
Machine Learning Concepts

August 30, 2021

Now that we understand some of the perils of polynomial data fitting in the large sample
spaces involved in machine learning, we revisit some of the basic concepts we have introduced
quite informally so far. These include different types of machine learning problems, the concept of
learning a regressor or a classifier from data, and the curse of dimensionality.

1 Supervised and Unsupervised Learning

Machine learning develops algorithms that discover patterns in data. In addition to the problems
mentioned in the last set of notes, we consider the following examples of classification, regression,
and clustering, with the aim of tightening some of the basic definitions and introducing some
notation we will use throughout the course.

Examples:

• Classification: The US Postal Service (USPS) uses digit recognition, a machine learning technique, to read hand-
written ZIP codes on envelopes. Many thousands or even millions of images of the digit ’0’ are provided, together
with the label ’0’, and similarly for the other nine digits. These images are provided by the USPS, and someone
painstakingly looks at each image and records a label for it in a file. The machine learning algorithm must identify
some commonalities among all images of the same digit (these commonalities are the “pattern” in the data) so that
if a previously unseen image shows up without a label, it can be automatically labeled without human intervention.
The way the machine learning algorithm captures the “pattern” in practice is by computing a function that takes
an image as input and produces the appropriate label as output.

• Regression: YouTube may be interested in an automatic method to predict the median age of the viewers of each
given video clip, so that it can target ads it shows with each video more specifically and cost-effectively. In this
scenario, YouTube may collect data through surveys, perhaps by asking viewers to state their ages voluntarily when
they access a new clip. Individual responses may not be very reliable, but if there are enough of them per video clip,
the empirical median might be an accurate summary. The machine learning algorithm must identify some pattern
that connects properties of each video to the median age of its viewers. Once that pattern is found, it can be used
to predict median ages of viewers without including the annoying survey.

• Clustering: When a color image is to be sent over an expensive channel or displayed on an inexpensive device,
it may not be possible to preserve all the original colors (because doing so would be too expensive, in the first
case, or because the device is unable to, in the second). A common solution is to fix the number K of allowable
colors to some small integer, and then map each color in the original image to the most similar of the K allowable
ones. This requires building a colormap, that is, a table of K allowable colors. Different images have different color
distributions, and therefore may require different colormaps for optimal rendering.

This color quantization problem can be viewed as one of clustering if the colormap is computed from a subset of
the pixels in the original image (as is typically done to save computation effort) and is then applied to all the pixels:
The N colors x1, . . . ,xN in the sample are viewed as an unlabeled training set X (not T , because there are no
labels), and the goal of clustering is to group these colors into K � N groups such that colors within a group are
similar to each other and colors in different groups are different from each other. Once this task is accomplished,
one can select a representative color for each group to form the colormap, and map each of the colors in the original

1

image (typically many more than N) to the nearest of the K representatives (in a metric suitable for colors). Here,
the “pattern” in the data is some natural grouping of colors.

These examples stem from image or video analysis problems because my main area of research
is computer vision. There are many more application domains for machine learning.

1.1 Classification

Let us formalize what happens in the classification example above: The machine learning algorithm
takes a training set as input, of the form

T = {(x1, y1), . . . , (xN , yN)} with xn ∈ X and yn ∈ Y ,

where each data point xn is an image and the corresponding yn is that image’s label (a digit between
0 and 9 in the example). Each of the thousands or millions of ordered pairs (xn, yn) is called a
training sample. The set X is the data space, and in the example it is the set of all possible images
(of some appropriate format), not just the set of training data points. The label set Y is the set of
all digits

Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

in the example. The fact that the elements of Y are numbers (in this case) is irrelevant. Think of
labels as abstract identifiers.

The output of the machine learning algorithm is a function h that takes an image x and returns
a label y, that is,1

h : X → Y such that h(x) = y . (1)

This function is the classifier or predictor learned by the machine learning algorithm. Importantly,
while the classifier h “works” even if x is one of the training samples xn (and hopefully yields
the appropriate label yn at least most of the time), in real life h will be typically applied to new,
previously unseen images x for which no labels are available, and produce labels y for them that
are hopefully correct most of the time: All the manual work that goes into taking and labeling
images in order to make the training set T pays off in the form of a classifier h that can do the
labeling work for you from now on. The machine learning algorithm somehow found the “pattern”
in the labeled digit images (the “data”), and captured that pattern in the classifier h.

