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This document is a terse refresher of some basic concepts from Linear Algebra, one of the
prerequisites for Machine Learning.

Specifically, section 1 characterizes the existence and multiplicity of the solutions of a linear
system in terms of the four fundamental spaces associated with the system’s matrix and of the
relationship of the left-hand side vector of the system to that subspace. Sections 2 and 3 then show
how to use the SVD to solve a linear system in the sense of least squares. When not given in the
main text, proofs are in Appendix A.

1 The Solutions of a Linear System

Let
Ax = b

be an m× n system (m can be less than, equal to, or greater than n). Also, let

r = rank(A)

be the number of linearly independent rows or columns of A. Then,

b 6∈ range(A) ⇒ no solutions
b ∈ range(A) ⇒ ∞n−r solutions

with the convention that ∞0 = 1. Here, ∞k is the cardinality of a k-dimensional vector space on
the reals.

In the first case above, there can be no linear combination of the columns (no x vector) that
gives b, and the system is said to be incompatible. In the second, compatible case, three possibilities
occur, depending on the relative sizes of r,m, n:

• When r = n = m, the system is invertible. This means that there is exactly one x that
satisfies the system, since the columns of A span all of Rn. Notice that invertibility depends
only on A, not on b.

• When r = n and m > n, the system is redundant. There are more equations than unknowns,
but since b is in the range of A there is a linear combination of the columns (a vector x) that
produces b. In other words, the equations are compatible, and exactly one solution exists.1

1Notice that the technical meaning of “redundant” has a stronger meaning than “with more equations than
unknowns.” The case r < n < m is possible, has more equations (m) than unknowns (n), admits a solution if
b ∈ range(A), but is called “underdetermined” because there are fewer (r) independent equations than there are
unknowns (see next item). Thus, “redundant” means “with exactly one solution and with more equations than
unknowns.”
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Figure 1: Types of linear systems.

• When r < n the system is underdetermined. This means that the null space is nontrivial (i.e.,
it has dimension h > 0), and there is a space of dimension h = n − r of vectors x such that
Ax = 0. Since b is assumed to be in the range of A, there are solutions x to Ax = b, but
then for any y ∈ null(A) also x + y is a solution:

Ax = b , Ay = 0 ⇒ A(x + y) = b

and this generates the ∞h =∞n−r solutions mentioned above.

Notice that if r = n then n cannot possibly exceed m (or else the columns of A would form an
n-dimensional subspace of an m-dimensional space with m < n, an impossibility), so the first two
cases exhaust the possibilities for r = n. Also, r cannot exceed either m or n. All the cases are
summarized in figure 1.

Thus, a linear system has either zero (incompatible), one (invertible or redundant), or more
(underdetermined) solutions. In all cases, we can say that the set of solutions forms an affine space,
that is, a linear space plus a vector:

A = x̂ + L .
Recall that the sum here means that the single vector x̂ is added to every vector of the linear space
L to produce the affine space A. For instance, if L is a plane through the origin (recall that all
linear spaces must contain the origin), then A is a plane (not necessarily through the origin) that
is parallel to L.

In the underdetermined case, the nature of A is obvious. The notation above also applies to
the incompatible case: in this case, L is the empty linear space, so x̂ + L is empty as well, and x̂
is undetermined.

Please do not confuse the empty linear space (a space with no elements) with the linear space
that contains only the zero vector (a space with one element). The latter yields either the invertible
or the redundant case.

Of course, listing all possibilities does not provide an operational method for determining the
type of linear system for a given pair A,b. The next two sections show how to do so, and how to
solve the system. They also give meaning to the expression “solving the system” when no exact
solution exists, which occurs most of the time in practice. Section 3, in particular, defines a concept
of “solution” that is typically useful and interesting in the case b = 0, when the exact solution
would be trivial and uninteresting.
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2 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least
squares sense. A linear system of the form

Ax = b (1)

arising from a real-life application may or may not admit a solution, that is, a vector x that
satisfies this equation exactly. Often more measurements are available than strictly necessary,
because measurements are unreliable. This leads to more equations than unknowns (the number
m of rows in A is greater than the number n of columns), and equations are often mutually
incompatible because they come from inexact measurements. Even when m ≤ n the equations can
be incompatible, because of errors in the measurements that produce the entries of A. In these
cases, it makes more sense to find a vector x that minimizes the norm

‖Ax− b‖

of the residual vector
r = Ax− b

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy
any of the m equations in the system, but it tries to satisfy all of them as closely as possible, as
measured by the sum of the squares of the discrepancies between left- and right-hand sides of the
equations.

