
Numerical Function Optimization

September 8, 2021

1 Introduction

Machine learning is optimization: A risk function defines the discrepancy between actual and
desired behavior of the function being learned, and optimization methods find function parameters
that reduce the risk over the inputs and outputs in the training set.

The term “optimization” is meant to subsume both minimization and maximization. However,
maximizing the scalar function f(z) is the same as minimizing its negative −f(z), so we consider
optimization and minimization to be essentially synonyms. Usually, one is after global minima.
However, global minima are hard to find, since they involve a universal quantifier: z∗ is a global
minimum of f if for every z we have f(z) ≥ f(z∗), and it is typically infeasible to check all
possible z. Global minimization techniques like simulated annealing have been proposed, but their
convergence properties depend very strongly on the problem at hand. In this chapter, we consider
local minimization: we pick a starting point z0, and we keep moving to points z1, z2, . . . as long
as the value of f at those points keeps decreasing. We stop when we cannot go down any further
because we have reached a local minimum.

Local minimization may get us close to the global minimum z∗ if we know how to pick a z0 that
is close to z∗. This occurs frequently in feedback systems. In these systems, we start at a local
(or even a global) minimum. The system then evolves and escapes from the minimum. As soon as
this occurs, a control signal is generated to bring the system back to the minimum. Because of this
immediate reaction, the old minimum can often be used as a starting point z0 when looking for the
new minimum, that is, when computing the required control signal. More formally, we reach the
correct minimum z∗ as long as the initial point z0 is in the basin of attraction of z∗, defined as the
largest neighborhood of z∗ in which f(z) is convex.

If a good z0 is not available, one may have to be content with a local minimum ẑ. After all, ẑ
is always at least as good, and often much better, than z0. A compromise that may help when the
domain of f has few dimensions is to pick several values for z0 (perhaps at random), compute the
corresponding values for ẑ, and then pick the one with the lowest value f(ẑ). However, the curse
of dimensionality makes this approach futile in many dimensions.

1.1 First Order Optimization Methods

When the function f(z) : Rm → R is differentiable in the vector z, we can compute its gradient
∇f . Pick some vector z0 ∈ Rm as a starting point for searching for a value ẑ of z which, if not
optimal, at least yields a value f(ẑ) that is smaller than z0. Figure 1 (a) sketches a function f(z)
for z ∈ R2 and a starting point z0.

1

z1

z2

f(z)

z0

z1

z2

f(z)

z0

(a) (b)

Figure 1: (a) A function f : R2 → R and an initial point z0. (b) The shaded quadrilateral is a
patch on the plane represented by the first-order Taylor series expansion of f around z0. Any step
in the steepest downhill direction will reduce the value of the Taylor approximation to f . If the
length of the step is chosen carefully, the step might reduce the value of f as well, and lead to a
new point z1 (not shown) where f has a lower value than at z0.

The gradient of f at z0 can be used to approximate f with its first-order Taylor approximation

f(z) ≈ g1(z) = f(z0) + [∇f(z0)]
T (z− z0) .

This function g1(z) represents a plane when m = 2 (Figure 1 (b)) and a hyperplane more generally,
and provides some information about the shape of the graph of f in the vicinity of z0. Loosely
speaking, g1(z), and in particular the gradient ∇z0, tells us which way is uphill, that is, in what
direction the value of g1 (and therefore, in a small neighborhood of z0, the value of f) increases
most rapidly. Then, a small step in the opposite direction, −∇z0, may lead to a new point z1 such
that

f(z1) < f(z0)

as long as the size of the step is chosen judiciously. We will see later how to choose good step sizes.
This procedure, called a first-order descent method can be repeated as long as progress occurs, that
is, as long as the value of f decreases, or until the changes become too small to be useful.

If also the Hessian H(z0) of f at z0 is known,

H(z0) =


∂2f
∂z21

. . . ∂2f
∂z1∂zm

...
...

∂2f
∂zm∂z1

. . . ∂2f
∂z2m


z=z0

,

then so-called second-order descent methods can be used, of which Newton’s method is the archetype.
Second-order methods are viable only when the cost of computing the Hessian is bearable. This
is typically not the case in deep learning, where the number m of unknowns is too large. While
Newton’s method is applicable to a few of the smaller optimization problems discussed in this
course, its description and analysis are left to an Appendix to keep this section simple, and are
optional reading. First-order methods can be used, at the cost of some inefficiency, even for small
problems.

2

z

z'u z + (1-u) z'

f(u z + (1-u) z')

u f(z) + (1-u) f(z')

f(z')

f(z)

Figure 2: A function f(z) is weakly convex if its graph is never above the line segment through
any of its two points.

1.2 Gradient, Hessian, and Convexity

Whether a descent method, regardless of its order, converges at all or, if it does, whether it converges
to a global minimum depends on many factors. A particularly favorable situation occurs when f
is a convex function of z, in which case strong guarantees can typically be given.

A function f(z) is convex (everywhere) if for every pair of points z, z′ in the domain of f the
graph of f is never above the segment that joins the two graph points (z, f(z)) and (z′, f(z′)):

f(uz + (1− u)z′) ≤ uf(z) + (1− u)f(z′) for all u ∈ [0, 1]

(see Figure 2).
To check that a scalar function f : R → R is (weakly) convex you check that its second

derivative, which is the derivative of the derivative, is nonnegative everywhere. For multivariate
functions,

f : Rm → R ,

the idea is analogous: You check that its Hessian H, which is the Jacobian of the gradient, is
positive semidefinite everywhere. This means that for every z ∈ Rm we have

zTHz ≥ 0 .

If f is convex everywhere, any minimum is a global minimum, and therefore if a descent method
finds a minimum (that is, a point z for which ∇f(z) = 0), that point is also a global minimum.

And now for some more detail about first-order descent methods.

3

2 Local Minimization and Gradient Descent

Suppose that we want to find a local minimum for the scalar function f of the vector variable z,
starting from an initial point z0. Picking an appropriate z0 is often crucial but also very problem-
dependent, so we do not discuss this choice here. We then start from z0, and we go downhill. At
every step of the way, we must make the following decisions:

• In what direction to proceed.

• How long a step to take in that direction.

• When to stop.

Correspondingly, most minimization algorithms have the following structure, with z0 given:

k = 0
while zk is not a minimum

compute step direction pk
compute step size αk
zk+1 = zk + αkpk
k = k + 1

end.

Different algorithms differ in how each of these instructions is performed, and the two computations
regarding the step, direction and size, are sometimes performed together as a single computation
that yields the step sk = αkpk. We will consider gradient descent, in which the direction of descent
is along the negative of the gradient:

pk = −∇f(zk) .

In the next Section, we describe how to perform gradient descent when f is an average of a
very large number of terms, a situations that occurs often in deep learning. We then turn to the
questions of step-size selection and conditions on when to stop iterating.