For computer scientists, there is little difference between an algorithm and a function: Every
algorithm that takes inputs and produces outputs can be represented by a mathematical function,
and every mathematical function can be implemented, at least approximately, by some algorithm.
Thus, the machine learning algorithm itself can be viewed as a function that takes a set T as input
and produces a function h as output. In order to do so, the algorithm needs to know what functions
h with the signature given in expression 1 it is allowed to choose from. The set H of such functions
is called the hypothesis space for the given learning problem.2

Think, if you can, of the class

T def
= 2X×Y

of all possible training sets.

1The “right arrow” description of a function h in terms of its domain X and codomain Y , as given in expression
1, is called the signature of the function.

2For this and other terminology in machine learning, we defer to common use in the literature. All terms have
some historical justification, even when they sound a bit strange.

2

Notation: The Cartesian product X×Y is the set of all possible data-point/target pairs, that is, the set of

all possible data samples (whether they are in a specific training set or not). If A is some set, the expression

2A denotes3 the power set of A, that is, the class of all subsets of A. Thus, T is the class of all possible

sets of training samples.

This class and H are very large classes indeed, and we only think about them abstractly: We
will never be asked to produce all of their elements. Then, the signature of the machine learning
function λ is

λ : T → H such that λ(T) = h

and we say that λ learns or trains the classifier h from the training set T . Applying a classifier to
labeled data unseen during training is called testing the classifier. Applying a classifier to any data
is called inference.

If a function that outputs a function makes your head spin, think of both λ and h as algorithms:
You write an algorithm λ that somehow looks at the training samples in the training set T and
produces a piece of code h. That piece of code can be run on new images x to guess their labels,
y = h(x).

Even this “algorithmic” view is a bit abstract. What happens most of the time is that the
machine learning algorithm outputs the vector θ of parameters of a parameterized algorithm hθ.
Think of hθ as a piece of code that is known ahead of time (we write that code), but that is
missing the values of some parameters θ. The machine learning algorithm λ knows about hθ,
and only outputs the vector θ. Hopefully this more concrete view of things eases your anxiety.
Mathematically, it is notationally simpler and conceptually more general to think of λ as producing
the whole function h.

It is useful to observe that if the label set Y has K labels, a classifier defines a partition of X
into K subsets X1, . . . , XK by the following rule4:

x ∈ Xy ⇔ h(x) = y for y ∈ Y .

Thus, another way to view the process of learning a classifier is that the training algorithm λ
partitions the set X of all possible inputs (not just the set of training data points!) into K subsets,
with each subset assigned to one of the labels. The classifier h is a piecewise-constant function,
and the “pieces” are the subsets Xy.

Practical Aspects: Making a Training Set. It is useful to examine what it takes to produce the
images xn for the classification example above. One could place a camera above one of the conveyer belts
that move envelopes around in a USPS distribution center, and take a picture of each envelope. That
picture, however, contains much more than a digit, and someone must therefore sit at a computer, display
each envelope image on the screen in turn, drag a bounding box around each digit with a mouse, and save
each cropped digit as a separate file. Another file will record the name of the image and the corresponding
label (what digit the image represents). This collection of data is the training set T .

Different images may have different quality depending on factors such as lighting, the ink used to write the

digit, the color of the envelope paper, the size of the digit, and so forth. In addition, the digit images may be

cropped inconsistently if the operator gets tired, or multiple operators are employed to crop and label images.

These inconsistencies often make learning harder, and training sets are sometimes curated because of this. In

the USPS example, curation involves running manual procedures to make the images more uniform in terms

of the factors mentioned above.5 Curation helps machine learning research by making the problem easier

3This is fitting notation, because if A has a finite number k of elements, then 2A has 2k elements.
4The double arrow reads “if and only if.”
5Think calibrating, touching up, and re-cropping or resizing images in Photoshop.

