
compound patterns

you are here 4 529

Meet the Model-View-Controller

View Controller

�����
�
���

�

���
	�
�#
���

��

���	��
#�����

�

������
��
�

#���	�
��
	

class Player {
 play(){}
 rip(){}
 burn(){}
}

Model

Imagine you’re using your favorite MP3 player, like iTunes. You can use its interface to add
new songs, manage playlists and rename tracks. The player takes care of maintaining a little
database of all your songs along with their associated names and data. It also takes care of
playing the songs and, as it does, the user interface is constantly updated with the current song
title, the running time, and so on.

Well, underneath it all sits the Model-View-Controller...

#���	���
	�

$��� ����
��

��
�$��
�

��
�$��
���������
��
��
�&�
"������#����
�
�������

��
�&�
"���� �������
� ���
����	�����

“Play new song”

Controller asks

Player model to

begin playing

song

Model tells the

view the state has

changed

You see the song

display update and

hear the new song

playing

The model contains all the state,
data, and application logic needed
to maintain and play mp3s.

Download at WoweBook.Com

530 Chapter 12

Model

Controller

CONTROLLER

Takes user input and figures out
what it means to the model.

MODEL

The model holds all
the data, state and
application logic. The
model is oblivious to
the view and controller,
although it provides an
interface to manipulate
and retrieve its
state and it can send
notifications of state
changes to observers.

VIEW

Gives you a presentation
of the model. The view
usually gets the state
and data it needs to
display directly from
the model.

View

A closer look...

Now let’s zoom into the

2

I’ve changed!

I need your state

information

The user did

something

Change your
display

Change your
state

3

1

4

5

This is the user
interface.

Here’s the model;
it handles all
application data
and logic.

Here’s the creamy
controller; it lives in
the middle.

The MP3 Player description gives us a high level view of MVC, but it really doesn’t help you
understand the nitty gritty of how the compound pattern works, how you’d build one yourself, or
why it’s such a good thing. Let’s start by stepping through the relationships among the model, view
and controller, and then we’ll take second look from the perspective of Design Patterns.

class Player {
 play(){}
 rip(){}
 burn(){}
}

mvc up close

Download at WoweBook.Com

compound patterns

you are here 4 531

The view is your window to the model. When you do something to the view (like click
the Play button) then the view tells the controller what you did. It’s the controller’s
job to handle that.

1 You’re the user — you interact with the view.

The controller takes your actions and interprets them. If you click on a button, it’s
the controller’s job to figure out what that means and how the model should be
manipulated based on that action.

2 The controller asks the model to change its state.

When the controller receives an action from the view, it may need to tell the view
to change as a result. For example, the controller could enable or disable certain
buttons or menu items in the interface.

3 The controller may also ask the view to change.

When something changes in the model, based either on some action you took (like
clicking a button) or some other internal change (like the next song in the playlist
has started), the model notifies the view that its state has changed.

4 The model notifies the view when its state has changed.

The view gets the state it displays directly from the model. For instance, when the
model notifies the view that a new song has started playing, the view requests the
song name from the model and displays it. The view might also ask the model for
state as the result of the controller requesting some change in the view.

5 The view asks the model for state.

���Does the controller ever become
an observer of the model?

���Sure. In some designs the controller
registers with the model and is notified
of changes. This can be the case when
something in the model directly affects the
user interface controls. For instance, certain
states in the model may dictate that some
interface items be enabled or disabled. If
so, it is really controller’s job to ask the view
to update its display accordingly.

���All the controller does is take user
input from the view and send it to the
model, correct? Why have it at all if that
is all it does? Why not just have the code
in the view itself? In most cases isn’t the
controller just calling a method on the
model?

���The controller does more than
just “send it to the model”, the controller is
responsible for interpreting the input and
manipulating the model based on that input.
But your real question is probably “why can’t
I just do that in the view code?”

You could; however, you don’t want to
for two reasons: First, you’ll complicate
your view code because it now has two
responsibilities: managing the user interface
and dealing with logic of how to control the
model. Second, you’re tightly coupling your
view to the model. If you want to reuse
the view with another model, forget it. The
controller separates the logic of control from
the view and decouples the view from the
model. By keeping the view and controller
loosely coupled, you are building a more
flexible and extensible design, one that can
more easily accommodate change down the
road.

