
CompSci 101

Fall 2021

Lecture 7



Reminders

• Identity & Computing Lecture Series

• https://identity.cs.duke.edu/speakerSeries.html

• 9/20-Dr. Safiya Noble

• 9/27-Dr. Michele Williams

• Assignments 

• Exam 1 Review Questions
• *Must be posted in Ed thread*

• Exam 1
• 3 points extra credit (2 survey responses)

2

https://identity.cs.duke.edu/speakerSeries.html


Key instructions

• Input

• Output

• Assignments* ✔

• Math/Logic ✔

• Conditionals✔

• Repetition

*not listed in book

3



Python Data Types

• int, float, bool ✔

• Collections

• Strings ←

• Lists ←

• Tuples

• Sets

• Dictionaries

4



PFTD

• Debugging

• PAY ATTENTION TO ERROR MESSAGES

• Mutating Lists

“The mere imparting of information is not 

education.”

• Dr. Carter G. Woodson

5



People to Know:
Dr. Clarence 
“Skip” Ellis

• Beloit (BS, Math/Physics)

• University of Illinois (MS-
Math, PhD-CS)

• 1st Black person to earn a 
PhD in CS

• Fellow, ACM

6



Types of Errors

• Syntax

• Structure of program and rules to follow 

• E.g., forget a ‘:’ or indentation (won’t compile)

• Runtime

• Don’t appear until executing program

• print(greeting) greeting undefined

• Semantic

• Program runs, but won’t do the right thing

• This is why DESIGN FIRST matters

7



Section 3.4

(Types of Error Messages)
• ParseError

• Error in syntax

• TypeError

• Combine two incompatible objects

• NameError

• Use variable before assigning value

• ValueError

• Function expects certain value type and 

receives incompatible one

8



How Not To Debug

• Bad (but tempting) way to debug

• Change a thing. Does it work now?

• No … another change … how about this?

• Trust doctor if they say?

• “Ok try this medicine and see what happens?”

• Trust mechanic if they say?

• “Let’s replace this thing and see what 

happens”

9

It may be easy, but that doesn’t 
make it a good idea!



Debugging Steps

1. Write down exactly what is happening

1. input, expected output, actual output

2. ____ happened, but ____ should happen

2. Brainstorm possible reasons this is 
happening

1. Write down ideas

3. Go through list

4. Found it?

1. Yes, fix it using the 7-steps

2. No, go back to step 2

10

Remember: 
One-hour rule

This is what 
experts do!



Debugging Steps

11

Write down 
what is 

happening
Brainstorm

Go through 
list

Found 
problem?

Fix it!
Yes!

No



Debugging: 5 W’s

• Who was involved?

• Which variables are involved?

• What happened?

• What kind of error/bug is it?

• Where did it take place?

• Where in the code did this happen?

• When did it take place?

• Does it happen every time? For certain cases?

• Why/How did it happen?

• Given the answers to the above, how did the 
error/bug happen?

12

This Photo by Unknown Author is 
licensed under CC BY-NC-ND

http://www.yalsa.ala.org/thehub/2012/02/24/a-mystery-for-every-reader/
https://creativecommons.org/licenses/by-nc-nd/3.0/


Activity 1: W’s of withCutOff
http://bit.ly/101f21-09-14-1

13



Bug Example: Score

• Who? (Which variables)

• What kind of bug is it?

• Where in the code?

• When does it happen?

• Why/How did it happen?

14

Input: (1,1)
Output: Error
Should be: 1.0



Bug Example: Score

• Who? (Which variables)

• total, denominator

• What kind of bug is it?

• Runtime error

• Where in the code?

• Line 9

• When does it happen?

• Input (1,1), but not (75,100) nor (50,134)

• Why/How did it happen?

• Divide by zero, so denominator variable is zero

15

Input: (1,1)
Output: Error
Should be: 1.0

Why is it 0? 
Where does 

it get its 
value?



Why Is Bug Present?

• Why: Not accounting for possibility of 

rounding down to 0

• Solution: Check if denominator is 0 and have 

special case

16



Is this code correct?

17



Strings are IMMUTABLE

18

✔

X



List Concatenation/Repetition

• String concatenation:

• “hi” + “ there” == “hi there”

• List concatenation:

• [1, 2] + [3, 4] == [1, 2, 3, 4]

• What about these?

• [1, 2] + “yellow”

• [1, 2] + 3

19



Appending to List

• list_name.append(item)

• Appends item to end of list_name

• list_name now contains item

• Doesn’t require assignment to a variable

list1 = [1, 2]

list1.append(“yellow”)

20



Nested Lists

• Lists are heterogenous, therefore!

• x = [1, ‘a’, [2, ‘b’]] is valid

• len(x) == 3

• [2, ‘b’] is one element in list x

• How to index?

• [...] all the way down

• x[2][1] returns ‘b’

21



Nested Lists

• Python Tutor:

• x = [1, ‘a’, [2, ‘b’]]

22



Lists are MUTABLE!

• x = [‘Hello’, ‘world’]

• Change to: [‘Hello’, ‘Ashley’]

• x[1] = ‘Ashley’

• Is there another solution?

• How change ‘b’ in x = [1, ‘a’, [2, ‘b’]] to 
‘c’?

• x[2][1] = ‘c’ 

• Is there another solution?

23



Examples

• items = [5, [“red”, “blue”], “13”]

• What is the value of items after each of 

these?

• items.append(13)

• [5, [“red”, “blue”], “13”, 13]

• items[1][0] = 4

• [5, [4, “blue”], “13”, 13]

24



Objects

• Sometimes it helps to know how things “work”

• Sometimes it’s wonderful to be oblivious 
(abstraction)

• Object – a “thing” in memory/object space

• Everything in Python is an object (state, behavior, 
identity)

• Python variables are references

• Label that refers to object

• Label is small, object is big

25

Arrow / Computer memory address



is operator

• True two references (i.e., variables) are to 

the same object)

26

✔

X

NOTE: PythonTutor doesn’t always make
everything an object(why not always correct) 



Aliasing vs. Cloning

bat or ant?

27

• Does print(b) include ‘bat’ or ‘ant’?

• How do we keep these two lists separate?

• Cloning (slicing)

• b=a[:]



Note: Reference and Repetition

28



Reminders

• Work smarter, not harder

• Design first

• Try to identify where you are stuck

• Identify resources to help solve problem

• Leverage your design and PythonTutor to 

understand program flow of control

• http://pythontutor.com

29

http://pythontutor.com/

