Query Optimization

Introduction to Databases
CompSci 316 Fall 2021

Announcements (Tue., Nov. 23)

• Homework 4 due in one week
 • Except Problem X2, which will be due next Thu.
• We are still wrapping up Homework 3 and Project Milestone 3 grading
• Two sample final exams (from 2019) with solutions released on Sakai

Query optimization

• One logical plan → “best” physical plan
• Questions
 • How to enumerate possible plans
 • How to estimate costs
 • How to pick the “best” one
• Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert $\sigma_p \times$ to/from \bowtie_p: $\sigma_p (R \times S) = R \bowtie_p S$
- Merge/split σ’s: $\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \land p_2} R$
- Merge/split π’s: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1 \cup L_2} R$, where $L_1 \subseteq L_2$
- Push down/pull up σ:
 $$\sigma_{p_1 \land p_2} (R \bowtie_p S) = \sigma_{p_1} (\pi_{L_1} R) \bowtie_p \sigma_{p_2} (\pi_{L_2} S),$$
 where
 - p_1 is a predicate involving only R columns
 - p_2 is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
- Push down π: $\pi_L (\sigma_p R) = \pi_{L \cup L'} (\sigma_{p\prime} (\pi_{L'} R))$, where
 - L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences…
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

$$\pi_{\text{Group.name}} \sigma_{\text{User.name} = "Bart" \land \text{User.uid} = \text{Member.uid} \land \text{Member.gid} = \text{Group.gid}} \times \text{Member} \bowtie \text{Group} \times \text{User}$$
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM User
 WHERE uid = ANY (SELECT uid FROM Member);
- SELECT name
 FROM User, Member
 WHERE User.uid = Member.uid;
 - Wrong—consider two Bart’s, each joining two groups
- SELECT name
 FROM (SELECT DISTINCT User.uid, name
 FROM User, Member
 WHERE User.uid = Member.uid);
 - Right—assuming User.uid is a key
Dealing with correlated subqueries

• SELECT gid FROM Group
 WHERE name LIKE 'Springfield'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

• SELECT gid
 FROM Group, (SELECT gid, COUNT(*) AS cnt
 FROM Member GROUP BY gid) t
 WHERE t.gid = Group.gid AND min_size > t.cnt
 AND name LIKE 'Springfield';

 • New subquery is inefficient (it computes the size for
every group)
 • Suppose a group is empty?

“Magic” decorrelation

• SELECT gid FROM Group
 WHERE name LIKE 'Springfield'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

• WITH Supp_Group AS Process the outer query without the subquery
 (SELECT * FROM Group WHERE name LIKE 'Springfield'),

 Magic AS Collect bindings
 (SELECT DISTINCT gid FROM Supp_Group),

 DS AS Evaluate the subquery with bindings
 ((SELECT Group.gid, COUNT(*) AS cnt
 FROM Magic, Member WHERE Magic.gid = Member.gid
 GROUP BY Member.gid) UNION
 (SELECT gid, 0 AS cnt
 FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

 SELECT Supp_Group.gid FROM Supp_Group, DS
 WHERE Supp_Group.gid = DS.gid
 AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

• Heuristics-based optimization
 • Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
 • Rewrite logical plan to combine “blocks” as much as possible
 • Optimize query block by block
 • Enumerate logical plans (already covered)
 • Estimate the cost of plans
 • Pick a plan with acceptable cost
 • Focus: select-project-join blocks
Cost estimation

Physical plan example:

1. PROJECT (Group.name)
2. MERGE-JOIN (gid)
3. SCAN (Group)
4. SORT (gid)
5. MERGE-JOIN (uid)
6. SCAN (User)
7. FILTER (name = "Bart")
8. SORT (uid)
9. SCAN (Member)

- We have: cost estimation for each operator
 - Example: \(O(B \text{ input}) \times \log B \text{ input} \)
 - But what is \(B \text{ input} \)?
- We need: size of intermediate results
Conjunctive predicates

