
CompSci 101

Fall 2021

Lecture 20

Reminders

• NO CLASS TUESDAY! (TRAVEL SAFELY!)

• Assignments

• APT 7 due TOMORROW (11/19)

• APT 8 live

• Assign 6 and 7 live
• GRACE PERIOD ENDS DEC 3! NOT ACCEPTED AFTER

THIS!

• Assessment sent via Learning Innovation

• 80% response rate by 11/30Extra credit

• Spring 2022 UTA applications open

• See Ed announcement

2

Key instructions

• Input ✔

• Output ✔

• Assignments* ✔

• Math/Logic ✔

• Conditionals✔

• Repetition ✔

*not listed in book

3

Python Data Types

• int, float, bool ✔

• Collections

• Strings ✔

• Lists ✔

• Tuples ✔

• Sets ✔

• Dictionaries ✔

4

PFTD

• Exceptions

• Recommender

• Recommendations big picture

• Assignment big picture

• Simple recommendation example

• Actual recommendation assignment

5

KISS Principle

• Think of the non-computing context for any
word/terms

• KISS model

• Work smarter, not harder!!

• “Good programmers are simply good
designers.”

• -Dr. Washington

• Design first and always!

• Importance of reusability

• USE PyCharm/PythonTutor IF YOU HAVE
QUESTIONS!

6

People to Know:
Andrea Delgado-
Olson

• BS/MS (Mills College)
• Native American Women in

Computing
• Founder and Chair

• Program Manager
• GHC Communities and Systers

• Created Udacity course (Android
Basics Nanodegree for Multiscreen
Apps) in her native language
(Miwok).

• Ione Miwok

Why use modules?

• Easier to organize code

• Easier to reuse code

• Easier to change code

• As long as the “what” is the same, the “how”

can change

• Ex: sorted(…), one function many sorting

algorithms

8

In laterLab, Modules for Creating

9

• “MadLibs” → Tag-a-Story

• User chooses template

• Computer fills everything in

In lecture I saw a <color> <noun>
For lunch I had a <adjective> <food>
The day ended with seeing a <animal>
<verb> in <place>

From <noun> to story

In lecture I saw a
<color> <noun>

For lunch I had a
<adjective> <food>

The day ended with
seeing a <animal>
<verb> in <place>

In lecture I saw a
magenta house

For lunch I had a
luminous hummus

The day ended with
seeing a cow sleep
in Mombasa

10

This Photo by Unknown
Author is licensed under CC
BY-NC-ND

This Photo by Unknown Author is
licensed under CC BY-NC-ND This Photo by Unknown Author is

licensed under CC BY-SA

https://www.wired.it/lifestyle/design/2019/01/18/casa-mobile-vivere-ovunque/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.alimentazioneinequilibrio.com/le-scelte-alimentari-per-il-fabbisogno-di-ferro/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://en.wikivoyage.org/wiki/Qolora
https://creativecommons.org/licenses/by-sa/3.0/

Demo

11

Let's create/modify a story

• Choose a template or make a new one

• We'll choose lecturetemplate.txt first

• Add a new category/replacement

• We'll choose number and list some choices

• Run the program and test our modifications

• Randomized, hard to test, but doable

12

Main Parts for tag-a-story

• Put everything together, the template and
words

• Storyline.py

• Loading and handling user choosing
templates

• TemplateChooser.py

• Loading and picking the word for a given tag

• Replacements.py

13

Main Parts for tag-a-story

• Put everything together, the template and
words

• Storyline.py

• Loading and handling user choosing
templates

• TemplateChooser.py

• Loading and picking the word for a given tag

• Replacements.py

14

Creating a story

• Main steps in Storyline.py

• Get template – use a module

• Go through template
• Get words for a tag – use a module

• Replace tag with word

• Using modules

• Assume they work

• Only care what they do, not how (abstraction!)

• If creating modules, you WOULD need to test them
to make sure they work correctly.

15

Modules in Action:

makeStory() is in Storyline.py
• How can we access TemplateChooser

functions?

• import and access as shown

16

Modules in Action:

makeStory() is in Storyline.py
• How can we access TemplateChooser

functions?

• import and access as shown

17

Another
module (file)

Modules in Action:

makeStory() is in Storyline.py
• How can we access TemplateChooser

functions?

• import and access as shown

18

A function in the
file:
TemplateChooser.py

Understanding Code/Module
doWord is in Storyline.py

• What does getReplacement do?

• How does getReplacement do it?

19

Understanding Code/Module
doWord is in Storyline.py

• What does getReplacement do?

• How does getReplacement do it?

20

Another
module (file)

Understanding Code/Module
doWord is in Storyline.py

• What does getReplacement do?

• How does getReplacement do it?