2.1 Stochastic Gradient Descent

In machine learning, the functions f to be minimized are often very expensive to compute. However,
they often also have a special structure, in that they are averages of large numbers of terms, because
the risk is an average loss over the training set:

f(z) =
1

N

N∑
n=1

φn(z) . (1)

In that case, rather than reducing the value of all of f(z) with each step, one can reduce the value
of a random sub-average of f(z). Specifically, partition the set of indices B = {1, . . . , N} into J
random subsets Bj each of about equal size1. The set B is called the batch, ad each subset Bj is
called a mini-batch. Then, the terms in the summation that defines f can be grouped as follows:

f(z) =
1

N

J∑
j=1

∑
n∈Bj

φn(z) . (2)

1Unless N is a multiple of J , one of the subsets will be smaller or larger than all the others.

4

Instead of taking a step along the exact gradient ∇f(z), the method of Stochastic Gradient
Descent (SGD) estimates the gradient ∇fj(z) from the j-th mini-batch:

fj(z) =
1

|Bj |
∑
n∈Bj

φn(z)

at every step. In this expression, |Bj | denotes the cardinality of Bj .
To the extent that the mini-batch Bj is a representative sample of the entire batch B, the

mini-batch average fj is an estimate of the entire average f , and therefore so are the gradients:

f(z) ≈ fj(z) ⇒ ∇f(z) ≈ ∇fj(z) .

The step is then
zk+1 − zk = αk∇fj(zk) (3)

rather than
zk+1 − zk = αk∇f(zk) . (4)

Since the mini-batch gradient∇fj(z) approximates the full gradient∇f(z), the mini-steps are in
the right direction on average, even if each step may be somewhat wrong (they are wrong especially
when the mini-batches are small).

One can make this statement more quantitative in the following sense [1]: Let f(zk) be the
value actually obtained after step k. While this value is given and therefore deterministic, the
subsequent value depends on the data in the mini-batch j, and is therefore viewed as a random
variable. The expectation of the change in function value after the next step is then

E[f(zk+1)]− f(zk) = E[f(zk − αk∇fj(zk))]− f(zk)

= E[f(zk)− (∇f(zk))
Tαk∇fj(zk))]− f(zk) +O(α2

k)

= −α‖∇f(zk)‖2 +O(α2
k) < 0

for sufficiently small step sizes αk. The second equality above is obtained by taking the first-order
Taylor series expansion of f around zk, and the last equality assumes that the approximation of
∇fj(zk) with ∇f(zk) is correct to first order (which it is on average). This argument shows that
the value of f(z) decreases, on average, at every step as long as the steps are sufficiently small.

It can also be shown that SGD converges to a local minimum as long as the step lengths αk
decrease fast enough but not too fast with k, in the sense that they meet the following conditions [4]:

∞∑
k=0

α2
k <∞ and

∞∑
k=0

αk =∞ . (5)

These conditions ensure asymptotic convergence (that is, convergence when k →∞). However,
in deep learning, optimization is often stopped before full convergence, as we will see, so these
conditions are moot in that context.

Processing all data once is called an epoch of optimization, which proceeds through several
epochs until convergence.

The mini-step (3) is greedy, in that reducing one mini-batch average fj(z) might even increase
some other mini-batch average fi(z).

5

The size of the mini-batch affects the variance of the gradient ∇fj(zk) of the mini-batch op-
timization target (2) as an estimate of the gradient ∇f(zk) of the full optimization target (1).
Estimation variance decreases as the mini-batch size increases, but the storage cost increases with
mini-batch size. In deep learning, optimization is often performed on Graphical Processing Units
(GPUs), and the size of the mini-batch is constrained by the amount of memory available in the
GPU. Thus, one typically selects the largest mini-batch that will fit in GPU memory.

2.2 Step Size

To complete the gradient descent algorithm, stochastic (step (3)) or not (step (4)), we need to
specify two more of its aspects: (i) How to determine the step size αk so at to reach a local
minimum of f(z) along the direction of pk; and (ii) how to check whether a local minimum of f (in
any direction) has been reached, so that we can stop. We discuss the first aspect in this Section,
and leave the second aspect for the next Section.

Once the direction of descent has been determined, the optimization problem becomes one-
dimensional, and amounts to determining how far to move in the direction of the negative gradient.
Specifically, let

h(α) = f(zk + αpk) (6)

be the scalar function of one variable (that is, h : R → R) that is obtained by restricting the
function f to the line through the current point zk and in the direction of pk = −∇f(zk). We need
to find a positive value αk of α for which h(αk) < h(0), so that if we let

zk+1 = zk + αkpk

we have
zk+1 < zk .

We consider the following strategies:

• Move by an arbitrary, predetermined step αk = ᾱ > 0. This strategy requires no effort for
determining αk, but it may seem prima facie a losing proposition: If ᾱ is too small it may take
too many steps to reach a minimum of f . If ᾱ is too large the sequence of points z0, z1, z2, . . .
may skip over local minima and never converge to one. However, recall that ᾱ multiplies the
negative gradient vector pk = −∇fk. If the search for a minimum ever gets near one, the
gradient is small (because it is zero at the minimum), and the step sizes become smaller and
smaller as a consequence.

• Move by a decreasing sequence of step sizes, for instance, αk = 1/(k+1). This strategy satisfies
the conditions (5), so this is a favorite strategy in proofs about asymptotic properties.

• Move by a linear combination of ᾱpk (with a predetermined ᾱ or a decreasing sequence αk) and
the direction of the previous step vk = zk−zk−1. This is called the momentum method: Just
as a moving particle with momentum2 tends to keep moving with that momentum (Newton’s
first law), the search for a minimum tends to keep searching in a direction that was promising
a step ago and may still be promising now. This method helps accelerate descent when the
gradient of f is small, as is the case in plateaus and around shallow minima, and is discussed
in somewhat more detail below.

2Momentum is mass times velocity.

6

• Find a local minimum of h(α). If α′ is not a local minimum, then one can think of reaching a
different value α′′ of α so that h(α′′) < h(α′), so why stop at α′? This strategy is called line
search, a simple version of which is discussed in more detail below. Of course, even if αk is a
local minimum of h, it need not be a minimum of f , as it may be possible to move downhill
from the new point zk+1 = zk − αkpk in a direction different from pk.

Stochastic Gradient Descent requires a decreasing αk if full convergence is desired, since the
conditions (5) must be met. A simple choice in that case is

αk = 1/(k + 1)

as mentioned above. In deep learning, however, SGD is typically stopped before full convergence,
for reasons that will become clear later on. The schedule for αk is then determined by trial and error
on sample problems, with α initially large and decreasing over time. The intent of the schedule is to
strike a good balance between sufficiently fast progress (which requires a larger αk) and the ability
of the algorithm to descend into narrow valleys towards a minimum (which requires a smaller αk).
Figure 3 illustrates.

α α᾽

Figure 3: A small step (α) may make overly small progress towards a minimum. A large step (α′)
may skip over a minimum in a narrow valley.

Momentum The momentum method [3, 6] starts from an initial value z0 chosen at random and
iterates as follows:

vk+1 = µkvk − αk∇f(zk)

zk+1 = zk + vk+1 .