������	���
�����������
�

Download at WoweBook.Com

532 Chapter 12

Looking at MVC through
patterns-colored glasses
We’ve already told you the best path to learning the MVC is to see it for what it
is: a set of patterns working together in the same design.

Let’s start with the model. As you might have guessed the model uses
Observer to keep the views and controllers updated on the latest state changes.
The view and the controller, on the other hand, implement the Strategy Pattern. The controller
is the behavior of the view, and it can be easily exchanged with another controller if you
want different behavior. The view itself also uses a pattern internally to manage the windows,
buttons and other components of the display: the Composite Pattern.

Let’s take a closer look:

The display consists of a nested set of win-
dows, panels, buttons, text labels and so on.
Each display component is a composite (like
a window) or a leaf (like a button). When the
controller tells the view to update, it only has
to tell the top view component, and Composite
takes care of the rest.

The model implements the Observer Pattern
to keep interested objects updated when state
changes occur. Using the Observer Pattern
keeps the model completely independent of
the views and controllers. It allows us to use
different views with the same model, or even
use multiple views at once.

Model

Controller

View

I’ve changed!

I need your state

information

The user did

something

Change your
display

Change your
state

Strategy

Observer

Composite

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller for any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

class Player {
 play(){}
 rip(){}
 burn(){}
}

the patterns in mvc

Download at WoweBook.Com

compound patterns

you are here 4 533

View

Model

class Foo {
 void bar()
{
 doBar();
 }
}

View

Controller

View

View

Observers

Observable

I’d like to register
as an observer

My state has
changed!

Observer

Controller

View

Strategy

Controller

The user did
something

Composite

All these observers will be
notified whenever state
changes in the model.

Any object that’s
interested in state
changes in the model
registers with the
model as an observer.

The controller is the

strategy for the vie
w

- it’s the object that

knows how to handle

the user actions.

We can swap in another behavior for the view by changing the controller.

The view
delegates to the controller to handle the
user actions.

The view is a composite of
GUI components (labels,
buttons, text entry,
etc.). The top level
component contains other
components, which contain
other components and so
on until you get to the
leaf nodes.

paint()

The model has no dependencies on
viewers or controllers!

The view only worries about presentation, the controller worries
about translating user input to actions on the model.

Download at WoweBook.Com

534 Chapter 12

Using MVC to control the beat...

It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You might start
your mix with a slowed, downtempo groove at 95 beats per minute (BPM) and then
bring the crowd up to a frenzied 140 BPM of trance techno. You’ll finish off your set
with a mellow 80 BPM ambient mix.

How are you going to do that? You have to control the beat and you’re going to build
the tool to get you there.

The view has two parts,
the part for viewing
the state of the model
and the part for
controlling things.

Increases
the BPM by
one beat per
minute.

Decreases
the BPM by
one beat per
minute.

You can enter a specific BPM and click
the Set button to set a specific beats
per minute, or you can use the increase
and decrease buttons for fine tuning.

A pulsing bar shows the beat in real time.

A display shows the current BPMs and is
automatically set whenever the BPM changes.

Meet the Java DJ View
Let’s start with the view of the tool. The view allows you to create a
driving drum beat and tune its beats per minute...

mvc and the dj view

Download at WoweBook.Com

compound patterns

you are here 4 535

Let’s not forget about the model underneath it all...
You can’t see the model, but you can hear it. The
model sits underneath everything else, managing the
beat and driving the speakers with MIDI.

Beat
Model

�
�'�()*

�
�'�(
)*

��)*

���)*

You can start the bea
t

kicking by choosing t
he

Start menu item in the

“DJ Control” menu.

Notice Stop is
disabled until you
start the beat.

You use the Stop
button to shut
down the beat
generation.

Notice Start is
disabled after the
beat has started.

The controller is in the middle...

Controller

All user actions are
sent to the controller.

The controller sits between the view and
model. It takes your input, like selecting “Start”
from the DJ Control menu, and turns it into an
action on the model to start the beat generation.

The controller takes input
from the user and figures out
how to translate that into
requests on the model.

The BeatModel is the heart of the
application. It implements the logic
to start and stop the beat, set
the beats per minute (BPM), and
generate the sound.

Here’s a few more ways to control the DJ View...