In other circumstances, not enough measurements are available. Then, the linear system (1) is
under-determined, in the sense that it has fewer independent equations than unknowns (its rank r
is less than n).

Incompatibility and under-determinacy can occur together: the system admits no solution, and
the least-squares solution is not unique. For instance, the system

x1 + x2 = 1

x1 + x2 = 3

x3 = 2

has three unknowns, but rank 2, and its first two equations are incompatible: x1 + x2 cannot be
equal to both 1 and 3. A least-squares solution turns out to be x = [1 1 2]T with residual

r = Ax− b =

 1 1 0
1 1 0
0 0 1

 1
1
2

−
 1

3
2

 =

 2
2
2

−
 1

3
2

 =

 1
−1

0

 ,

which has norm
√

2 (admittedly, this is a rather high residual, but this is the best we can do for
this problem, in the least-squares sense). However, any other vector of the form

x′ =

 1
1
2

+ α

 −1
1
0
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is as good as x. For instance, x′ = [0 2 2], obtained for α = 1, yields exactly the same residual as
x (check this).

In summary, an exact solution to the system (1) may not exist, or may not be unique. An
approximate solution, in the least-squares sense, always exists, but may fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out
to be shorter than all the others, that is, its norm ‖x‖ is smallest. One can therefore redefine what
it means to “solve” a linear system so that there is always exactly one solution. This minimum-
norm solution is the subject of the following theorem, which both proves uniqueness and provides
a recipe for the computation of the solution. The theorem is proven in an Appendix.
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Theorem 2.1. The minimum-norm least-squares solution to a linear system Ax = b, that is, the
shortest vector x that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UTb (2)

where

Σ† =



1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .

0 0 · · · 0


The matrix

A† = V Σ†UT

is called the pseudoinverse of A.

3 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 2.1 works regardless of the value of the right-hand side vector b. When b = 0, that is,
when the system is homogeneous, the solution is trivial: the minimum-norm solution to

Ax = 0 (3)

is
x = 0 ,

which happens to be an exact solution. Of course it is not necessarily the only solution (any vector
in the null space of A is also a solution, by definition), but it is obviously the one with the smallest
norm.

Thus, x = 0 is the unique minimum-norm solution to any homogeneous linear system. Although
correct, this solution is not too interesting. In many applications, what is desired is a nonzero vector
x that satisfies the system (3) as well as possible. Without any constraints on x, we would fall
back to x = 0 again. For homogeneous linear systems, the meaning of a least-squares solution is
therefore usually modified, once more, by imposing the constraint

‖x‖ = 1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily
admit a unique solution. The following theorem provides a recipe for finding this solution, and shows
that there is in general a whole hypersphere of solutions.
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Theorem 3.1. Let
A = UΣV T

be the singular value decomposition of the m × n matrix A, and let r = rank(A). Furthermore,
define

i =

{
r + 1 if r < n
min {j | 1 ≤ j ≤ n and σj = σn} otherwise.

In words, if A has a nontrivial null space, then i indexes the first column of V that spans the null
space of A. Otherwise, i indexes the first column of V whose corresponding singular value σi is
equal to the smallest (and last) singular value σn.

Then, all vectors of the form
x = α1vi + . . .+ αkvn

with
k = n− i+ 1 and α2

1 + . . .+ α2
k = 1

are unit-norm least-squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

When r = n, the last singular value σn of A is nonzero, and it is very unlikely that other singular
values have exactly the same numerical value as σn. Because of this, the most common case when
r = n is n = i and therefore k = 1. When r < n, on the other hand, the matrix A may often have
more than one singular value equal to zero. Either way, if k = 1, then the minimum-norm solution
is unique, x = vn. If k > 1, then x = vn is still a unit-norm least-squares solution. To summarize,
while the theorem above shows how to express all solutions as a linear combination of the last k
columns of V , the following weaker result holds as well, and is of significant practical importance.

Corollary 3.2. Let
A = UΣV T

be the singular value decomposition of the m × n matrix A, and let r = rank(A). Then, the last
column of V ,

x = vn

is a (possibly not unique) unit-norm least-squares solutions to the homogeneous linear system

Ax = 0,

that is

min
‖x‖=1

‖Ax‖ = ‖Avn‖ =

{
0 if r < n
σn otherwise.

