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When compared with nearest-neighbor predictors, linear predictors are near the opposite end
of the spectrum of machine learning algorithms. They have a very restricted hypothesis space and
are resilient to overfitting as a consequence. They are trained by function optimization and the
optimization problem is convex. They are very fast to use at test time.

In contrast with 1-nearest-neighbor predictors, for which the regressor and the classifier are the
same, the linear regressor and the linear classifier introduced below are different from each other.
They are also “linear” in two different ways. Specifically, the linear regressor (Section 1) fits an
affine function (a linear function plus a constant, h(x) = b + wTx) to the available data points.1

In addition, the linear regressor is “linear” also in that the solution is found by solving a linear
system of equations.

The linear classifier introduced in Section 2 is binary (that is, the label space Y has two ele-
ments), and it is called the logistic-regression classifier. It uses a hyperplane as a class separator
(decision boundary) in the data space X. Hyperplanes are represented by affine functions, hence
the qualifier “linear” for this classifier.

While nearest-neighbor classifiers can handle label sets Y with any number of elements, linear
classifiers need a bit of work to adapt to the multi-class case |Y | > 2, as shown in Part 2 of the
notes on linear predictors.

1 The Least-Squares Linear Regressor

Linear regression requires little discussion, given our previous treatment of polynomial data fitting.
Indeed, a linear regressor simply fits an affine polynomial

hv(x) = b+ wTx for x ∈ Rd

to the training set
T = {(x1, y1), . . . , (xN , yN )} ⊂ Rd × R .

In this expression, we defined the parameter vector

v =

[
b
w

]
where b ∈ R and w ∈ Rd,

and the hypothesis space H is the set

H = {hv : v ∈ Rd+1}
1Technically, affine functions are not linear, since if f is affine, then h(x + y) 6= h(x) + h(y) in general. However,

the mathematical literature often uses the word “linear” to denote an affine function.
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of all affine functions on Rd. The graph of an affine function on Rd is a hyperplane in Rd+1. For
instance, when d = 1, the graph of y = hv(x) = b+wx is a line on the (x, y) plane and is identified
by two parameters v = (b, w).

As in any fitting problem, one must specify a loss function `(y, y′) that measures the cost
incurred when h(x) = y′ while the true value associated to x is y. The parameters of the regressor
are then determined so as to minimize the empirical risk on T :

LT (v) =
1

N

N∑
n=1

`(yn, hv(xn))

over all choices of v ∈ Rd+1.
We choose again the quadratic loss

`(y, y′) = (y − y′)2

not because this is particularly appropriate (we don’t even know what the underlying task is!),
but because it leads to a simple solution. Specializing our previous discussion of polynomial data
fitting to the affine case (multivariate polynomial of degree k = 1), the vector v̂ of d+ 1 real-valued
parameters that minimizes the empirical risk on T can be found by solving the system

Av = a (1)

in the Least-Squares sense:
v̂ = arg min

v
‖Av − a‖2 . (2)

In these expressions,

A =

 1 xT
1

...
1 xT

N

 and a =

 y1
...
yN

 .

As you know from linear algebra, the solution can be found by solving the normal equations

ATAv = ATa ,

a square, (d+ 1)× (d+ 1) system that is invertible if and only if A has rank r = d+ 1.
Alternatively, and more generally and with greater numerical accuracy, the solution can be

found by computing the pseudo-inverse A† of A. When r < d+ 1 (that is, when A is not full rank),
then multiple solutions exist, and the solution computed through the pseudo-inverse is the solution
of smallest norm.2 However, there are typically more training samples than parameters, that is
N > d+ 1, and, since the entries in A and a come from (typically noisy) measurements, the matrix
A is likely to be full rank in practice, r = d+ 1.

Figure 1 illustrates linear regression in one dimension, d = 1. The quadratic loss is sensitive to
outliers. For instance, removing just two samples out of the 1379 training samples fitted in Figure
1 (a) changes the fitting line quite a bit. Either way, is a linear fit good for this data? Compare
with kNN regression, for a different hypothesis space, and with Figure 1(b), where a line is fit to
smaller homes in a narrower price range and in a single neighborhood.