The vector vk+1 is the step or velocity that is added to the old value zk to compute the new
value zk+1. The time-dependent scalar µk ∈ [0, 1] is the momentum coefficient. Standard gradient
descent occurs when µk = 0. Greater values of µk encourage steps in a consistent direction (since
the new velocity vk+1 has a greater component in the direction of the old velocity vk than if no
momentum were present), and these steps accelerate descent when the gradient of f(z) is small,
as is the case on plateaus and around shallow minima. The value of µk is often varied according
to some schedule like the one in Figure 4. The rationale for the increasing values over time is
that momentum is more useful in later stages, in which the gradient magnitude is very small as zk
approaches the minimum. The step size αk is either fixed or chosen as described above for SGD.

7

µk = min

(
µmax, 1−

1

2

1⌊
t

250

⌋
+ 1

)

0 500 1000 1500 2000 2500 3000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 4: A possible schedule [6] for the momentum coefficient µk.

Line Search is a method to find a step αk that reaches a minimum in the direction pk. Here is
how it works, first at a high level, then in more detail. Line search first determines two points a, c
that bracket the desired step size αk where h achieves a minimum, in the sense that a ≤ αk ≤ c. It
then picks a point b such that

a < b < c and h(b) ≤ h(a) and h(b) ≤ h(c) (7)

(as we will see soon, such a point must exist). A triple (a, b, c) that satisfies these properties is
called a bracketing triple. To determine αk, line search computes the midpoint u of the wider of
the two intervals [a, b] or [b, c] and then finds a new, narrower bracketing triple that involves u and
two points out of a, b, c. This process is repeated, each time shrinking the bracketing triple, until
it is so small that it pins αk down to any desired accuracy.

More specifically, in the first step (bracketing), we can set a = α0 = 0, corresponding through
equation (6) to the starting point zk. A point c that is on the opposite side of a minimum with
respect to a can be found by increasing α through values α1, α2, . . . until h(αi) is greater than
h(αi−1): When doing so, we initially go downhill, because we are moving in the direction of the
negative gradient, so once we start going uphill we must have passed a minimum, so we can set
c = αi. This is because the derivative of h at a is negative, so the function is initially decreasing,
but it is increasing between αi−1 and αi = c, so there must be a minimum somewhere between a
and c. Of course, unless h happens to be convex between α1 and αi, we can only say that we will
find some local minimum, not the lowest or the closest to α1. This is an unavoidable fact of life,
unless we know something about the underlying function f . The point b can be chosen as αi−1, a
point where by construction h has a value lower than both a and c.

So now we have a bracketing triple (a, b, c) that satisfies conditions (7), with a minimum of
h somewhere between a and c. Line search proceeds by shrinking this bracketing triple until the
difference c − a is smaller than any positive desired accuracy in determining αk. Each step of
shrinking is done as follows:

if b− a > c− b
u = (a+ b)/2
if h(u) > h(b)

8

(a, b, c) = (u, b, c)
otherwise

(a, b, c) = (a, u, b)
end

otherwise
u = (b+ c)/2
if h(u) > h(b)

(a, b, c) = (a, b, u)
otherwise

(a, b, c) = (b, u, c)
end

end.

It is easy to see that in each case the triple (a, b, c) is a bracketing triple (properties (7) hold
throughout), and therefore there is a minimum somewhere between a and c.

With the possible exception of the very first split, each split reduces the size of the bracketing
interval by at least a quarter. To see this, note that the extent of the reduction is half the size of
the longer interval. Therefore, the smallest reduction occurs when the intervals [a, b] and [b, c] are
equal in size, because then the longer interval is as short as it gets. In that case, u is the half-point
of [b, c]. If the new triple is (b, u, c), then its size is half that of the original triple (a, b, c). If the
new triple is (a, b, u), then its size is three quarters of the original. The latter is the worst case,
and the reduction is by 25 percent, as promised.

A slightly better performance can be achieved by placing point u not in the middle of the longer
segment, as done in the code above, but rather in such a way that at each iteration the ratio

r(a, b, c) =
max(b− a, c− b)
min(b− a, c− b)

between the length of the longer segment and that of the shorter segment in the bracketing triple
is always the same, and equal to

w =
1 +
√

5

2
≈ 1.618 ,

a number called the golden ratio. Appendix A shows that this can be achieved by an appropriate
initial placement of b and subsequent placement of u. With this strategy, the ratio between the
length of the new bracketing triple and the old is always3

w

1 + w
= w − 1 ≈ 0.618

rather than somewhere between 1/2 and 3/4. With this strategy, line search is called the golden
ratio line search. Either way, however, the bracketing triple shrinks exponentially fast.

Variants of Line Search Either way, line search as described above sometimes takes unaccept-
ably many iterations to find a minimum. Some variants of the technique then merely search for a
value αk where h(αk) is “sufficiently lower” than h(0), rather than searching for a local minimum.
Different definitions of “sufficiently lower” yield different variants of line search [2]. These variants
are beyond the scope of these notes.

3The equality w/(1 + w) = w − 1 holds only for this particular value of w, not in general.

9

z0

z*p
1

p
0

Figure 5: Trajectory of gradient descent on a convex paraboloid.

2.3 Termination Check

One criterion to check whether we are done with minimization is to verify whether the value of
f(zk) has decreased significantly from f(zk−1): If it has not, very little descent is occurring, and
we may want to stop. Another is to check whether zk is significantly different from zk−1 (ditto).
Close to the minimum, the derivatives of f are close to zero, so |f(zk)−f(zk−1)| may be very small
but ‖zk−zk−1‖ may still be relatively large. Thus, the check on zk is more stringent, and therefore
preferable in most cases. This is because one is usually interested in the value of ẑ (the parameters
of a predictor), rather than in that of f(ẑ) (the residual risk after optimization). In summary, the
steepest descent algorithm can be stopped when

‖zk − zk−1‖ < ε

where the positive constant ε is provided by the user.

3 Is Gradient Descent with Line Search the Best?

Combining gradient descent with line search seems a winning solution, since the direction of steepest
descent would seem to be best, and line search finds at least a local minimum along that direction.
However, this combination turns out to be quite rarely optimal, as we now show.

Figure 5 shows the gradient-descent trajectory zk superimposed on a set of isocontours of a
simple paraboloid (a quadratic function) f(z) for a two-dimensional search space, that is, when z
is a two-dimensional vector.

A convex paraboloid (whether in two or more dimensions) has equation

f(z) = c+ aT z +
1

2
zTQz (8)

where Q is a symmetric, positive definite matrix. Positive definite means that for every nonzero z
the quantity zTQz is positive. In this case, the graph of f(z) is a plane c+ aT z plus a paraboloid
with its bottom at the origin 0. Appendix B shows that adding a linear term aT z (and a constant
c) to a paraboloid 1

2z
TQz merely shifts the bottom of the paraboloid, both in position (z∗ rather

than 0) and value (c − 1
2z
∗TQz∗ rather than zero). Adding the linear term does not “warp” or

“tilt” the shape of the paraboloid in any way.
Of course, if f were this simple, no descent methods would be necessary, because the minimum

of f can be found by setting its gradient to zero:

∂f

∂z
= a +Qz = 0

10

so that the minimum z∗ is the solution to the linear system

Qz = −a . (9)

Since Q is positive definite, it is also invertible (why?), and the solution z∗ is unique. However,
understanding the behavior of minimization algorithms in this simple case is crucial in order to
establish the convergence properties of these algorithms for more general functions. This is because
all smooth functions can be approximated by paraboloids in a sufficiently small neighborhood of
any point (second-order Taylor approximation).