The model also allows us to
obtain its current state through
the getBPM() method.

Download at WoweBook.Com

536 Chapter 12

Beat
Model

Controller

�
�'�()*

�
�'�(
)*

��)*

���)*

Click on the
increase beat
button...

The controller asks
the model to update
its BPM by one.

View is notified that the BPM
changed. It calls getBPM() on
the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

...which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beatbar
pulse every 1/2 second.

View

View

Putting the pieces together

the dj model, view and controller

Download at WoweBook.Com

compound patterns

you are here 4 537

Building the pieces

public interface BeatModelInterface {
 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);
}

These are the methods
the controller will use to

direct the model based on
user interaction.

These methods allow
the view and the
controller to get

state and to become
observers.

This should look
familiar, these
methods allow
objects to register
as observers for
state changes.

We’ve split this into two kinds of
observers: observers that want to be
notified on every beat, and observers
that just want to be notified with
the beats per minute change.

Okay, you know the model is responsible for maintaining all the data, state and any
application logic. So what’s the BeatModel got in it? Its main job is managing the beat,
so it has state that maintains the current beats per minute and lots of code that generates
MIDI events to create the beat that we hear. It also exposes an interface that lets the
controller manipulate the beat and lets the view and controller obtain the model’s state.
Also, don’t forget that the model uses the Observer Pattern, so we also need some methods
to let objects register as observers and send out notifications.

This gets calle
d after the

BeatModel is instan
tiated.

These methods turn the beat
generator on and off.

This method sets the beats per
minute. After it is called, the beat
frequency changes immediately.

The getBPM() method returns
the current BPMs, or 0 if
the generator is off.

Let’s check out the BeatModelInterface before looking at the
implementation:

Download at WoweBook.Com

538 Chapter 12

public class BeatModel implements BeatModelInterface, MetaEventListener {
 Sequencer sequencer;
 ArrayList beatObservers = new ArrayList();
 ArrayList bpmObservers = new ArrayList();
 int bpm = 90;
 // other instance variables here

 public void initialize() {
 setUpMidi();
 buildTrackAndStart();
 }

 public void on() {
 sequencer.start();
 setBPM(90);
 }

 public void off() {
 setBPM(0);
 sequencer.stop();
 }

 public void setBPM(int bpm) {
 this.bpm = bpm;
 sequencer.setTempoInBPM(getBPM());
 notifyBPMObservers();
 }

 public int getBPM() {
 return bpm;
 }

 void beatEvent() {
 notifyBeatObservers();
 }

 // Code to register and notify observers

 // Lots of MIDI code to handle the beat
}

Ready-bake Code
+����$��
����
��,�&����(-�-��� �	������
�
	��
��
�����.���#���#�
#��������
�
#�$ �
�
��$ �
$
�����������������
��,�#����
�������
�,�&�����	#
����
���&������
�
�����
��
����	�������#�$����
���	�����������
�#��
������
�
��������
�#�� �
	�

Now let’s have a look at the concrete BeatModel class:

We implement the BeatModeIInterface.

The sequencer is the object that knows how to
generate real beats (that you can hear!).

This is needed for
the MIDI code.

These ArrayLists hold the two kinds of
observers (Beat and BPM observers).

The bpm instance variable holds the frequency
of beats - by default, 90 BPM.

This method does
setup on the sequencer
and sets up the beat
tracks for us.

The on() method starts the sequencer and
sets the BPMs to the default: 90 BPM.

And off() shuts it down by setting BPMs to
0 and stopping the sequencer.

The setBPM() method is the way the controller
manipulates the beat. It does three things:

(1) Sets the bpm instance variable

(2) Asks the sequencer to change its BPMs.

(3) Notifies all BPM Observers that the BPM
has changed.

The getBPM() method just returns the bpm instance variable, which

indicates the current beats per minute.

The beatEvent() method, which is not in the BeatModelInterface, is

called by the MIDI code whenever a new beat starts. This method

notifies all BeatObservers that a new beat has just occurred.

the beat model

Download at WoweBook.Com

compound patterns

you are here 4 539

The View
Now the fun starts; we get to hook up a view and visualize the BeatModel!

