CompSci 101
Fall 2021

Lecture 20

Reminders
NO CLASS TUESDAY! (TRAVEL SAFELY!)

Assignments
« APT 7 due TOMORROW (11/19)
« APT 8 live

« Assign 6 and 7 live

« GRACE PERIOD ENDS DEC 3! NOT ACCEPTED AFTER
THIS!

Assessment sent via Learning Innovation
« 80% response rate by 11/30->Extra credit

Spring 2022 UTA applications open
« See Ed announcement

Key Instructions

* Input v

* Output v

« Assignments* v
 Math/Logic v

« Conditionalsv
* Repetition v

*not listed in book

Python Data Types

* Int, float, bool v
* Collections
» Strings v
o Lists v
* Tuples v
¢ Sets vV
 Dictionaries v

PFTD

 Exceptions
« Recommender
« Recommendations big picture
« Assignment big picture
« Simple recommendation example

« Actual recommendation assignment

KISS Principle

Think of the non-computing context for any
word/terms

KISS model
 Work smarter, not harder!!

“Good programmers are simply good
designers.”

* -Dr. Washington
Design first and always!
Importance of reusability

USE PyCharm/PythonTutor IF YOU HAVE
QUESTIONS!

People to Know:
Andrea Delgado-
Olson

* BS/MS (Mills College)
* Native American Women in
Computing
* Founder and Chair
* Program Manager
* GHC Communities and Systers

* Created Udacity course (Android
Basics Nanodegree for Multiscreen
Apps) in her native language
(Miwok).

* lone Miwok

Why use modules?

« Easier to organize code
« Easier to reuse code

« Easier to change code
* As long as the "what” is the same, the *how”
can change

« Ex: sorted(...), one function many sorting
algorithms

In laterLab, Modules for Creating

“MadLibs” — Tag-a-Story
« User chooses template

Kid Libs Mad Libs

 Computer fills everything in MAD‘IJBS

World’s Greatest Word Game

In lecture I saw a <color> <noun>
For lunch I had a <adjective> <food>
The day ended with seeing a <animal>
<verb> in <place>

From <noun> to story

In lecture I saw a In lecture I saw a
<color> <noun> magenta house
For lunch I had a For lunch I had a

<adjective> <food> luminous hummus

The day ended with The day ended with
seeing a <animal> seeing a cow sleep

<verb> in <place> in Mombasa

e

This Photo by Unknown This Photo by Unknown Author is _ -
Author is licensed under CC licensed under CC BY-NC-ND This Photo by Unknown Author is
BY-NC-ND licensed under CC BY-SA

10

https://www.wired.it/lifestyle/design/2019/01/18/casa-mobile-vivere-ovunque/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.alimentazioneinequilibrio.com/le-scelte-alimentari-per-il-fabbisogno-di-ferro/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://en.wikivoyage.org/wiki/Qolora
https://creativecommons.org/licenses/by-sa/3.0/

Demo

Let's create/modify a story

« Choose atemplate or make a new one
« We'll choose lecturetemplate.txt first

 Add a new category/replacement
 We'll choose number and list some choices

 Run the program and test our modifications
 Randomized, hard to test, but doable

12

Main Parts for tag-a-story

* Put everything together, the template and
words

« Storyline.py

 Loading and handling user choosing
templates

« TemplateChooser.py

 Loading and picking the word for a given tag
* Replacements.py

13

Main Parts for tag-a-story

* Put everything together, the template and
words

« Storyline.py

14

Creating a story

* Main steps in Storyline.py
« Get template — use a module

* Go through template
« Get words for a tag — use a module
* Replace tag with word

* Using modules
« Assume they work
« Only care what they do, not how (abstraction!)

« If creating modules, you WOULD need to test them
to make sure they work correctly.

15

Modules In Action:
makeStory() Is In Storyline.py

« How can we access TemplateChooser
functions?