3

for initial study. However, curation cannot be used to train real-life machine learning classifiers, because the

whole point of computing h is to eliminate manual intervention during deployment (testing). In these cases,

only automatic preprocessing of the images is a viable option, because the preprocessing can then be applied

during both training and testing. Preprocessing techniques are beyond the scope of these notes.

In the days of Google Images and web crawlers, collecting data for training is often inexpensive if
no curation is needed. Labeling, on the other hand, is laborious, time-consuming, and error-prone.
A common method for labeling large amounts of data is to publish it to the Amazon Mechanical
Turk, an online marketplace for the type of repetitive work involved in labeling. People around the
world access the marketplace searching for easy jobs, and you pay them a small amount (often 1-3
cents) per label. Even so, labels are not always of good quality, and various schemes are devised to
address this issue. For instance, multiple people could be employed to label each training sample,
and a majority vote could then be taken to determine the most likely label. In any case, the cost of
labeling is high, and many machine learning algorithms require large amounts of data. This high
cost is arguably the main hurdle to a broader use of machine learning.

1.2 Regression

Formally, the problem posed in the YouTube regression example given earlier is nearly identical to
the classification problem: Discover a pattern in the training data (video clips and corresponding
recorded median viewer ages) to learn a function h that predicts median ages for previously unseen
(and unlabeled) video clips. As a result, most of the considerations and terminology from the
previous section still hold.

The difference between classification and regression is that the function h outputs a categorical
variable for classification and a real-valued variable for regression. This means that the label set Y
is finite and unstructured for classification, while for regression we have

Y = R ,

the set of real numbers, endowed with a metric (it makes sense to talk about the “distance”
between two ages). Incidentally, while a natural distance exists for digits, the distance is irrelevant
for classification: Knowing that |2 − 3| is smaller than |2 − 5| does not help distinguish the two
digits from each other. Thus, any distance that may exist in Y is not used in classification, even it
there happens to be a natural one.

In terms of definitions, the difference between classification and regression is minor. In practice,
however, the finite nature of the label set often suggests techniques for classification that could not
be applied to regression. Conversely, regression techniques typically rely on the chosen metric for
Y , and these techniques cannot be used for classification. The separation between regression and
classification is not always strong, as some machine learning algorithms can be applied to either
problem with minor changes.

The predictor h output by a machine learning algorithm for regression is called a regressor,
rather than a classifier, and the word value is used for Y instead of label. All other considerations
made earlier for classification hold for regression as well. A target is either a label or a value.

1.3 Unsupervised Learning

Classification and regression are said to be supervised machine learning problems, with targets
constituting the supervision. In other words, the machine learning algorithms for these problems

4

https://www.mturk.com
https://www.mturk.com

are told explicitly (by a “supervisor”) what target is to be associated to each data sample in the
training set.

The clustering problem described earlier, on the other hand, is an example of unsupervised
learning, because the inputs come with no targets. Instead, the number K of desired clusters is
(usually but not always) given as an input in addition to the set

T = {x1, . . . ,xN}

of unlabeled data points (the colors in the sample). Part of the desired output of the machine
learning algorithm λ is again equivalent to a classifier

h : X → Y

where X is the set of all possible colors and

Y = {1, . . . ,K} ,

a set of indices into the table of allowed colors. This function takes an original color x (inside or
outside the training set T) and maps it to color number y in the colormap. In this context, the
function h is called an indicator function, rather than a classifier, and defines a partition of X into
K subsets X1, . . . , XK by the following rule6:

x ∈ Xy ⇔ h(x) = y for y ∈ Y .

However, in addition to h, the algorithm λ must also output the colormap, that is, a mapping

c : Y → X

which tells which color corresponds to which index in Y . The colors c(y) in the map are not
necessarily colors that are present in the original image.

What makes this machine learning task a clustering problem is that h must be constructed so
that the partition of X it induces must be “natural:” colors within a subset Xy must be more
similar to each other than colors in different subsets.