The first thing to notice about the view is that we’ve implemented it so that it is displayed in two separate
windows. One window contains the current BPM and the pulse; the other contains the interface
controls. Why? We wanted to emphasize the difference between the interface that contains the view of
the model and the rest of the interface that contains the set of user controls. Let’s take a closer look at
the two parts of the view:

We’ve separated
the view of the
model from the
view with the
controls.

The DJ view
displays two
aspects of the
BeatModel...

...the current beats
per minute, from
the BPMObserver
notifications...

...and a pulsing “beat
bar” pulses in synch
with the beat, driven
by the BeatObserver
notifications.

A textual view that displays a music genre based on the BPM (ambient, downbeat, techno, etc.).

Our BeatModel makes no assumptions about the view. The model is implemented using the
Observer Pattern, so it just notifies any view registered as an observer when its state changes. The
view uses the model’s API to get access to the state. We’ve implemented one type of view, can you
think of other views that could make use of the notifications and state in the BeatModel?

���	

������

A lightshow that is based on the real-time beat.

This is the part of the view that you use to change the beat. This view passes everything you do on to the controller.

Download at WoweBook.Com

540 Chapter 12

Implementing the View

The two parts of the view – the view of the model, and
the view with the user interface controls – are displayed
in two windows, but live together in one Java class. We’ll
first show you just the code that creates the view of the
model, which displays the current BPM and the beat bar.
Then we’ll come back on the next page and show you just
the code that creates the user interface controls, which
displays the BPM text entry field, and the buttons.

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JFrame viewFrame;
 JPanel viewPanel;
 BeatBar beatBar;
 JLabel bpmOutputLabel;

 public DJView(ControllerInterface controller, BeatModelInterface model) {
 this.controller = controller;
 this.model = model;
 model.registerObserver((BeatObserver)this);
 model.registerObserver((BPMObserver)this);
 }

 public void createView() {
 // Create all Swing components here
 }

 public void updateBPM() {
 int bpm = model.getBPM();
 if (bpm == 0) {
 bpmOutputLabel.setText(“offline”);
 } else {
 bpmOutputLabel.setText(“Current BPM: “ + model.getBPM());
 }
 }

 public void updateBeat() {
 beatBar.setValue(100);
 }
}

DJView is an observer for both real-time beats and BPM changes.

Here, we create a few components for the display.

The view holds a reference to both the model and
the controller. The controller is only used by the
control interface, which we’ll go over in a sec...

The constructor gets a reference
to the controller and the model,
and we store references to those in
the instance variables.

We also register as a BeatObserver and a
BPMObserver of the model.

The updateBPM() method is called when a state change occurs in the model. When that happens we update the display with the current BPM. We can get this value by requesting it directly from the model.

Likewise, the updateBeat() method is called
when the model starts a new beat. When that happens, we need to pulse our “beat bar.” We do this by setting it to its maximum value (100) and letting it handle the animation of the pulse.

What we’ve done here is split ONE

class into TWO, showing you one part

of the view on this page, and the other

part on the next page. All this code is

really in ONE class - DJView.java. It’s

all listed at the back of the chapter.

The code on these two

pages is just an outline!
�

Watch it!

the dj view

Download at WoweBook.Com

compound patterns

you are here 4 541

Implementing the View, continued...

Now, we’ll look at the code for the user interface controls part of the view. This view lets you control the
model by telling the controller what to do, which in turn, tells the model what to do. Remember, this code
is in the same class file as the other view code.

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JLabel bpmLabel;
 JTextField bpmTextField;
 JButton setBPMButton;
 JButton increaseBPMButton;
 JButton decreaseBPMButton;
 JMenuBar menuBar;
 JMenu menu;
 JMenuItem startMenuItem;
 JMenuItem stopMenuItem;

 public void createControls() {
 // Create all Swing components here
 }
 public void enableStopMenuItem() {
 stopMenuItem.setEnabled(true);
 }

 public void disableStopMenuItem() {
 stopMenuItem.setEnabled(false);
 }

 public void enableStartMenuItem() {
 startMenuItem.setEnabled(true);
 }

 public void disableStartMenuItem() {
 startMenuItem.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == setBPMButton) {
 int bpm = Integer.parseInt(bpmTextField.getText());
 controller.setBPM(bpm);
 } else if (event.getSource() == increaseBPMButton) {
 controller.increaseBPM();
 } else if (event.getSource() == decreaseBPMButton) {
 controller.decreaseBPM();
 }
 }
}

All these methods allow the start and stop items in the menu to be enabled and disabled. We’ll see that the controller uses these to change the interface.