« Import and access as shown

def makeStory():
let user make a choice of
avallable templates and print
the story from the chosen template

lines = TemplateChooser.getTemplateLines("templates™)
st = linesToStory(lines)
print(st)

16

Modules In Action:
makeStory() Is In Storyline.py

« How can we access TemplateChooser
functions?

* Import and access as shown Another

def makeStory(): module (file)

let user make a choice of
avallable templates and gfint
the story from the ch#Sen template

Llines =] TemplateChooserl.getTemplateLines("templates™)

st = linesToStory(1lines)
print(st)

17

Modules In Action:
makeStory() Is In Storyline.py

« How can we access TemplateChooser
functions?

* Import and access as shown A function in the

def makeStory(): file:
TemplateChooser.py
let user make a choice of
avallable templates and print
the story from the chosen template

lines = TemplateChooser.getTemplateLines("templates™)

st = linesToStory(lines)
print(st)

18

Understanding Code/Module
doWord Is in Storyline.py
« What does getReplacement do?
 How does getReplacement do it?

def dowWord(word):

word 1s a string
if word is <tag>, find replacement
and return i1t. Else return word

start = word. find("<")

if start != -1:
end = word.find(">")
tag = word[start+1l:end]

rep = Replacements.getReplacement(tag)
return rep

return word
19

Understanding Code/Module
doWord Is in Storyline.py
« What does getReplacement do?

 How does getReplacement do it?

def dowWord(word): Another

word 1s a string module (ﬂle)

if word is <tag>, find replacement
and return i1t. Else return word

start = word.find("<")
if start != -1:
end = word. find(">")
tag = word[start+1:e
rep

Replacements.getReplacement(tag)
retu E

return word
20

Understanding Code/Module
doWord Is in Storyline.py
« What does getReplacement do?

 How does getReplacement do it?

def dowWord(word):

word is a string A function in the
if word is <tag>, find replacement file:
and return i1t. Else return word Replacements.py
start = word.find("<")
if start != -1:

end = word. find(">")

tag = word[start+1l:end]

rep = ReplacementslgetReplacement(tag)

return rep
return word

21

The other module’s “what”

« Get template
 TemplateChooser.getTemplatelLines(DIR)

 What:

* From the templates in the directory DIR (type: str)

* Return a list of strings, where each element is a
line from one of the templates in DIR

 Word for atag
« Replacements.getReplacement(TAG)

 What:

* Return a random word that matches TAG (type:
str)

22

Main Parts for tag-a-story

 Loading and handling user choosing
templates

« TemplateChooser.py

23

TemplateChooser.py Steps

List all templates in the folder
Get user input that chooses one
Load that template

Return as list of strings

24

TemplateChooser.py Steps

List all templates in the folder
 pathlib Library

Get user input that chooses one
« Handle bad input — try...except
Load that template

* Open file, .readlines()

Return as list of strings

25

These Steps in Code
getTemplateLines in
TemplateChooser.py

 Read directory of templates, convert to dictionary
« Let user choose one, open and return it

def getTemplateLines(dirname):
dirname 1s a string that's the name of a folder
Prompt user for files 1in folder, allow user
to choose, and return the lines read from file
d = dirToDictionary(dirname)
lines = chooseOne(d)
return lines

26

Creating User Menu

dirToDictionary in TemplateChooser.py
 What does this function return? What type?

def dirToDictionary(dirname):

d = {}
index = 0
for one in pathlib.Path(dirname).iterdir():
d[index] = one
print(type(one))
index += 1

return d
27

Creating User Menu

dirToDictionary in TemplateChooser.py
 What does this function return? What type?

dis:

def dirToDictionary(dirname): O->haiku.txt

d = {}

1ndex = 0

1 -> labtemplate.txt
2 -> lecturetemplate.txt

for one in pathlib.Path(dirname).iterdir():

d[index] = one
print(type(one))
index += 1

return

d

28

Folder in Pycharm

210408 C:\Users\Susan'\Py
tagreplacements
templates Out ut-
= haiku.tbxt p .
= labtemplate bt

> C:\Users\Susan\AppData\lc
= lecturetemplate. bt

0 hailku.txt
1 Llabtemplate.txt
2 lecturetemplate. txt

Replacements.py

m g 1& Yl

choose one> 0@
the slimy bathtub
reminded them of Africa

chartreuse squeaky brown
29

pathlib Library

« Path:
“rodger/Pycharm/cps101/1labll/temp/haiku.txt”