In turn, this constraint requires the existence of a distance (or, conversely, a similarity) function,
that is, a measure for how different (or similar) two colors are. This constraint also requires defining
some clustering loss, that is, a function that measures how bad a given clustering h is for some input
set T . The learning algorithm then finds h so as to minimize the loss for T (perhaps approximately).

Obviously, different distance or similarity functions and different loss functions yield different
clusterings, and there are no “universal” choices for these aspects. We will not cover unsupervised
learning in this course, and we therefore refrain from further elaboration or formalization, except to
note that color quantization is really a “miniature” example of a machine learning problem: Each
image is a new learning problem with its own training set T . In other words, while λ is typically
run once in a classification problem, and h is then deployed in the real world, the function being
deployed in color quantization is λ itself, and a new indicator function h is learned for each new
image. Thus, each new image involves both training and inference.

6The double arrow reads “if and only if.”

5

r

Δr

(a) (b) (c) (d)

Figure 1: (a) A graphical representation of a training set with 200 samples belonging to two classes.
The data points (features) xn are pairs of real numbers. The blue circles have label yn = 'c' and
the red squares have label yn = 's', so each sample (xn, yn) is an element of X ×Y where X ⊆ R2

and Y = {'c', 's'}. (b) A different, linearly separable training set with 200 samples. (c) A
training set that is not linearly separable but has a simple boundary between the two classes. (d)
Definition of radius r and half-width ∆r of a ring centered at the origin of the plane.

1.4 Drawings and the Curse of Dimensionality

We often draw pictures of machine learning problems and datasets on the plane (of a sheet of paper,
a computer screen, or a whiteboard). Each data point x is a point on that plane, and the boundaries
of the partition induced by a classifier are sketched with lines, straight or curved depending on the
type of classifier. For instance, Figure 1 (a) shows data that belong to two classes, the blue circles
and the red squares. Finding a classifier amounts to finding a set of curves that partitions the plane
into two regions, not necessarily connected, such that all the blue circles are in one region and all
the red squares are in the other.

From this drawing, one comes away with the impression that these curves are quite complicated,
and one is then led to seek a large hypothesis space H, in the hope that it will contain a function
ĥ that achieves the desired separation. This function would take value 's'on the region with the
red squares and value 'c'on the rest of the plane, and the separating curves are where ĥ switches
values.

If, on the other hand, the drawing looks like the one in Figure 1 (b), there is a straight line
that (barely) separates the two sets. This is an example of a linearly separable training set T . For
this problem, the hypothesis space H could be much simpler. For instance, one could define some
set of scoring functions s`(x) parameterized by a line ` on the plane, and with the property that
s`(x) > 0 on one side of ` and s`(x) < 0 on the other. The classifier is then a score-based classifier,

h`(x) =

{
's' if s`(x) > 0
'c' otherwise

and finding the optimal classifier ĥ amounts to finding the appropriate line ` (with the appropriate
orientation as well, so that the red squares are on the side of the line where the score is positive).
We will see examples of scoring functions of this type later in the course.

Even if the data is not linearly separable, it may fail to be separable for rather secondary reasons
of representation. For instance, the data in Figure 1 (c) is not linearly separable. However, all the

6

red squares are inside a ring, and all the blue circles are outside it. Let us assume that the center of
the ring is the origin of the plane, (0, 0). The hypothesis space H could be tailored to this type of
data, and include all binary functions that have one value in some ring and the other value outside
the ring. Learning the optical classifier would then amount to finding the appropriate ring.

Alternatively, one could augment the feature vector x = [x1, x2]
T with two new features equal

to the squares of the existing ones, so that now

x = [x1, x2, x
2
1, x

2
2]
T

or even replace the old feature values with their squares:

x = [x21, x
2
2]
T

or just their sum:
x = x21 + x22 .

Clearly, x is very informative, and the optimal classifier would identify an interval of x in which all
red squares fall. If the other feature values are kept in x, they become irrelevant.