This method creates all the controls and places them in the interface. It also takes care of the menu. When the stop or start items are chosen, the corresponding methods are called on the controller.

This method is called when a button is clicked.

If the Set button is
clicked then it is passed
on to the controller along
with the new bpm.

Likewise, if the increase
or decrease buttons are
clicked, this information is
passed on to the controller.

Download at WoweBook.Com

542 Chapter 12

Now for the Controller
It’s time to write the missing piece: the controller. Remember the controller is
the strategy that we plug into the view to give it some smarts.

Because we are implementing the Strategy Pattern, we need to start with an
interface for any Strategy that might be plugged into the DJ View. We’re going
to call it ControllerInterface.

public interface ControllerInterface {
 void start();
 void stop();
 void increaseBPM();
 void decreaseBPM();
 void setBPM(int bpm);
}

Here are all the
methods the view can
call on the controller.

These should look familiar after seeing the model’s
interface. You can stop and start the beat
generation and change the BPM. This interface is
“richer” than the BeatModel interface because you
can adjust the BPMs with increase and decrease.

You’ve seen that the view and controller together make use of the Strategy Pattern. Can you draw a
class diagram of the two that represents this pattern?

 Design Puzzle

the dj controller

Download at WoweBook.Com

compound patterns

you are here 4 543

public class BeatController implements ControllerInterface {
 BeatModelInterface model;
 DJView view;

 public BeatController(BeatModelInterface model) {
 this.model = model;
 view = new DJView(this, model);
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 model.initialize();
 }

 public void start() {
 model.on();
 view.disableStartMenuItem();
 view.enableStopMenuItem();
 }

 public void stop() {
 model.off();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 }

 public void increaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm + 1);
 }

 public void decreaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm - 1);
 }

 public void setBPM(int bpm) {
 model.setBPM(bpm);
 }
}

And here’s the implementation of the controller:

The controller implements
the ControllerInterface.

The controller is the creamy stuff
in the middle of the MVC oreo
cookie, so it is the object that
gets to hold on to the view and the
model and glues it all together.

The controller is passed the
model in the constructor and
then creates the view.

Likewise, when you choose Stop from the
menu, the controller turns the model off
and alters the user interface so that
the stop menu item is disabled and the
start menu item is enabled.

When you choose Start from the user
interface menu, the controller turns the

model on and then alters the user interfac
e

so that the start menu item is disabled and

the stop menu item is enabled.

NOTE: the controller is
making the intelligent
decisions for the view.
The view just knows how
to turn menu items on
and off; it doesn’t know
the situations in which it
should disable them.

If the increase button is clicked, the
controller gets the current BPM
from the model, adds one, and then
sets a new BPM.

Same thing here, only we subtract
one from the current BPM.

Finally, if the user interface is used to
set an arbitrary BPM, the controller
instructs the model to set its BPM.

Download at WoweBook.Com

544 Chapter 12

Putting it all together...
We’ve got everything we need: a model, a view, and a controller.
Now it’s time to put them all together into a MVC! We’re going to
see and hear how well they work together.

All we need is a little code to get things started; it won’t take much:

public class DJTestDrive {
 public static void main (String[] args) {
 BeatModelInterface model = new BeatModel();
 ControllerInterface controller = new BeatController(model);
 }
}

First create a model...

...then create a controller and
pass it the model. Remember, the
controller creates the view, so we
don’t have to do that.

And now for a test run...

% java DJTestDrive
%

File Edit Window Help LetTheBassKick

Run this...

...and you’ll see this.

Start the beat generation with the Start menu item;
notice the controller disables the item afterwards.

Use the text entry along with the increase and decrease
buttons to change the BPM. Notice how the view
display reflects the changes despite the fact that it has
no logical link to the controls.

Notice how the beat bar always keeps up with the beat
since it’s an observer of the model.

Put on your favorite song and see if you can beat match
the beat by using the increase and decrease controls.

Stop the generator. Notice how the controller disables
the Stop menu item and enables the Start menu item.