In this expression, σn is the last singular value of A.
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A Proofs

Theorem 2.1

The minimum-norm least-squares solution to a linear system Ax = b, that is, the shortest vector
x that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UTb (4)

where

Σ† =



1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .

0 0 · · · 0


Proof. The minimum-norm least-squares solution to

Ax = b

is the shortest vector x that minimizes
‖Ax− b‖

that is,
‖UΣV Tx− b‖ .

This can be written as
‖U(ΣV Tx− UTb)‖ (5)

because U is an orthogonal matrix, UUT = I. But orthogonal matrices do not change the norm of
vectors they are applied to, so that the last expression above equals

‖ΣV Tx− UTb‖

or, with y = V Tx and c = UTb,
‖Σy − c‖ .

In order to find the solution to this minimization problem, let us spell out the last expression. We
want to minimize the norm of the following vector:

σ1 0 · · · 0

0
. . . · · · 0

σr
... 0

...
. . .

0 0





y1
...
yr
yr+1

...
yn


−



c1
...
cr
cr+1

...
cm


.
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The last m− r differences are of the form

0−

 cr+1
...
cm


and do not depend on the unknown y. In other words, there is nothing we can do about those
differences: if some or all the ci for i = r + 1, . . . ,m are nonzero, we will not be able to zero
these differences, and each of them contributes a residual |ci| to the solution. Each of the first r
differences, on the other hand, can be zeroed exactly by letting yi = ci/σi for the i-th difference.
In addition, in these first r differences, the last n − r components of y are multiplied by zeros, so
they have no effect on the solution. Thus, there is freedom in their choice. Since we look for the
minimum-norm solution, that is, for the shortest vector x, we also want the shortest y, because
x and y are related by an orthogonal transformation. We therefore set yr+1 = . . . = yn = 0. In
summary, the desired y has the following components:

yi =
ci
σi

for i = 1, . . . , r

yi = 0 for i = r + 1, . . . , n .

When written as a function of the vector c, this is

y = Σ+c .

Notice that there is no other choice for y, which is therefore unique: minimum residual forces the
choice of y1, . . . , yr, and minimum-norm solution forces the other entries of y. Thus, the minimum-
norm, least-squares solution to the original system is the unique vector

x = V y = V Σ+c = V Σ+UTb

as promised. The residual, that is, the norm of ‖Ax−b‖ when x is the solution vector, is the norm
of Σy−c, since this vector is related to Ax−b by an orthogonal transformation (see equation (5)).
In conclusion, the square of the residual is

‖Ax− b‖2 = ‖Σy − c‖2 =
m∑

i=r+1

c2i =
m∑

i=r+1

(uT
i b)2

which is the projection of the right-hand side vector b onto the left null space of A.

Theorem 3.1

Let
A = UΣV T

be the singular value decomposition of the m × n matrix A, and let r = rank(A). Furthermore,
define

i =

{
r + 1 if r < n
min {j | 1 ≤ j ≤ n and σj = σn} otherwise.
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In words, if A has a nontrivial null space, then i indexes the first column of V that spans the null
space of A. Otherwise, i indexes the first column of V whose corresponding singular value σi is
equal to the smallest (and last) singular value σn.

Then, all vectors of the form
x = α1vi + . . .+ αkvn

with
k = n− i+ 1 and α2

1 + . . .+ α2
k = 1

are unit-norm least-squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

Proof. The reasoning is similar to that for the previous theorem. The unit-norm least-squares
solution to

Ax = 0

is the vector x with ‖x‖ = 1 that minimizes

‖Ax‖

that is,
‖UΣV Tx‖ .

Since orthogonal matrices do not change the norm of vectors they are applied to, this norm is the
same as

‖ΣV Tx‖

or, with y = V Tx,
‖Σy‖ .

Since V is orthogonal, ‖x‖ = 1 translates to ‖y‖ = 1. We thus look for the unit-norm vector y
that minimizes the norm (squared) of Σy, that is,

σ21y
2
1 + . . .+ σ2ny

2
n .

This is obviously achieved by concentrating all the (unit) mass of y where the σs are smallest, that
is by letting

y1 = . . . = yi−1 = 0. (6)

From y = V Tx we obtain x = V y = y1v1 + . . .+ ynvn, so that equation (6) is equivalent to

x = α1vi + . . .+ αkvn

with α1 = yi, . . . , αk = yn, and the unit-norm constraint on y yields

α2
1 + . . .+ α2

k = 1 .
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