21

A function in the
file:
Replacements.py

The other module’s “what”

• Get template

• TemplateChooser.getTemplateLines(DIR)

• What:
• From the templates in the directory DIR (type: str)

• Return a list of strings, where each element is a
line from one of the templates in DIR

• Word for a tag

• Replacements.getReplacement(TAG)

• What:
• Return a random word that matches TAG (type:

str)

22

Main Parts for tag-a-story

• Put everything together, the template and
words

• Storyline.py

• Loading and handling user choosing
templates

• TemplateChooser.py

• Loading and picking the word for a given tag

• Replacements.py

23

TemplateChooser.py Steps

• List all templates in the folder

• Get user input that chooses one

• Load that template

• Return as list of strings

24

TemplateChooser.py Steps

• List all templates in the folder

• pathlib Library

• Get user input that chooses one

• Handle bad input → try…except

• Load that template

• Open file, .readlines()

• Return as list of strings

25

These Steps in Code

getTemplateLines in

TemplateChooser.py
• Read directory of templates, convert to dictionary

• Let user choose one, open and return it

26

Creating User Menu

dirToDictionary in TemplateChooser.py
• What does this function return? What type?

27

Creating User Menu

dirToDictionary in TemplateChooser.py
• What does this function return? What type?

28

d is:
0 -> haiku.txt
1 -> labtemplate.txt
2 -> lecturetemplate.txt

Folder in Pycharm

29

Output:

pathlib Library

• Path:
“rodger/Pycharm/cps101/lab11/temp/haiku.txt”

• The pathlib library is more recent/Python3

• Simpler, easier to use than functions from os

• Handles domain specifics!

• Doesn’t matter if on Windows, Mac, etc.

• We worry about the what, it handles the how

30

pathlib Library cont.

• Path:
“rodger/Pycharm/cps101/lab11/temp/haiku.txt”

• pathlib.Path(DIR).iterdir()

• Returns iterable of Path objects representing each
“thing” in the directory DIR

• Path object’s .parts – tuple of strings, each element
is a piece of a filename’s path

• (‘rodger’, ‘Pycharm’, ‘cps101’,’lab11’,
‘temp’, ‘haiku.txt’)

31

Understanding the Unknown

chooseOne in TemplateChooser.py
• We will return to this, but analyze parts now

• What's familiar? What's not familiar …

32

Python exceptions

• What should you do if you prompt user for a

number and they enter "one"

• Test to see if it has digits?

• Use exceptions with try: and except:

• See code in function chooseOne from

TemplateChooser.py

33

Handling Exceptions

• What happens: x = int("123abc")

34

When and What’s in CompSci 101

• Problem to solve

• Use 7 steps

• Step 5: How do you translate algorithm to

code?

• What do you use to solve it?

• When do you use it?

35

What are the “what’s”?

• Data Structures: list, set, dictionary, tuple

• Loops and iterables: from for to while to

iterdir()

• Other:

• List comprehensions

• Parallel lists

• Lambda

• If…if…if

• If…elif…else

36

Quick When’s and What’s for 101

• Whichever makes more sense to you:

• Parallel lists vs dictionaries

• If…if…if vs if…elif…else

• List comprehension vs for loop

• Tuples vs Lists

• If you want to prevent mutation -> tuples

• Need single line function

• Lambda vs create normal helper function

37

APT – Sorted Freqs

38

What's the best way to …

• SortedFreqs
• https://www2.cs.duke.edu/csed/pythonapt/sortedfreqs.html

• Count how many times each string occurs

• Create d = {}, iterate over list updating values

• Use data.count(w) for each w

• Wait, that looks like …

39

https://www2.cs.duke.edu/csed/pythonapt/sortedfreqs.html

What's the best way to …

• SortedFreqs
• https://www2.cs.duke.edu/csed/pythonapt/sortedfreqs.html

• Count how many times each string occurs

• Create d = {}, iterate over list updating values

• Use data.count(w) for each w

• Wait, that looks like …

40

https://www2.cs.duke.edu/csed/pythonapt/sortedfreqs.html

APT: SortByFreqs

41

Wait, wait, but what's …
• SortByFreqs

• https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

• Sort by # occurrences high to low

• Tuples with count/lambda and reverse=True?

• Break ties in alphabetical order: two passes

42

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

Wait, wait, but what's …
• SortByFreqs

• https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

• Sort by # occurrences high to low

• Tuples with count/lambda and reverse=True?

• Break ties in alphabetical order: two passes

43

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

SortByFreqs Example
• SortByFreqs

• https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

data = ["apple", "pear", "cherry", "apple", "pear", "apple", "banana“]

tups = [(3, “apple”),(1, “banana”),(1,”cherry”),(2,”pear”)]

sorted(…) line 8 = [(3,”apple”),(2,”pear”),(1, “banana”),(1,”cherry”)]

result = [“apple”,”pear”,”banana”,”cherry”]

PRINT A LOT!

• PRINT A LOT!
44

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

SortByFreqs Example
• SortByFreqs

• https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

data = ["apple", "pear", "cherry", "apple", "pear", "apple", "banana“]

tups = [(3, “apple”),(1, “banana”),(1,”cherry”),(2,”pear”)]

sorted(…) line 8 = [(3,”apple”),(2,”pear”),(1, “banana”),(1,”cherry”)]

result = [“apple”,”pear”,”banana”,”cherry”]

PRINT A LOT!

• PRINT A LOT!
45

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

Activity 1:

https://bit.ly/101f21-11-18-1

46

Reminders

• Work smarter, not harder

• Design first

• Get smaller parts working, then build on it

• Try to identify where you are stuck

• Identify resources to help solve problem

• Leverage your design and PythonTutor to

understand program flow of control

• http://pythontutor.com

47

http://pythontutor.com/