Things to do

5

4

3

2

1

putting it all together

Download at WoweBook.Com

compound patterns

you are here 4 545

Exploring Strategy
Let’s take the Strategy Pattern just a little further to get a better
feel for how it is used in MVC. We’re going to see another
friendly pattern pop up too – a pattern you’ll often see hanging
around the MVC trio: the Adapter Pattern.

Think for a second about what the DJ View does: it displays
a beat rate and a pulse. Does that sound like something else?
How about a heartbeat? It just so happens we happen to have a
heart monitor class; here’s the class diagram:

getHeartRate()

registerBeatObserver()

registerBPMObserver()

// other heart methods

HeartModel We’ve got a method for getting

the current heart rate.

And luckily, its developers knew about
the Beat and BPM Observer interfaces!

It certainly would be nice to reuse our current view with the HeartModel, but we need a controller that
works with this model. Also, the interface of the HeatModel doesn’t match what the view expects
because it has a getHeartRate() method rather than a getBPM(). How would you design a set of
classes to allow the view to be reused with the new model?

���	

������

Download at WoweBook.Com

546 Chapter 12

Adapting the Model
For starters, we’re going to need to adapt the HeartModel to a BeatModel. If we don’t, the view
won’t be able to work with the model, because the view only knows how to getBPM(), and the
equivalent heart model method is getHeartRate(). How are we going to do this? We’re going to
use the Adapter Pattern, of course! It turns out that this is a common technique when working
with the MVC: use an adapter to adapt a model to work with existing controllers and views.

Here’s the code to adapt a HeartModel to a BeatModel:

public class HeartAdapter implements BeatModelInterface {
 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {
 this.heart = heart;
 }
 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {
 return heart.getHeartRate();
 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BeatObserver o) {
 heart.removeObserver(o);
 }

 public void registerObserver(BPMObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BPMObserver o) {
 heart.removeObserver(o);
 }
}

We need to implement the
target interface, in this
case, BeatModelInterface.

Here, we store a reference
to the heart model.

We don’t know what these would do
to a heart, but it sounds scary. So
we’ll just leave them as “no ops.”

When getBPM() is called, we’ll just
translate it to a getHeartRate() call
on the heart model.

We don’t want to do this on a heart!
Again, let’s leave it as a “no op”.

Here are our observer methods.
We just delegate them to the
wrapped heart model.

mvc and adapter

Download at WoweBook.Com

compound patterns

you are here 4 547

Now we’re ready for a HeartController

With our HeartAdapter in hand we should be ready to create a controller and get the
view running with the HeartModel. Talk about reuse!

public class HeartController implements ControllerInterface {
 HeartModelInterface model;
 DJView view;

 public HeartController(HeartModelInterface model) {
 this.model = model;
 view = new DJView(this, new HeartAdapter(model));
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.disableStartMenuItem();
 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}
}

The HeartController implements
the ControllerInterface, just
like the BeatController did.

Like before, the controller
creates the view and gets
everything glued together.

There is one change: we are passed a
HeartModel, not a BeatModel...

...and we need to wrap that
model with an adapter before
we hand it to the view.

There’s not a lot to do here;
after all, we can’t really control
hearts like we can beat machines.

And that’s it! Now it’s time for some test code...

public class HeartTestDrive {
 public static void main (String[] args) {
 HeartModel heartModel = new HeartModel();
 ControllerInterface model = new HeartController(heartModel);
 }
}

All we need to do is create
the controller and pass it a
heart monitor.

Finally, the HeartController disables the
menu items as they aren’t needed.

Download at WoweBook.Com

548 Chapter 12

% java HeartTestDrive
%

File Edit Window Help CheckMyPulse

Run this...

...and you’ll see this.

Notice that the display works great with a heart!
The beat bar looks just like a pulse. Because the
HeartModel also supports BPM and Beat Observers we
can get beat updates just like with the DJ beats.

As the heartbeat has natural variation, notice the
display is updated with the new beats per minute.

Each time we get a BPM update the adapter is doing
its job of translating getBPM() calls to getHeartRate()
calls.

The Start and Stop menu items are not enabled
because the controller disabled them.

The other buttons still work but have no effect
because the controller implements no ops for them.
The view could be changed to support the disabling of
these items.

Things to do

And now for a test run...

5

4

3

2

1

Nice healthy
heart rate.

test the heart model

Download at WoweBook.Com