2More on the pseudo-inverse can be found in Chatpter 2 of the linear systems refresher on the class syllabus page.
Also, please note that “solution of smallest norm” here refers to minimizing the norm of v among all v that minimize
the residual in equation 2.
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Figure 1: (a) An example of linear regression on the Ames, Iowa home data used in an earlier note.
The horizontal axis denotes the gross living area in square feet of a set of 1379 homes in Ames,
Iowa, between 2006 and 2010. The vertical axis is the sale price in thousands of dollars [1]. The
dark orange line fits all the data points. The yellow line fits all the data points except for the two
homes larger than 4500 square feet. (b) Line fit to homes in a smaller range of sizes and prices in
a single neighborhood of Ames, College Circle. The colors and styles of the markers are irrelevant
here, and will come up in later Figures.
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All that the regression lines in Figure 1 show is that price grows with size, which is to be
expected. The regression in Figure 1(b) looks reasonably good, in that the points are relatively
tightly clustered around the yellow line. There are of course several ways to measure the quality
of the fit. One of them is the residual risk, that is, the risk LT (v̂) of the regressor. This is called
the “residual” risk because it is the risk remaining even after the optimal linear regressor has been
found. The residual risk is the sum of squares ‖Av̂ − a‖2 (see equation 2), and has the unit of
thousands of dollars squared. The corresponding standard deviation is more meaningful (thousands
of dollars), so one often reports the square root of the residual risk.

For the fit in Figure 1(a), the square root of the residual risk is $55,800. For the fit in Figure
1(b) it is significantly lower, $23,600. One way to explain this discrepancy is that the size of a
home is generally not a good predictor of its price. As any realtor will tell you, location is a much
more important price factor than size. The homes plotted in panel (b) of the Figure are in about
the same location, the College Circle neighborhood, and, given location, size is a better predictor
of price than it is in a broader context.

Note that the only parameters in linear regression are those computed by the training algorithm,
which fits the parameters to the training set T , since we are told that an affine function (polynomial
of degree 1) is desired. In contrast, the parameter k for k-nearest-neighbors regression must be set
separately, and is therefore called a hyper-parameter. You have seen ways to select hyper-parameters
earlier in the course.

2 The Binary Logistic-Regression Classifier

A binary linear classifier is a classifier for a binary problem whose decision boundary is a hyperplane.
“Binary” means that there are two classes,

Y = {c0, c1} .

A first idea for building a binary classifier based on linear fitting techniques is to run the linear
regressor on the (x, y) data samples in the training set to obtain a linear regressor y ≈ s(x), which
we can call the score. This fitting presents no technical difficulty if c0 and c1 have numerical values,
say,

c0 = 0 and c1 = 1 .

Otherwise, one can remap c0 to 0 and c1 to 1 without altering the essence of the problem. The
resulting function is linear, so unless it is constant, it can assume values 0 and 1 only on two
hyperplanes3 in the data space X, so the score cannot be a classifier by itself. However, if the data
in the training set are even just very roughly linearly separable, we can expect s(x) to take on
greater values where the density of values yn = 1 is greater than that of values yn = 0, and vice
versa. The score function can then be transformed into a classifier by thresholding at 1/2:

h(x) =

{
c0 if s(x) ≥ 1/2
c1 otherwise

as shown in Figure 2 (a) when d = 1.

3The isocontours of an affine function are hyperplanes. For instance, when d = 2, the score s(x) is constant along
suitable lines on the plane. There is one line where the score is 0 and one where the score is 1. These lines have
(affine) equations s(x) = 0 and s(x) = 1.
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Figure 2: A score function (dark orange) obtained by linear regression from the blue circles and
red squares, assuming that blue circles map to zero and red squares map to one. The yellow plot is
the classifier obtained by thresholding the score function at y = 1/2. (a) The training samples are
evenly distributed in x, and the classifier’s decision boundary does well on this linearly separable
training set. (b) The red squares are unevenly distributed in x, and the same threshold yields a
classifier that mislabels several samples, even if the training set is still linearly separable.

This method for turning a regressor into a classifier, where the classifier is a thresholded version
of the regressor, is quite general, and the resulting classifier is called score-based, as we saw in an
earlier note.

The specific idea of using a linear regressor as the score, however, is not great, because the
decision hyperplane depends on the distribution of the data in ways that ought to be irrelevant for
classification, as we discuss next. This issue arises even when the data space X is one-dimensional,
d = 1, and is illustrated in Figure 2.