 The pathlib library is more recent/Python3
« Simpler, easier to use than functions from os

 Handles domain specifics!
* Doesn’t matter if on Windows, Mac, etc.
« We worry about the what, it handles the how

30

pathlib Library cont.

Path:
“rodger/Pycharm/cps101/labll/temp/haiku.txt”

pathlib.Path (DIR) .iterdir ()

* Returns iterable of Path objects representing each
“thing” in the directory DIR

Path object’s .parts — tuple of strings, each element
is a piece of a filename’s path

 (‘rodger’, ‘Pycharm’, ‘cpsl101’,’labll’,
“temp’, ‘haiku.txt’)

31

Understanding the Unknown

chooseOne In TemplateChooser.py

We will return to this, but analyze parts now
 What's familiar? What's not familiar ...

def chooseOne(d):

while True:
for key in sorted(d.keys()):
print("%d\t%s"” % (key, d[key].parts[-1]))

print("—————)
st = input(“choose one> ")
try:

val = int(st)
if @ <= val and val < len(d):
return reader(d[vall)
except ValueError:
print(“please enter a number")

32

Python exceptions

 What should you do if you prompt user for a
number and they enter "one"

« Test to see If it has digits?

« Use exceptions with try: and except:
 See code In function chooseOne from

TemplateChooser.py
EX@NS

33

Handling Exceptions

 What happens: x = int("123abc")

46 st = input("choose one> ")

47 try:

48 val = int(st)

49 if @ <= val and val < len(d):
50 return reader(d[val])

51 except ValueError:

52 print("please enter a number")

—

34

When and What's in CompSci 101

 Problem to solve
* Use 7 steps

« Step 5: How do you translate algorithm to
code?
« What do you use to solve it?
 When do you use it?

35

What are the "what’'s™?

« Data Structures: list, set, dictionary, tuple

 Loops and iterables: from for to while to
iterdir()

 Other:
 List comprehensions
« Parallel lists
 Lambda
o [f...if...if
o [f...elif...else

36

Quick When’s and What's for 101

 Whichever makes more sense to you:
« Parallel lists vs dictionaries
o |f...if...if vsif...elif...else
 List comprehension vs for loop

Tuples vs Lists
« |f you want to prevent mutation -> tuples

Need single line function
« Lambda vs create normal helper function

37

APT — Sorted Fregs

APT SortedKFreqs

Problem Statement
Specification

The frequency with which data occurs is
sometimes an important statistic. In this
problem you'll determine how frequently Sleties BosiiiTieil)
strings occur and return a list replres_entmg e e e A I
the frequencies of each different/unique o
S'tt'ﬁlg. The list returned contains as many return list of int values corresponding

- - - to frequencies of strings in data, a list
frequencies as there are unique strings. The _

. < of strings

returned frequencies represent an o
alphabetic/lexicographic ordering of the

unique words, so the first frequency 1s how
many times the alphabetically first word occurs and the last frequency 1s the number of times the alphabetically last
word occurs.

Consider these strings (quotes for clanity, they're not part of the strings).
["E‘.PFJ.E"; "FEEI"; "C..".I.EIIEI""_, "E'.FPJ.E"; "C..".I.EIIEI""_, "FEE‘.I", "EPFJ.E", "hﬂl’.l.ﬂl'.l.ﬂ"]

The list returned 1s [3, 1, 2, 2] since the alphabetically first word 1s "apple" which occurs 3 times; the second word
alphabetically 18 "banana™ which occurs once, and the other words each occur twice. 38

What's the best way to ...