Let us therefore assume that we minimize f as given in equation (8), and that at every step we
choose the direction of the negative gradient:

pk = − ∂f

∂z

∣∣∣∣
z=zk

= −∇f(zk) .

Let us further assume that the length of the step is determined by line search, so that the (unique)
minimum of the restriction of f along the steepest-descent direction is reached (recall that if f(z)
is convex so is its restriction h(α) = f(zk − αpk).

Looking at Figure 5, we see that there is one good, but very precarious case in which convergence
to the true solution z∗ occurs blindingly fast, in a single step. This happens when the starting point
z0 is at one apex (tip of either axis) of an isocontour ellipse. In that case, the gradient points exactly
towards z∗, and one run of line search will lead to the minimum z∗.

In all other cases, the search line in the direction pk of the gradient, which is orthogonal to
the isocontour at zk, will not pass through z∗. The minimum of f along that line is tangent to
some other, lower isocontour (or else it would not be a minimum, local or otherwise). The next
search direction pk+1 is orthogonal to the latter isocontour (that is, parallel to the gradient at the
point of tangency zk+1). Thus, at every step the gradient descent trajectory is forced to make a
ninety-degree turn: Step k is tangent to the new isocontour, and step k + 1 is perpendicular to
it. If isocontours were circles (σ1 = σn) centered at z∗, then the first turn would make the new
direction point to z∗, and minimization would get there in just one more step. The more elongated
the isocontours, the farther away a line orthogonal to an isocontour passes from z∗, and the more
steps are required for convergence. This elongation is measured by the so-called condition number
κ(Q) of Q, defined in Appendix B, which contains a more quantitative analysis of the convergence
speed of gradient descent.

Thus, the directions of gradient descent are typically poor directions, even when combined with
line search, with the only exceptions of starting at one of the axes of an isocontour ellipsoid or
moving among hyperspheres rather than ellipsoids. Other than in these rare lucky cases, gradient
descent keeps zig-zagging its way in small steps towards the solution, and the number of steps can
be very large.

Nonetheless, gradient descent is a popular optimization method because of its low cost per
iteration, at the expense of a large number of iterations (the next Section discusses convergence
speed). In some situations, the technique of preconditioning can improve things by deforming
the function f(z) so that its isocontours look closer to hyperspheres. The method of conjugate
gradients, described in Appendix D, is based on gradient descent, and achieves performance that is
often close to that of Newton’s method without computing Hessians. Both techniques are beyond
the scope of this introductory note.

11

3.1 Sub-Gradients

Another reason for the popularity of gradient descent lies in the fact that this method and its
variants (SGD, conjugate gradients, and more) can be applied even to convex functions that have
discontinuities in the derivatives. For example, we will use the hinge function (Figure 6 left)

ρ(z) = max{0, z}

when we study support vector machines. This function is also called the Rectified Linear Unit
(ReLU) in the context of deep learning. This function is weakly convex everywhere. Its derivative
is zero for z < 0 and one for z > 0, but is undefined at z = 0.

z

ρ(z)

z

ρ(z)

Figure 6: The hinge function (left) is convex and its derivative is discontinuous at the origin. The
red lines on the right are all (weakly) below ρ(z).

For cases like this, the derivative at z can be replaced by a sub-derivative, which is defined as
the slope of any straight line `(z) that touches ρ(z) at z (that is, `(z) = ρ(z)) and that is weakly
below ρ everywhere (`(u) ≤ ρ(u) for all u). Where the derivative is continuous, it is equal to its
only sub-derivative there. Where it is not, the sub-derivatives form an interval of real values. For
example, any point in [0, 1] is a sub-derivative of the hinge function at the origin, as the right panel
in Figure 6 illustrates.

It can then be shown that the asymptotic performance of gradient descent or its variants
remains unaltered if the derivative (or, for multivariate functions, the gradient) is replaced by
a sub-derivative (sub-gradient) [5]. It does not matter which sub-derivative is used. For instance,
for the hinge function it is convenient to use the smallest sub-derivative, that is, zero, when z = 0.

References

[1] N. Murata. A statistical study of online learning, pages 63–92. Online Learning and Neural
Networks (D. Saad, editor). Cambridge University Press, Cambridge, MA, 1998.

[2] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, 1999.

[3] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

12

[4] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[5] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, Cambridge, UK, 2014.

[6] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In Proceedings of the 30th International Conference on Machine
Learning, pages 1139–1147, 2013.

13

Appendices

A The Golden Ratio Line Search

We show that the breakpoint u for line search can be chosen so that at each iteration the ratio

r(a, b, c) =
max(b− a, c− b)
min(b− a, c− b)

between the length of the longer segment and that of the shorter segment in the bracketing triple
is the same. To find how to do this, let us reason for the case b− a < c− b, illustrated in Figure 7.
The reasoning for the opposite case is analogous.

a b cu
α β

γ

Figure 7: If points b and u are placed so that the ratio w = β/α equals the ratio α/γ, then we also
have (β − γ)/γ = w, and w ≈ 1.618 remains the same at every iteration of line search.

From the code for line search, we see that u splits the interval [b, c], the longer of the two.
Before the split, if we let

α = b− a and β = c− b

we thus have

r(a, b, c) =
β

α
.

After the split, the triple is either (a, b, u) or (b, u, c). Choose u so that

γ = u− b < α and γ = u− b < c− u = β − γ .

Then

r(a, b, u) =
α

γ
and r(b, u, c) =

β − γ
γ

.

Requiring the ratio r to be the same before and after the split in all cases requires

r(a, b, c) = r(a, b, u) and r(a, b, c) = r(b, u, c) that is,
β

α
=
α

γ
and

β

α
=
β − γ
γ

.

Solving these two equations for γ yields

γ =
α2

β
=

αβ

α+ β

and therefore, after simple algebra,

w =
1 + w

w
where w =

β

α
.

14

Rearranging terms yields the quadratic equation

w2 − w − 1 = 0

which has a solution that is greater than 1 and one that is less than 1. Since w > 1, we obtain

w =
1 +
√

5

2
≈ 1.618 ,

a number called the golden ratio.
Thus, if b is initially placed between a and c so that

r(a, b, c) =
c− b
b− a

= w

and then, when the interval [b, c] is split, the breakpoint u is placed so that

r(b, u, c) =
c− u
b− u

= w ,

we automatically also obtain that

r(a, b, u) =
b− a
u− b

= w .

The reasoning for the case b− a > c− b is similar and is left as an exercise.

