 8 red 5;

param paint_needed :

pl  p2 :=
blue 4 2
green 1 2
red 1 1;
end;

Note how we first give the abstract form of the program, then (preceded by data;) we give the
specific instantiation. Naturally, one needs to be careful to use brackets, semicolons, etc. correctly.

We first specify two abstract sets, PAINTINGS and COLORS. These are later instantiated to p1
p2 and blue green red, but we could have instantiated them in other ways as well, for example
night_watch starry_night and cyan magenta yellow black. Such a change does not require any
change above the data; line.

We then specify the variables of the problem in the line var quantity_produced{j in PAINTINGS},
>=0, integer; This means that there will be one nonnegative integer quantity_produced variable
for every painting (indicating how many reproductions of that painting we make). If integrality is
not required, then , integer can be dropped.

Next, we specify the parameters of the problem. For example, the line param paint_needed{i
in COLORS, j in PAINTINGS}; means that there will be one paint_needed parameter for every
combination of a color and a painting. Note that the modeling language makes the distinction
between variables and parameters explicit.

The objective is next. We have to give a name to the objective, in this case revenue. We then
sum the product of selling price and quantity_produced over all paintings. Of course, we are
only allowed to take this product because selling price is a parameter and not a variable; had it
been a variable, then this would not have been linear.

The constraints are next. s.t. is short for subject to. We also have to give names to the
constraints. enough paint{i in COLORS} means that there is one enough paint constraint for



every color (and i is that color in the constraint).

This completely specifies the problem in the abstract. To solve it, we need a concrete instantiation
of this problem (that is, the sets and parameters). The line data; indicates that we will specify the
data next. The data part is fairly self-explanatory. Note how we can nicely specify a 2-dimensional
parameter such as paint_needed in matrix form.

If all of this is placed in a file called painting.mod, then we can solve it with
glpsol --math painting.mod -o painting.out
After this, painting.out will contain:

Problem: painting

Rows: 4

Columns: 2 (2 integer, O binary)
Non-zeros: 8

Status: INTEGER OPTIMAL

Objective: revenue = 12 (MAXimum) 12.5 (LP)

No. Row name Activity Lower bound Upper bound
1 revenue 12
2 enough_paint [blue]
14 15
3 enough_paint [green]
8 8
4 enough_paint [red]
5 5
No. Column name Activity Lower bound Upper bound
1 quantity_produced [p1]
* 2 0
2 quantity_produced [p2]
* 3 0

Integer feasibility conditions:

INT.PE: max.abs.err. = 0.00e+00 on row O
0.00e+00 on row O

max.rel.err.
High quality

o

INT.PB: max.abs.err. 0.00e+00 on row

0.00e+00 on row O

max.rel.err.
High quality

End of output

Incidentally, a problem instance expressed in the modeling language can be converted to a linear
program in the basic language using the command:
glpsol --check --math painting.mod --wcpxlp painting.lp
(The --check means that the solver is not actually made to solve the instance.) This produces the
following painting.1lp file:



\* Problem: painting *\

Maximize
revenue: + 3 quantity_produced(pl) + 2 quantity_produced(p2)

Subject To

enough_paint(blue): + 4 quantity_produced(pl) + 2 quantity_produced(p2)
<= 15

enough_paint (green): + quantity_produced(pl) + 2 quantity_produced(p2)
<=8

enough_paint(red): + quantity_produced(pl) + quantity_produced(p2) <= 5

Generals
quantity_produced(pl)
quantity_produced(p2)

End

2.1 Markov decision processes

Below is the Markov decision process problem from before in the modeling language. (This also
illustrates how to deal with a 3-dimensional parameter, in this case the transition probabilities.)



set STATES;
set ACTIONS;

var value{s in STATES};

param transition_probability{s in STATES, a in ACTIONS, s2 in STATES};
param reward{s in STATES, a in ACTIONS};

param discount_factor;

minimize total: sum{s in STATES} valuel[s];

s.t. bellman{s in STATES, a in ACTIONS}: valuel[s] >= reward[s,a] + sum{s2
in STATES} discount_factor*transition_probabilityl[s,a,s2]*value[s2];

data;

set STATES := good deteriorating broken;
set ACTIONS := maintain ignore;

param transition_probability:=

[*,*,good] :

maintain ignore :=
good 1 .5
deteriorating .9 0
broken .2 0

[*,*,deteriorating]:
maintain ignore :

good 0 .5
deteriorating .1 .5
broken 0 0

[*,*,broken] :
maintain ignore :

good 0 0
deteriorating O .5
broken .8 1;

param reward:
maintain ignore :

good 1 2
deteriorating 1 2
broken -1 0;
param discount_factor := .9;
end;

The output produced is:



Upper bound

Upper bound

Marginal

16.9485

9.48004

3.57143

Marginal

Problem: mdp
Rows: 7
Columns: 3
Non-zeros: 13
Status: OPTIMAL
Objective: total = 39.80567227 (MINimum)
No Row name St  Activity Lower bound
1 total B 39.8057
2 bellman[good,maintain]
B 1.66912 1
3 bellman[good,ignore]
NL 2 2
4 bellman[deteriorating,maintain]
NL 1 1
5 bellman[deteriorating,ignorel
B 5.55436 2
6 bellman[broken,maintain]
NL -1 -1
7 bellman[broken,ignore]
B 0.715861 -0
No. Column name St  Activity Lower bound
1 value[good] B 16.6912
2 value[deteriorating]
B 15.9559
3 value[broken]
B 7.15861

Karush-Kuhn-Tucker optimality conditions:

KKT.PE:

KKT.PB:

KKT.DE:

KKT.DB:

max.
max.
High

max.
max.
High

max.
max.
High

max.
max.
High

abs.err. = 3.55e-15 on row 1
rel.err. = 9.50e-16 on row 4
quality

abs.err. = 0.00e+00 on row O
rel.err. = 0.00e+00 on row O
quality

abs.err. = 1.47e-15 on column 2
rel.err. = 7.33e-16 on column 2
quality

abs.err. = 0.00e+00 on row O
rel.err. = 0.00e+00 on row O

quality



End of output

From this output, we can read off the values of the states, which is already enough to deter-
mine the optimal policy. In fact, we can read off the optimal policy directly: the optimal ac-
tion to take in each state is the action for which there is no slack in the constraint. The con-
straints for which this is true are bellman[good,ignore], bellman[deteriorating,maintain],
bellman[broken,maintain], so we should maintain the machine unless it is in good shape.