e SortedFreqs

« https://www?2.cs.duke.edu/csed/pythonapt/sortedfregs.html

« Count how many times each string occurs
« Create d = {}, iterate over list updating values
« Use data.count(w) for each w

39

https://www2.cs.duke.edu/csed/pythonapt/sortedfreqs.html

What's the best way to ...

e SortedFreqs

« https://www?2.cs.duke.edu/csed/pythonapt/sortedfregs.html

« Count how many times each string occurs
« Create d = {}, iterate over list updating values

« Use data.count(w) for each w
- Walit, that looks like ...

def freqgs(data):
return [data.count(d) for d in sorted(set(data))]

40

https://www2.cs.duke.edu/csed/pythonapt/sortedfreqs.html

APT. SortByFregs

APT SortBykreqs

Problem Statement
Specification

The frequency with which data occurs 1s
sometimes an important statistic. In this
problem you are given a list of strings and filename: SortByFregs.py

must determine how frequently the strings def sort (data):

occur. Return a list of strings that 1s sorted mum

(ordered) by frequency. The first element return list of strings based on

of the returned list 1s the most frequently tqe list of strings in parameter data
occurring string, the last element 1s the
least frequently occurring. Ties are broken
by listing strings in lexicographic/alphabetical order. The returned list contains one occurrence of each umque string

from the list parameter.

Consider these strings (quotes for clarity, they're not part of the strings).

["EFFJ.E"; ”FEE.I"; ”C..FLEIIEII-"; "EFFlE”; "FEE‘.I"; "E..FFJ.E”; "hananafr]

The list returned 1s:
["apple”, "pear", "banana", "cherry"]

since the most frequently occurring string 1s "apple" which occurs 3 times; the string "pear" occurs twice and the
other strings each occur once so they are returned in alphabetical order.

Wait, wait, but what's ...
 SortByFregs

« https://www?2.cs.duke.edu/csed/pythonapt/sortbyfregs.html

« Sort by # occurrences high to low
« Tuples with count/lambda and reverse=True?
» Break ties in alphabetical order: two passes

42

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

Wait, wait, but what's ...
 SortByFregs

« https://www?2.cs.duke.edu/csed/pythonapt/sortbyfregs.html

« Sort by # occurrences high to low
« Tuples with count/lambda and reverse=True?
» Break ties in alphabetical order: two passes

def sort(data):

tups = [(data.count(t),t) for t in sorted(set(data))]

result = [t[1] for t in sorted(tups,key=lambda x : x[0], reverse=True)]
return result

43

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

SortByFreqgs Example

« SortByFreqgs

o https://lwww?2.cs.duke.edu/csed/pythonapt/sortbyfreqgs.html

def sort(data):
tups = [(data.count(t),t) for t in sorted(set(data))]

result = [t[1] for t in sorted(tups,key=lambda x : x[0], reverse=True)]
return result

44

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

SortByFreqgs Example

« SortByFreqgs

o https://lwww?2.cs.duke.edu/csed/pythonapt/sortbyfreqgs.html

def sort(data):
tups = [(data.count(t),t) for t in sorted(set(data))]
result = [t[1] for t in sorted(tups,key=lambda x : x[0], reverse=True)]
return result

data = ["apple”, "pear",

cherry", "apple", "pear", "apple", "banana‘]

tups = [(3, “apple”),(1, “banana”),(1,’cherry”),(2,”pear”)]

sorted(...) line 8 = [(3,"apple”),(2,”pear”),(1, “banana”),(1,’cherry”)]

result = ["apple”,"pear”,”"banana”,”cherry”]

PRINT ALOT!

45

https://www2.cs.duke.edu/csed/pythonapt/sortbyfreqs.html

Activity 1.
https://bit.ly/101f21-11-18-1

46

Reminders

Work smarter, not harder

Design first

Get smaller parts working, then build on it
Try to identify where you are stuck

* |dentify resources to help solve problem

Leverage your design and PythonTutor to
understand program flow of control

 http://pythontutor.com

47

http://pythontutor.com/