B Gradient Descent on a Paraboloid

This Appendix finds exact formulas for gradient descent when f is a paraboloid. This study will
then lead to an analysis of the convergence speed of this optimization method (Appendix B.1).

Let

ẽ(z) =
1

2
(z− z∗)TQ(z− z∗) .

Then we have

ẽ(z) = f(z)− c+
1

2
z∗TQz∗ = f(z)− f(z∗) (10)

so that ẽ and f differ only by a constant. To show this, we note that the definition of z∗ means
that

Qz∗ = −a

and so
−zTQz∗ = zTa = aT z

and therefore

ẽ(z) =
1

2
(zTQz + z∗TQz∗ − 2zTQz∗) =

1

2
zTQz + aT z +

1

2
z∗TQz∗ = f(z)− c+

1

2
z∗TQz∗ .

We can also write

f(z∗) = c+ aT z∗ +
1

2
z∗TQz∗ = c− z∗TQz∗ +

1

2
z∗TQz∗ = c− 1

2
z∗TQz∗ .

15

The result (10),
ẽ(z) = f(z)− f(z∗) ,

is rather interesting in itself. It says that adding a linear term aT z (and a constant c) to a paraboloid
1
2z
TQz merely shifts the bottom of the paraboloid, both in position (z∗ rather than 0) and value

(c− 1
2z
∗TQz∗ rather than zero). Adding the linear term does not “warp” or “tilt” the shape of the

paraboloid in any way.
Since ẽ is simpler, we consider that we are minimizing ẽ rather than f . In addition, we can let

y = z− z∗ ,

that is, we can shift the origin of the domain to z∗, and study the function

e(y) =
1

2
yTQy

instead of f or ẽ, without loss of generality. We will transform everything back to f and z once we
are done. Of course, by construction, the new minimum is at

y∗ = 0

where e reaches a value of zero:
e(y∗) = e(0) = 0 .

However, we let our gradient descent algorithm find this minimum by starting from the initial point

y0 = z0 − z∗ .

At every iteration k, the algorithm chooses the direction of steepest local descent, which is in the
direction

pk = − gk
‖gk‖

opposite to the gradient of e evaluated at yk:

gk = g(yk) =
∂e

∂y

∣∣∣∣
y=yk

= Qyk .

We select for the algorithm the most favorable step size, that is, the one that takes us from yk
to the lowest point in the direction of pk. This can be found by differentiating the function

e(yk + αpk) =
1

2
(yk + αpk)

TQ(yk + αpk)

with respect to α, and setting the derivative to zero to obtain the optimal step αk. We have

∂e(yk + αpk)

∂α
= (yk + αpk)

TQpk

and setting this to zero yields

αk = −(Qyk)
Tpk

pTkQpk
= −

gTk pk

pTkQpk
= ‖gk‖

pTk pk

pTkQpk
= ‖gk‖

gTk gk

gTkQgk
. (11)

16

Thus, the basic step of our gradient descent can be written as follows:

yk+1 = yk + ‖gk‖
gTk gk

gTkQgk
pk

that is,

yk+1 = yk −
gTk gk

gTkQgk
gk . (12)

B.1 The Convergence Speed of Gradient Descent

How much closer does one step of gradient descent bring us to the solution z∗? In other words,
how much closer is zk+1 to the true minimum z∗, relative to the distance between zk and z∗ at the
previous step? The answer is, often not much, as illustrated earlier in Figure 5. To characterize the
speed of convergence of various minimization algorithms quantitatively, we introduce the notion of
the order of convergence. This is defined as the largest value of q for which the

lim
k→∞

‖zk+1 − z∗‖
‖zk − z∗‖q

is finite and nonzero. If β is this limit, then close to the solution (that is, for large values of k) we
have

‖zk+1 − z∗‖ ≈ β‖zk − z∗‖q

for a minimization method of order q. In other words, the distance of zk from z∗ is reduced by the
q-th power at every step, so the higher the order of convergence, the better.

Theorem B.2 below implies that gradient descent has generically (that is, with few exceptions
in special cases) a linear order of convergence. In other words, the residuals |f(zk)− f(z∗)| in the
values of the function being minimized converge linearly. Since the gradient of f approaches zero
when zk tends to z∗, the arguments zk to f can converge to z∗ even more slowly.

While Theorem B.2 holds for quadratic functions, any smooth function can be approximated
by a quadratic function in small neighborhoods, so the result is general.

The arguments and proofs below are adapted from D. G. Luenberger, Introduction to Linear
and Nonlinear Programming, Addison-Wesley, 1973, and are based on the following preliminary
result.

Lemma B.1 (Kantorovich inequality). Let Q be a positive definite, symmetric, n× n matrix. For
any vector y there holds

(yTy)2

yTQ−1y yTQy
≥ 4σ1σn

(σ1 + σn)2

where σ1 and σn are, respectively, the largest and smallest singular values of Q.

Proof. Let
Q = UΣUT

be the singular value decomposition of the symmetric (hence V = U) matrix Q. Because Q is
positive definite, all its singular values are strictly positive, since the smallest of them satisfies

σn = min
‖y‖=1

yTQy > 0

17

by the definition of positive definiteness. If we let

u = UTy

we have

(yTy)2

yTQ−1y yTQy
=

(yTUTUy)2

yTUΣ−1UTy yTUΣUTy
=

(uTu)2

uTΣ−1uuTΣu
=

1/
∑n

i=1 θiσi∑n
i=1 θi/σi

=
φ(σ)

ψ(σ)
(13)

where the coefficients

θi =
z2i
‖u‖2

add up to one. If we let

σ =

n∑
i=1

θiσi , (14)

then the numerator φ(σ) in (13) is 1/σ. Of course, there are many ways to choose the coefficients
θi to obtain a particular value of σ. However, each of the singular values σj can be obtained by
letting θj = 1 and all other θi to zero. Thus, the values 1/σj for j = 1, . . . , n are all on the curve
1/σ. The denominator ψ(σ) in (13) is a convex combination of points on this curve. Since 1/σ is
a convex function of σ, the values of the denominator ψ(σ) of (13) must be in the shaded area in
figure 8. This area is delimited from above by the straight line that connects point (σ1, 1/σ1) with
point (σn, 1/σn), that is, by the line with ordinate

λ(σ) = (σ1 + σn − σ)/(σ1σn) .

σ σ σ σ
21 n

σ

φ,ψ,λ

ψ(σ)

φ(σ)

λ(σ)

Figure 8: Kantorovich inequality.

For the same vector of coefficients θi, the values of φ(σ), ψ(σ), and λ(σ) are on the vertical line
corresponding to the value of σ given by (14). Thus an appropriate bound is

φ(σ)

ψ(σ)
≥ min

σ1≤σ≤σn

φ(σ)

λ(σ)
= min

σ1≤σ≤σn

1/σ

(σ1 + σn − σ)/(σ1σn)
.

18

The minimum is achieved at σ = (σ1 + σn)/2, yielding the desired result. ∆

Thanks to this lemma, we can now prove the following Theorem on the convergence of the
method of gradient descent.

