XML-Relational
Mapping

Introduction to Databases

E:- DUKE
COMPUTER SCIENCE

CompSci 316 Fall 2021

Announcements (Thu., Oct. 28)

due next Tue.

due today
(and every Thu.)

due in 1% weeks

* Ashort (< 5 min.) video showing a working (perhaps not
complete) website interacting with the backend

* Abigger sample database that “stress-test” efficiency
and design

Approaches to XML processing

* Text files/messages

» Specialized XML DBMS

» Tamino (Software AG), BaseX, eXist, Sedna, ...
e Not as mature as relational DBMS

» Relational (and object-relational) DBMS
* Middleware and/or extensions

* IBM DB2’s pureXML, Oracle XML DB, and XML
type/functions from Microsoft SQL Server,
PostgreSQL, MySQL...

Mapping XML to relational

* Store XML in a column
* Simple, compact

* CLOB (Character Large OBject) type + full-text indexing,
or better, special XML type + functions

* Poor integration with relational query processing
* Updates are expensive

e Alternatives?

well-formed XML — generic relational schema
mapping for graphs
or mapping for trees

valid XML — special relational schema based on DTD

Node/edge-based: schema

Key: (eid, attrName)
* Attribute order does not matter

Keys: (eid, pos), (child)
* pos specifies the ordering of children
* child references either Element(eid) or Text(tid)

* tid cannot be the same as any eid
“ Need to “invent” lots of id’s

Need indexes for efficiency, e.g., Element(tag),
Text(value)

Node/edge-based: example

<bibliography> ElementCh”d
<book ISBN="ISBN-10" price="80.00"> Element m

<title>Foundations of Databases</title>

<author>Abiteboul</author> -_ L
<author>Hull</author> bibli h el 1 o2
<author>Vianu</author> ibliography
<publisher>Addison Wesley</publisher> el book el 2 e3
<year>1995</year> . 1 3 4
</book>... e2 title e e
</bibliography> e3 b b el 4 e5
e4 author el 5 eb
e5 author el 6 27
Attr’bute - eb publisher e2 1 t0
ISBN ISBN-10
l) 80 e7 year e3]. t].
€ price e4 1 t2
e5 1 t3
7}2)(t IIIIII c6 1 th
Foundations of Databases
e’/ 1 t5
tl Abiteboul
t2 Hull
t3 Vianu

t4 Addison Wesley
t5 1995

Node/edge-based: simple paths

« [[title
« SELECT eid FROM Element WHERE tag = 'title';

e [[section/title

« SELECT e2.eid
FROM Element el, ElementChild ¢, Element e2
WHERE el.tag = 'section'
AND e2.tag = 'title'
AND el.eid = c.eid
AND c.child = e2.eid;

® Path expression becomes joins!

* Number of joins is proportional to the length of the path
expression

Node/edge-based: complex paths

 [/bibliography/book [@price

« SELECT a.attrValue
FROM Element el, ElementChild cl,
Element e2, Attribute a
WHERE el.tag = 'bibliography'
AND el.eid = cl.eid AND cl.child = e2.eid
AND e2.tag = 'book'

AND e2.eid = a.eid
AND a.attrName = 'price';

Node/edge-based: descendent-or-self

e [/book//[title

* Requires SQL3 recursion

« WITH RECURSIVE (id) AS
((SELECT eid FROM Element WHERE tag = 'book')

UNION

(SELECT c.child
FROM r, ElementChild c

WHERE r.eid = c.eid))

SELECT eid

FROM Element
WHERE eid IN (SELECT * FROM)

AND tag = 'title';

10

Interval-based: example

<bibliography>
<book ISBN="ISBN-10" price="80.00">]Dibliography' 1,999,1
<title>4Foundations of Databases</title>
<author>7Abiteboul</author> /////Q§§SEF::\\\
<author>10Hull</author> book 2,21,2

<author>13Vianu</author>
<publisher>16Addison Wesley</publisher>
<year>191995</year>
</book>21..
</bibliography>

o o) o o
title authorauthor author publisher year

3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3
* e, is the parent of e, iff:

le;.left, e;.right] D [e,.left, e,.right], and
e;.level = e,.level — 1

Interval-based: schema

* left is the start position of the element
* right is the end position of the element

* level is the nesting depth of the element (strictly
speaking, unnecessary)

* Key is left
* Key is left
* Key is (left, attrName)

Where did ElementChild go?

Interval-based: queries

e [[section/title

« SELECT e2.left
FROM Element el, Element e2
WHERE el.tag = 'section' AND e2.tag = 'title'
AND el.left < e2.left AND e2.right < el.right

AND el.level = e2.level-1;

® Path expression becomes “containment” joins!
* Number of joins is proportional to path expression length

[/book//[title

« SELECT e2.left
FROM Element el, Element e2
WHERE el.tag = 'book' AND e2Z2.tag = 'title'
AND el.left < e2.left AND e2.right < el.right;

& No recursion!

Summary so far

Node/edge-based vs. interval-based mapping

* Path expression steps
* Equality vs. containment join

* Descendent-or-self
* Recursion required vs. not required

Dewey-order encoding

* Each component of the id represents the order of
the child within its parent

bibliographyq 1

booko” 1.1 ;%7 3.4

1.4.11.4.2

o o) o o
title authorauthor author publisher year
1.1.1 1.1.2 1.1.3 1.1l.4 1.1.5 1.1.6

15

Dewey-order: queries

* Works similarly as interval-based mapping

* Except ancestor/descendant is checked by prefix
matching (parent/child is just a bit more complicated)

» Example: / /book/ [title

« SELECT e2.left
FROM Element el, Element e?2
WHERE el.tag = 'book' AND e2Z2.tag = 'title'
AND (el.dewey pid, e2.dewey pid);

« CREATE FUNCTION

(sl VARCHAR, s2 VARCHAR) RETURNS BOOLEAN AS SS
BEGIN
RETURN (sl || '.') LIKE (s2 || '".%");
END;
SS LANGUAGE plpgsql;

* Any advantage over interval-based mapping?

Summary

e XML data can be “shredded” into rows in a
relational database

* XQueries can be translated into SQL queries

* Queries can then benefit from smart relational indexing,
optimization, and execution

* With schema-oblivious approaches, comprehensive
XQuery-SQL translation can be easily automated

* Different data mapping techniques lead to different
styles of queries

* Schema-aware translation is also possible and
potentially more efficient, but automation is more
complex