We could even make the set linearly separable if we knew the radius r of the middle of the ring
and the ring’s half-width ∆r: Just replace x by the single feature

x =
√
|x21 + x22 − r2|

and then all points for which x < ∆r are in the ring, and are labeled 's'.
The key problem with all these drawings is that they are misleading in practice. Given a data

set pertaining to some real classification or regression problem (think of SPAM filtering, or reading
ZIP codes on envelopes), the data space X has typically a dimensionality d much higher than 2,
and it is unclear what to draw as a 2D proxy for the real problem. Does the data distribution look
more like in Figure 1 (a) or in Figure 1 (b)? Or does it have some special geometry as in Figure 1
(c)? We cannot just “look” at the data, because it lives in a space we cannot visualize. We don’t
even know if the training set is linearly separable, short of actually looking for a linear separator
and then checking if we fail or succeed.

Thus, while drawings are pedagogically useful to define concepts in machine learning, and
heuristically useful when thinking of a machine learning problem, they must be used with care: It
is easy to build some assumption into a drawing unwittingly, and then draw conclusions that fail
if that assumption is not met.

Another danger in relying on drawings too heavily is that our intuition does not generalize well
when thinking about spaces with more dimensions. For instance, we may talk about distances
between data points, and imagine clusters of points or probability densities that summarize point
distributions. Perhaps we draw a grid on the plane as a way to “discretize” a continuous problem,
by saying that all points in the same cell of the grid are to be treated the same. All these concepts—
points, curves, distance, probability distributions, clusters, grids— generalize to more dimensions,
so we use similar abstractions as we think, say, of images, in which a single data point x has as
many dimensions as there are pixels in an image, often millions.

Alas, this extension, from 2D to more dimensions, is fraught with danger in two major ways.
The first is computational, and was named the curse of dimensionality by Richard Bellman in 1961.
What is simple on the plane may be practically impossible even in just 100 dimensions. As we

7

saw, building a grid with a mere 10 cell boundaries per dimension requires 100 cells on the plane,
but 10100 in a space with 100 dimensions. Since the number of atoms in the universe is estimated
to be between 1078 and 1082, working with a grid in 100 dimensions is clearly impossible. Similar
difficulties arise when estimating probability densities or enumerating class boundaries.

The second danger is conceptual: Our intuitions about the geometry of data sets, function
graphs, or class boundaries are based on our 2D or 3D experience. Alas, these intuitions are often
wrong in spaces of many more dimensions. Consider for instance a circle inscribed in a square.
Almost 79 percent of the area of the square is covered by the circle: πr2/(2r)2 ≈ 0.79, and the
distance from the center of the circle to a corner of the square is

√
2r, about 1.4 times the circle’s

radius. Thus, our intuition tells us that the circle covers most of the square, and that the corners
of the square are less than two radius lengths away from the center. The remaining parts, between
square and circle, are relatively unimportant (just 21 percent of the area). As we think of increasing
dimensionality (a sphere inscribed in a cube, and so on), however, the volume in the sphere vanishes
towards zero as a fraction of the volume of the cube, and the distance from the center to a corner of
the cube goes to infinity as a multiple of the sphere radius. Thus, a d-dimensional sphere inscribed
in a d-dimensional cube looks more like an octopus for large d: A vanishingly small sphere in the
middle, with exponentially many, extremely long tentacles that extend towards the corners and
contain almost all of the cube’s volume!

A similar failure of our imagination in many dimensions relates to point distributions in space.
When we think of, say, an isotropic Gaussian distribution of points around the origin of the plane
and with standard deviation σ we think of a cloud of points that is densest at the origin and
becomes sparser as we move further away from it. Thus, most of the points “fill” any circle around
the origin whose radius is not much bigger than σ. This is not so in many dimensions. Even
in just d = 20 dimensions, about 99 percent of all the points in the cloud are concentrated in a
spherical shell centered at the origin, and whose inner radius is 0.8σ and whose outer radius is
σ. As d increases further, the thickness of the shell vanishes: In many dimensions, essentially all
points are on the surface of the sphere that is σ units away from the origin! Clearly, distances and
distributions behave differently in many dimensions than they do in few.

8

	Supervised and Unsupervised Learning
	Classification
	Regression
	Unsupervised Learning
	Drawings and the Curse of Dimensionality