Theorem B.2. Let

f(z) = c+ aT z +
1

2
zTQz

be a quadratic function of z, with Q symmetric and positive definite. For any z0, the method of
gradient descent has trajectory

zk+1 = zk −
gTk gk

gTkQgk
gk (15)

where

gk = g(zk) =
∂f

∂z

∣∣∣∣
z=zk

= a +Qzk .

This trajectory converges to the unique minimum point

z∗ = −Q−1a

of f . Furthermore, at every step k there holds

f(zk+1)− f(z∗) ≤
(
σ1 − σn
σ1 + σn

)2

(f(zk)− f(z∗))

where σ1 and σn are, respectively, the largest and smallest singular value of Q.

The ratio κ(Q) = σ1/σn is called the condition number of Q. The larger the condition number,
the closer the fraction (σ1−σn)/(σ1 +σn) is to unity, and the slower convergence. When κ(Q) = 1,
we have

σ1 − σn
σ1 + σn

= 0 .

and convergence is immediate. The more elongated the isocontours, that is, the greater the con-
dition number κ(Q), the farther away a line orthogonal to an isocontour passes from z∗, and the
more steps are required for convergence.

For general (that is, non-quadratic) f , the analysis above applies once zk gets close enough to
the minimum, so that f is well approximated by a paraboloid. In this case, Q is the matrix of
second derivatives of f with respect to z, and is called the Hessian of f . In summary, gradient
descent is good for functions that have a well conditioned Hessian near the minimum, but can
become arbitrarily slow for poorly conditioned Hessians.

19

Proof. From the definition of e and from equation (12) we obtain

e(yk)− e(yk+1)

e(yk)
=

yTkQyk − yTk+1Qyk+1

yTkQyk

=
yTkQyk −

(
yk −

gT
k gk

gT
k Qgk

gk

)T
Q
(
yk −

gT
k gk

gT
k Qgk

gk

)
yTkQyk

=
2

gT
k gk

gT
k Qgk

gTkQyk −
(

gT
k gk

gT
k Qgk

)2
gTkQgk

yTkQyk

=
2gTk gkg

T
kQyk − (gTk gk)

2

yTkQyk g
T
kQgk

.

Since Q is invertible we have

gk = Qyk ⇒ yk = Q−1gk

and
yTkQyk = gTkQ

−1gk

so that
e(yk)− e(yk+1)

e(yk)
=

(gTk gk)
2

gTkQ
−1gk g

T
kQgk

.

This can be rewritten as follows by rearranging terms:

e(yk+1) =

(
1−

(gTk gk)
2

gTkQ
−1gk g

T
kQgk

)
e(yk) (16)

We can now use the lemma on the Kantorovich inequality proven earlier to bound the expression
in parentheses and therefore the rate of convergence of gradient descent. From the definitions

y = z− z∗ and e(y) =
1

2
yTQy (17)

we immediately obtain the expression for gradient descent in terms of f and z. By equations (10)
and (16) and the Kantorovich inequality we obtain

f(zk+1)− f(z∗) = e(yk+1) =

(
1−

(gTk gk)
2

gTkQ
−1gk g

T
kQgk

)
e(yk) ≤

(
1− 4σ1σn

(σ1 + σn)2

)
e(yk) (18)

=

(
σ1 − σn
σ1 + σn

)2

(f(zk)− f(z∗)) . (19)

Since the ratio in the last term is smaller than one, it follows immediately that f(zk)− f(z∗)→ 0
and hence, since the minimum of f is unique, that zk → z∗. ∆

20

z1

z2

f(z)

z1
z0

Figure 9: The shaded bowl is a piece of the paraboloid represented by the second-order Taylor
series expansion of f around z0. The minimum z1 of the paraboloid can be found by solving a
linear system in z, and f(z1) is often significantly smaller than f(z0).

C Newton’s Method

When also the Hessian H(z0) of f at z0 is known, in addition to the gradient, the information
about the shape of the graph of f in a neighborhood of f is richer, and a second-order Taylor
approximation is possible:

f ≈ g2(z) = f(z0) + [∇z0]T (z− z0) +
1

2
(z− z0)

TH(z0)(z− z0) .

As illustrated in Figure 9, this function looks like a bowl if the Hessian is positive-semidefinite
(if not, this idea cannot be used). The approximation g2 is a quadratic function of z, so we can
find its minimum by writing the gradient of g2, setting its components to zero, and solving the
resulting linear system in z. The resulting point z1 is the lowest point of the bowl (see the Figure).
Of course, z1 may not be the minimum of f , because g2 merely approximates f . However, if the
approximation is reasonable, the step from z0 to z1 is likely to reduce the value of f :

f(z1) < f(z0) .

While the approximation g2 to f may not be very good initially, it becomes better and better, as
z(i) tends to a minimum: If the steps get smaller and smaller, the Taylor approximation for f gets
better and better, because its quality increases for smaller and smaller neighborhoods. In other
words, every smooth function looks like a quadratic function in a small enough neighborhood.

This method is called a second-order descent method, and can be shown to have a much faster
convergence rate than a first-order method if the function f is smooth.

Looking at even higher-order approximations of f is not promising, because Taylor approxi-
mations beyond quadratic are not necessarily convex, and minimizing the approximation is not
necessarily easier than minimizing f itself.

Equation (9) tells us how to jump in one step from the starting point z0 to the minimum
z1 of the approximating paraboloid g2(z). Of course, when f(z) is not exactly a paraboloid, the
new value z1 will be different from the minimum ẑ of f . Consequently, iterations are needed, but
convergence can be expected to be faster.

21

More specifically, let

f(zk + ∆z) ≈ f(zk) + gTk ∆z +
1

2
∆zTHk∆z (20)

be the first terms of the Taylor series expansion of f about the current point zk, where

gk = g(zk) =
∂f

∂z

∣∣∣∣
z=zk

and

Hk = H(zk) =
∂2f

∂z∂zT

∣∣∣∣
z=zk

=


∂2f
∂z21

· · · ∂2f
∂z1∂zn

...
...

∂2f
∂zn∂z1

· · · ∂2f
∂z2n


z=zk

are the gradient and Hessian of f evaluated at the current point zk. Notice that even when f is
a paraboloid, the gradient gk is different from a as used in equation (8). This is because a and
Q are the coefficients of the Taylor expansion of f around point z = 0, while gk and Hk are the
coefficients of the Taylor expansion of f around the current point zk. In other words, gradient and
Hessian are constantly reevaluated in Newton’s method.

To the extent that approximation (20) is valid, we can set the derivatives of f(zk + ∆z) with
respect to ∆z to zero, and obtain, analogously to equation (9), the linear system

Hk∆z = −gk , (21)

whose solution ∆zk = αkpk yields at the same time the step direction pk = ∆zk/‖∆zk‖ and the
step size αk = ‖∆zk‖. The direction is of course undefined once the algorithm has reached a
minimum, that is, when αk = 0.

A minimization algorithm in which the step direction pk and size αk are defined in this manner
is called Newton’s method. The corresponding pk is termed the Newton direction, and the step
defined by equation (21) is the Newton step.