• \(Q: \sigma_{A=u \land B=v} R \)

• Additional assumptions
 • \((A = u)\) and \((B = v)\) are independent
 • Counterexample: major and advisor
 • No “over”-selection
 • Counterexample: \(A\) is the key

• \(|Q| = |R| \cdot \frac{1}{|\pi_A R| \cdot |\pi_B R|} \)
 • Reduce total size by all selectivity factors

Negated and disjunctive predicates

• \(Q: \sigma_{A \neq u \lor B \neq v} R \)
 • \(|Q| = |R| \cdot (1 - \frac{1}{|\pi_{\neg A} R|}) \)
 • Selectivity factor of \(\neg p\) is \((1 - \text{selectivity factor of } p)\)

• \(Q: \sigma_{A \neq u \lor B \neq v} R \)
 • \(|Q| = |R| \cdot (\frac{1}{|\pi_{\neg A} R|} + \frac{1}{|\pi_{\neg B} R|}) \)
 • Not tuples satisfying \((A = u)\) and \((B = v)\) are counted twice

 Consider \(Q': \sigma_{A \neq u, B \neq v} R \)
 • \(|Q'| = |R| \cdot (1 - \frac{1}{|\pi_{\neg A} R|} \cdot (1 - \frac{1}{|\pi_{\neg B} R|}) \)
 • \(|R| = |Q| + |Q'| \)
 • Therefore \(|Q| = |R| \cdot \frac{1}{|\pi_{\neg A} R|} + \frac{1}{|\pi_{\neg B} R|} - \frac{1}{|\pi_{\neg A} R| \cdot |\pi_{\neg B} R|} \)
 (inclusion-exclusion principle)

Range predicates

• \(Q: \sigma_{A \geq v} R \)

 • Not enough information!
 • Just pick, say, \(|Q| = |R| \cdot \frac{1}{\sqrt{3}}\)

 • With more information
 • Largest R.A value: \(\text{high}(R.A)\)
 • Smallest R.A value: \(\text{low}(R.A)\)
 • \(|Q| = |R| \cdot \frac{1}{\sqrt{\text{high}(R.A) - \text{low}(R.A)}}\)

 • In practice: sometimes the second highest and lowest are used instead
 • The highest and the lowest are often used by inexperienced database designer to represent invalid values!
Two-way equi-join

- **Q**: $R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_R| \leq |\pi_S|$ then $\pi_R \subseteq \pi_S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins

 - $|Q| \approx \frac{|R||S|}{\max(|\pi_R||\pi_S|)}$
 - Intuitively, if $|\pi_R| \leq |\pi_S|$, each R tuple joins with roughly $\frac{|S|}{\max(|\pi_R||\pi_S|)}$ tuples in S
 - Selectivity factor of $R.A = S.A$ is $\frac{1}{\max(|\pi_R||\pi_S|)}$

Examples of Two-way Equi-join

- **Q**: $R(A, B) \bowtie S(B, C)$
 - $|R| = 1000, |\pi_R| = 20$
 - $|S| = 2000, |\pi_S| = 50$
 - $|R \bowtie S| = \frac{|R||S|}{\max(|\pi_R||\pi_S|)} = \frac{1000 \times 2000}{50} = 40,000$

- **Q**: $R(A, B, D) \bowtie S(B, D, C)$
 - $|R| = 1000, |\pi_R| = 20, |\pi_D| = 100$
 - $|S| = 2000, |\pi_S| = 50, |\pi_D| = 50$
 - $|R \bowtie S| = \frac{|R||S|}{\max(|\pi_R||\pi_S|)} = \frac{1000 \times 2000}{100 \times 50} = 400$