The greater speed of Newton’s method over gradient descent is borne out by analysis: While
gradient descent has a linear order of convergence, Newton’s method has a quadratic order of
convergence (see Section C.1).

For a quadratic function, as in equation (8), steepest descent takes many steps to converge, while
Newton’s method reaches the minimum in one step. However, this single iteration in Newton’s
method is more expensive, because it requires both the gradient gk and the Hessian Hk to be
evaluated, for a total of m +

(
m+1
2

)
derivatives. In addition, system (21) must be solved at each

iteration. For very large problems, in which the dimension m of z is thousands or more, storing and
manipulating a Hessian can be prohibitive. In contrast, gradient descent requires only the gradient
gk for selecting the step direction pk, and a line search in the direction pk to find the step size.

C.1 The Convergence Speed of Newton’s Method

Newton’s method has at least a quadratic order of convergence. To see this, let

y(z) = z−Q(z)−1g(z)

22

be the place reached by a Newton step starting at z (see equation (21)), and suppose that at the
minimum z∗ the Hessian Q(z∗) is nonsingular. Then

y(z∗) = z∗

because g(z∗) = 0, and
zk+1 − z∗ = y(zk)− z∗ = y(zk)− y(z∗) .

From the mean-value theorem, we have

‖zk+1 − z∗‖ = ‖y(zk)− y(z∗)‖ ≤
∥∥∥∥[∂y∂zT

]
z=z∗

(zk − z∗)

∥∥∥∥+
1

2

∣∣∣∣ ∂2y

∂z∂zT

∣∣∣∣
z=ẑ

‖zk − z∗‖2

where ẑ is some point on the line between z∗ and zk. Since y(z∗) = z∗, the first derivatives of y at
z∗ are zero, so that the first term in the right-hand side above vanishes, and

‖zk+1 − z∗‖ ≤ c ‖zk − z∗‖2

where c depends on third-order derivatives of f near z∗. Thus, the convergence rate of Newton’s
method is of order at least two.

Choosing between gradient descent and Newton’s method The analysis above shows that
Newton steps are typically much larger than gradient-descent steps, and convergence is much faster
when measured by the number of steps taken. However, each Newton step is more expensive,
because of the need to compute the Hessian at every point. For problems where the dimension n
of the space in which z lives is small, the extra cost per step may be worth the resulting smaller
number of steps. However, the cost to compute Q increases quadratically with n, so at some point
Newton methods become overly expensive (in both time and storage) or even practically infeasible.

In those cases, one can compute approximate Hessians, rather than exact ones, in Newton’s
method, leading to so-called quasi-Newton algorithms. Alternatively, one can modify the descent
direction away from the gradient in a way that effectively makes the steepest-descent algorithm
aware of the second-order derivatives of f . This idea leads to the conjugate gradients method,
whose computational complexity is similar to that of gradient descent and whose convergence rate
approaches that of Newton’s method in many cases. This method is discussed for completeness
next.

D Conjugate Gradients

The method of conjugate gradients, discussed in this appendix, is motivated by the desire to
accelerate convergence with respect to the gradient descent method, but without paying the storage
cost of Newton’s method.

Newton’s method converges faster (quadratically) than gradient descent (linear convergence
rate) because it uses more information about the function f being minimized. Gradient descent
locally approximates the function with planes, because it only uses gradient information. All it can
do is to go downhill. Newton’s method approximates f with paraboloids, and then jumps at every
iteration to the lowest point of the current approximation. The bottom line is that fast convergence
requires work that is equivalent to evaluating the Hessian of f .

23

Prima facie, the method of conjugate gradients discussed in this section seems to violate this
principle: it achieves fast, superlinear convergence, similarly to Newton’s method, but it only
requires gradient information. This paradox, however, is only apparent. Conjugate gradients works
by taking n steps for each of the steps in Newton’s method. It effectively solves the linear system
(9) of Newton’s method, but it does so by a sequence of n one-dimensional minimizations, each
requiring one gradient computation and one line search.

Overall, the work done by conjugate gradients is equivalent to that done by Newton’s method.
However, system (9) is never constructed explicitly, and the matrix Q is never stored. This is very
important in cases where z has thousands or even millions of components. These high-dimensional
problems arise typically from the discretization of partial differential equations. Say for instance
that we want to compute the motion of points in an image as a consequence of camera motion.
Partial differential equations relate image intensities over space and time to the motion of the
underlying image features. At every pixel in the image, this motion, called the motion field, is
represented by a vector whose magnitude and direction describe the velocity of the image feature
at that pixel. Thus, if an image has, say, a quarter of a million pixels, there are n = 500, 000
unknown motion field values. Storing and inverting a 500, 000 × 500, 000 Hessian is out of the
question. In cases like these, conjugate gradients saves the day.

The conjugate gradients method described in these notes is the so-called Polak-Ribière variation.
It will be introduced in three steps. First, it will be developed for the simple case of minimizing
a quadratic function with positive-definite and known Hessian. This quadratic function f(z) was
introduced in equation (8). We know that in this case minimizing f(z) is equivalent to solving
the linear system (9). Rather than an iterative method, conjugate gradients is a direct method for
the quadratic case. This means that the number of iterations is fixed. Specifically, the method
converges to the solution in n steps, where n is the number of components of z. Because of the
equivalence with a linear system, conjugate gradients for the quadratic case can also be seen as an
alternative method for solving a linear system, although the version presented here will only work
if the matrix of the system is symmetric and positive definite.

Second, the assumption that the Hessian Q in expression (8) is known will be removed. As
discussed above, this is the main reason for using conjugate gradients.

Third, the conjugate gradients method will be extended to general functions f(z). In this case,
the method is no longer direct, but iterative, and the cost of finding the minimum depends on
the desired accuracy. This occurs because the Hessian of f is no longer a constant, as it was
in the quadratic case. As a consequence, a certain property that holds in the quadratic case is
now valid only approximately. In spite of this, the convergence rate of conjugate gradients is
superlinear, somewhere between Newton’s method and gradient descent. Finding tight bounds for
the convergence rate of conjugate gradients is hard, and we will omit this proof. We rely instead
on the intuition that conjugate gradients solves system (9), and that the quadratic approximation
becomes more and more valid as the algorithm converges to the minimum. If the function f starts
to behave like a quadratic function early, that is, if f is nearly quadratic in a large neighborhood
of the minimum, convergence is fast, as it requires close to the n steps that are necessary in
the quadratic case, and each of the steps is simple. This combination of fast convergence, modest
storage requirements, and low computational cost per iteration explains the popularity of conjugate
gradients methods for the optimization of functions of a large number of variables.

24

D.1 The Quadratic Case

Suppose that we want to minimize the quadratic function

f(z) = c+ aT z +
1

2
zTQz (22)

where Q is a symmetric, positive definite matrix, and z has n components. As we saw in our
discussion of gradient descent, the minimum z∗ is the solution to the linear system

Qz = −a . (23)

We know how to solve such a system. However, all the methods we have seen so far involve
explicit manipulation of the matrix Q. We now consider an alternative solution method that does
not need Q, but only the quantity

gk = Qzk + a

that is, the gradient of f(z), evaluated at n different points z1, . . . , zn. We will see that the conjugate
gradients method requires n gradient evaluations and n line searches in lieu of each n × n matrix
inversion in Newton’s method.