Multiway equi-join

- **Q**: $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- What information is needed for $(R \bowtie S) \bowtie T$?
 - For $(R \bowtie S)$: need $|R|, |S|, |\pi_R|, |\pi_S|$
 - For $(R \bowtie S) \bowtie T$: need $|R \bowtie S|, |T|, |\pi_T|, |\pi_{T'}|, |\pi_{R \bowtie S}|$
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if C is in S but not R, then $\pi_C(R \bowtie S) = \pi_C S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)
Multiway equi-join (cont’d)

• \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
• Start with the Cartesian products of relations
 \[|R| \cdot |S| \cdot |T| \]
• Reduce the total size by the selectivity factor of each join predicate
 \[|Q| = \frac{|R| \cdot |S| \cdot |T|} {\max(|R|R|, |S|S|) \cdot \max(|S|S|, |T|T|)} \]

Example of Multiway Equi-join

• \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
 \[|R| = 1000, |R|R| = 20 \]
 \[|S| = 2000, |R|S|S| = 50, |R|S| = 100 \]
 \[|T| = 5000, |R|T| = 500 \]
• Estimation method 1: \((R \bowtie S) \bowtie T \)
 \[|R| \bowtie S| = \frac{|R| \cdot |S|} {\max(|R|R|, |S|S|)} \frac{1000 \times 2000} {50} = 40,000 \]
 \[|(R \bowtie S) \bowtie T| = \frac{|R| \bowtie S| \cdot |T|} {\max(|R| \bowtie S|, |T|T|)} \frac{40,000 \times 5000} {500} = 400,000 \]
• Estimation method 2: \(R \bowtie (S \bowtie T) \)
 \[|S| \bowtie T| = \frac{|S| \cdot |T|} {\max(|S|S|, |T|T|)} \frac{2000 \times 5000} {500} = 20,000 \]
 \[|R \bowtie (S \bowtie T)| = \frac{|R| \bowtie (S \bowtie T)|} {\max(|R| \bowtie (S \bowtie T)|, |T|T|)} \frac{1000 \times 2000} {50} = 400,000 \]

Cost estimation: summary

• Lots of assumptions and very rough estimation
• Estimation for projection, duplicate elimination, union, difference, aggregation (with grouping)
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate consistently
• May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
Not covered...

• Histograms with heavy hitters, e.g.:
 • \[|\sigma_{\text{sub}} R| = \frac{550 \times 5}{10} + 100 \]
 • \[|\delta \bowtie S| = \frac{250 \times 100}{5} + 150 \times 100 + 100 \times 70 \]

• Machine learning tools
 • Learn from feedback from queries (even without accessing data directly)
 • E.g., given observations from past query executions:
 \[|\sigma_{A \bowtie R} = 415|, |\sigma_{B \bowtie R} = 115|, |\sigma_{A \bowtie B \bowtie R} = 200|, |\sigma_{A \bowtie B \bowtie C \bowtie R} = 100|, ... \text{what is } |\sigma_{A \bowtie B \bowtie C \bowtie D \bowtie R}|? \]

Search strategy

[Image: cornMaze.jpg]

Search space

• Huge!
 • “Bushy” plan example:

 ![Diagram of search space]

 • Just considering different join orders, there are \(\frac{(2^n-2)}{(n-1)!} \) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 • \(30240 \) for \(n = 6 \)

 • And there are more if we consider:
 • Multiway joins
 • Different join methods
 • Placement of selection and projection operators
Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
 - Significantly fewer, but still lots—$n!$ (720 for $n = 6$)

A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_{P_i}(R_i)$
 - Start with the pair S_i, S_j with the smallest estimated size for $S_i \bowtie S_j$
 - Repeat until no relation is left:
 - Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size

Example of a Greedy algorithm

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \bowtie U(D, A)$
 - $|R| = |S| = |T| = |U| = 1000$
 - $|\pi_A R| = 100$, $|\pi_B R| = 200$
 - $|\pi_C S| = 100$, $|\pi_D S| = 500$
 - $|\pi_D T| = 20$, $|\pi_E T| = 50$
 - $|\pi_U U| = 1000$, $|\pi_D U| = 50$

<table>
<thead>
<tr>
<th></th>
<th>R x S</th>
<th>R x T</th>
<th>R x U</th>
<th>S x T</th>
<th>S x U</th>
<th>T x U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5000</td>
<td>12000</td>
<td>10000</td>
<td>2000</td>
<td>10000</td>
<td>2000</td>
</tr>
</tbody>
</table>

- Step 1: choose T, U
- Step 2: choose S
- Step 3: choose R
A dynamic programming approach

• Generate optimal plans bottom-up
 • Pass 1: Find the best single-table plans (for each table)
 • Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 • …
 • Pass \(k \): Find the best \(k \)-table plans (for each combination of \(k \) tables) by combining two smaller best plans found in previous passes
 • …

• Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)

\(\text{Well, not quite...} \)

Example of A DP algorithm

\(Q: R(A,B) \bowtie S(B,C) \bowtie T(C,D) \bowtie U(D,A) \)

- \(|R| = |S| = |T| = |U| = 1000 \)
- \(|\pi_R R| = 100, |\pi_S S| = 200 \)
- \(|\pi_T T| = 100, |\pi_C C| = 500 \)
- \(|\pi_D D| = 50, |\pi_U U| = 1000 \)

• Step 1:

<table>
<thead>
<tr>
<th>({R,S})</th>
<th>({R,T})</th>
<th>({R,U})</th>
<th>({S,T})</th>
<th>({S,U})</th>
<th>({T,U})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5000)</td>
<td>(1000)</td>
<td>(10000)</td>
<td>(10000)</td>
<td>(10000)</td>
<td>(10000)</td>
</tr>
<tr>
<td>(R \bowtie S)</td>
<td>(R \bowtie T)</td>
<td>(R \bowtie U)</td>
<td>(S \bowtie T)</td>
<td>(S \bowtie U)</td>
<td>(T \bowtie U)</td>
</tr>
</tbody>
</table>

Example of A DP algorithm

• Step 2:

| \(\{R,S,T\} \) | \(\{R,S\} \) | \(\{R,T\} \) | \(\{R,U\} \) | \(\{S,T\} \) | \(\{S,U\} \) | \(\{T,U\} \) |
|-----|-----|-----|-----|-----|-----|
| \(10000 \) | \(50000 \) | \(10000 \) | \(20000 \) | \(5000 \) | \(10000 \) | \(10000 \) |
| \(S \bowtie T \bowtie R \) | \(R \bowtie S \bowtie T \bowtie U \) | \(\{S \bowtie T \} \bowtie R \bowtie S \bowtie T \bowtie U \) |

• \(\{R,S,T\} \bowtie U = (((S \bowtie T) \bowtie R) \bowtie U) \)
• \((R,S,U) \bowtie T = (((R \bowtie S) \bowtie U) \bowtie T) \)
• \((R,T,U) \bowtie S = (((T \bowtie U) \bowtie R) \bowtie S) \)
• \((S,T,U) \bowtie R = (((S \bowtie T) \bowtie U) \bowtie R) \)
• \((R,S) \bowtie T,U = (R \bowtie S) \bowtie (T \bowtie U) \)
• …

Exhausted search over all left-deep trees

Exhausted search over all non-left-deep trees
The need for "interesting order"

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplication elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

When picking the best plan
- Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \), and
 - Interesting orders produced by \(X \) "subsume" those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach
Beyond...

* No pairwise join ordering is good!
 - Example: $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
 - $(R \bowtie S) \bowtie T$: $|R \bowtie S| = 25 + 5 = 30$
 - $R \bowtie (S \bowtie T)$: $|S \bowtie T| = 25 + 5 = 30$
 - Data skew!

* A hybrid approach of multiple orderings
 - $R \bowtie (S \bowtie T)$: $|S \bowtie T| = 5$
 - $(R \bowtie S) \bowtie T$: $|R \bowtie S| = 5$