Formal proofs can be found in Elijah Polak, Optimization — Algorithms and consistent approx-
imations, Springer, NY, 1997. The arguments offered below appeal to intuition.

Consider the case n = 3, in which the variable z in f(z) is a three-dimensional vector. Then the
quadratic function f(z) is constant over ellipsoids, called isosurfaces, centered at the minimum z∗.
How can we start from a point z0 on one of these ellipsoids and reach z∗ by a finite sequence of one-
dimensional searches? In connection with gradient descent, we noticed that for poorly conditioned
Hessians orthogonal directions lead to many small steps, that is, to slow convergence.

When the ellipsoids are spheres, on the other hand, this works much better. The first step
takes from z0 to z1, and the line between z0 and z1 is tangent to an isosurface at z1. The next
step is in the direction of the gradient, so that the new direction p1 is orthogonal to the previous
direction p0. This would then take us to z∗ right away. Suppose however that we cannot afford to
compute this special direction p1 orthogonal to p0, but that we can only compute some direction
p1 orthogonal to p0 (there is an n − 1-dimensional space of such directions!). It is easy to see
that in that case n steps will take us to z∗. This is because since isosurfaces are spheres, each line
minimization is independent of the others: The first step yields the minimum in the space spanned
by p0, the second step then yields the minimum in the space spanned by p0 and p1, and so forth.
After n steps we must be done, since p0 . . . ,pn−1 span the whole space.

In summary, any set of orthogonal directions, with a line search in each direction, will lead to
the minimum for spherical isosurfaces. Given an arbitrary set of ellipsoidal isosurfaces, there is a
one-to-one mapping with a spherical system: if Q = UΣUT is the SVD of the symmetric, positive
definite matrix Q, then we can write

1

2
zTQz =

1

2
yTy

where
y = Σ1/2UT z . (24)

25

Consequently, there must be a condition for the original problem (in terms of Q) that is equivalent to
orthogonality for the spherical problem. If two directions qi and qj are orthogonal in the spherical
context, that is, if

qTi qj = 0 ,

what does this translate into in terms of the directions pi and pj for the ellipsoidal problem? We
have

qi,j = Σ1/2UTpi,j ,

so that orthogonality for qi,j becomes

pTi UΣ1/2Σ1/2UTpj = 0

or
pTi Qpj = 0 . (25)

This condition is called Q-conjugacy, or Q-orthogonality: if equation (25) holds, then pi and pj are
said to be Q-conjugate or Q-orthogonal to each other. We will henceforth simply say “conjugate”
for brevity.

In summary, if we can find n directions p0, . . . ,pn−1 that are mutually conjugate, and if we do
line minimization along each direction pk, we reach the minimum in at most n steps. Of course,
we cannot use the transformation (24) in the algorithm, because Σ and especially UT are too large.
So now we need to find a method for generating n conjugate directions without using either Q or
its SVD. We do this in two steps. First, we find conjugate directions whose definitions do involve
Q. Then, in the next subsection, we rewrite these expressions without Q.

Here is the procedure, due to Hestenes and Stiefel (Methods of conjugate gradients for solving
linear systems, J. Res. Bureau National Standards, section B, Vol 49, pp. 409-436, 1952), which
also incorporates the steps from z0 to zn:

g0 = g(z0)
p0 = −g0
for k = 0 . . . , n− 1

αk = arg minα≥0 f(zk + αpk)
zk+1 = zk + αkpk
gk+1 = g(zk+1)

γk =
gT
k+1Qpk

pT
kQpk

pk+1 = −gk+1 + γkpk
end

where

gk = g(zk) =
∂f

∂z

∣∣∣∣
z=zk

is the gradient of f at zk.

26

It is simple to see that pk and pk+1 are conjugate. In fact,

pTkQpk+1 = pTkQ(−gk+1 + γkpk)

= −pTkQgk+1 +
gTk+1Qpk

pTkQpk
pTkQpk

= −pTkQgk+1 + gTk+1Qpk = 0 .

It is somewhat more cumbersome to show that pi and pk+1 for i = 0, . . . , k are also conjugate. This
can be done by induction. The proof is based on the observation that the vectors pk are found by
a generalization of the Gram-Schmidt orthogonalization method to produce conjugate rather than
orthogonal vectors. Details can be found in Polak’s book mentioned earlier.

D.2 Removing the Hessian

The algorithm shown in the previous subsection is a correct conjugate gradients algorithm. How-
ever, it is computationally inadequate because the expression for γk contains the Hessian Q, which
is too large. We now show that γk can be rewritten in terms of the gradient values gk and gk+1

only. To this end, we notice that
gk+1 = gk + αkQpk ,

or
αkQpk = gk+1 − gk .

In fact,
g(z) = a +Qz

so that
gk+1 = g(zk+1) = g(zk + αkpk) = a +Q(zk + αkpk) = gk + αkQpk .

We can therefore write

γk =
gTk+1Qpk

pTkQpk
=

gTk+1αkQpk

pTk αkQpk
=

gTk+1(gk+1 − gk)

pTk (gk+1 − gk)
,

and Q has disappeared.
This expression for γk can be further simplified by noticing that

pTk gk+1 = 0

because the line along pk is tangent to an isosurface at zk+1, while the gradient gk+1 is orthogonal
to the isosurface at zk+1. Similarly,

pTk−1gk = 0 .

Then, the denominator of γk becomes

pTk (gk+1 − gk) = −pTk gk = (gk − γk−1pk−1)Tgk = gTk gk .

In conclusion, we obtain the Polak-Ribière formula

γk =
gTk+1(gk+1 − gk)

gTk gk
.

27

D.3 Extension to General Functions

We now know how to minimize the quadratic function (22) in n steps, without ever constructing
the Hessian explicitly. When the function f(z) is arbitrary, the same algorithm can be used.

However, n iterations will not suffice. This is because the Hessian, which was constant for the
quadratic case, now is a function of zk. Strictly speaking, we then lose conjugacy, since pk and
pk+1 are associated to different Hessians. However, as the algorithm approaches the minimum ẑ,
the quadratic approximation becomes more and more valid, and a few cycles of n iterations each
will achieve convergence.

28

	Introduction
	First Order Optimization Methods
	Gradient, Hessian, and Convexity

	Local Minimization and Gradient Descent
	Stochastic Gradient Descent
	Step Size
	Termination Check

	Is Gradient Descent with Line Search the Best?
	Sub-Gradients

	The Golden Ratio Line Search
	Gradient Descent on a Paraboloid
	The Convergence Speed of Gradient Descent

	Newton's Method
	The Convergence Speed of Newton's Method

	Conjugate Gradients
	The Quadratic Case
	Removing the Hessian
	Extension to General Functions