The source of this problem is the fact that a binary classifier is a function that takes on one of
two values, 0 and 1. If the classifier is linear, this function is a step function: It is equal to zero on
one side of a hyperplane in X, and to one on the other side. In one dimension, a classifier looks
like the yellow step function plotted in Figure 2 (a): A hyperplane is a single point when d = 1,
and that point in the Figure is the value of x where the rise of the step occurs.

In contrast, an affine function (dark orange plot in Figure 2 (a)) is entirely inadequate for
approximating a step function, because it grows indefinitely in both directions (towards positive
infinity on one side and negative infinity on the other). As a result, training samples that are far
from where the rise of the step ought to be placed will skew the score function in ways that have
nothing to do with the optimal position of the rise. The position of the rise is the only factor that
affects the classifier’s error rate, and therefore training points close to the rise ought to have more
impact than those that are far away.

Clearly, a better solution would be to fit a step function to the training set, rather than an
affine function. It can be shown that the problem of fitting a step function is a linear program in
the linearly separable case, and therefore admits an efficient solution. Unfortunately, real data is
only rarely linearly separable, and the step-fitting problem can be shown to be NP-hard in that
case.

To circumvent this difficulty, the logistic-regression classifier replaces the step with a smooth
step-like function. Together with a judicious choice for the loss function, this change results in a
convex optimization problem that can be solved efficiently. Moreover, these choices can be justified
on the basis of probabilistic considerations, given suitable assumptions on the distribution of the
training data. We follow this treatment below, after a remark about the type of score function
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needed for the classifier to have a linear decision boundary.

Score Functions for Linear Boundaries When the data space X has one dimension, d = 1,
as in Figure 2, we only need the score function to have a single zero crossing to ensure a single
point as a decision boundary: Everything on one side of the zero crossing is classified as c0, and
everything else as c1.

In more than one dimension, d > 1, the shape of the boundary depends on the form of the score
function in greater detail. Since we want the boundary to be a hyperplane (because we look for a
linear classifier), we must choose the set of possible score functions s(x) so that the solution to the
equation

s(x) = 1/2 (3)

is always a hyperplane in X. This can be achieved by defining s to be the composition of an affine
function a : Rd → R and a monotonic function σ : R→ R that crosses the value 1/2:

s(x) = σ(a(x)) = σ(c+ uTx) for some real number a and real-valued vector u ∈ Rd.

The zero crossing of a(x) is a hyperplane, and a monotonic function σ composed with a can only
move that hyperplane parallel to itself, without changing its shape or orientation. Specifically, if
α = σ−1(1/2) is the unique (because of the monotonicity of σ) number for which σ(α) = 1/2, then
equation 3 is equivalent to

c+ uTx = α ,

which is a hyperplane in the data space X, as desired. (End of Remark).

As a motivating example for an approach to logistic-regression classification based on probabil-
ities, the plot in Figure 3(a) shows a training set

T = {(x1, y1), . . . , (xN , yN )}

related the the Ames home data we saw earlier. Each of 127 homes costing less than $400,000 and
smaller than 3,000 square feet of gross living area in the College Circle neighborhood in included.
A home is represented by a red square if the home was of high quality and in relatively good
condition when it was sold, and by a blue circle otherwise. Quality and condition are assessed by
house inspectors.

Intuition suggests that while neither sale price nor size are good predictors of home quality and
condition by themselves, their combination may be more informative, since a large house in good
conditions is likely to sell at a higher price than a small house in the same conditions. Of course,
there are many other factors at play, location being perhaps the most important: This is why we
limit this analysis to homes from a single neighborhood, to keep our reasoning simple.

The coordinates of a home on the plot are its size in square feet (x1) and its sale price in
thousands of dollars (x2). Thus, now both size and price are considered part of the data space X,
and the label y encodes condition. Please contrast this with the situation we encountered for linear
regression on this data, where there was only one x (size of the home) and price was the target
variable y.

The data at our disposal4 does not include a quantitative measure of the realtor’s quality and
condition assessment (which would be some real-valued “quality index”), but only whether the home

4At least in this example.
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Figure 3: (a) A training set constructed from the Ames home data [1]. The horizontal axis is the
size of the house, measured in square feet of gross living area. The vertical axis is the sale price in
thousands of dollars. A data point is a blue circle if the overall quality and condition of the house
is below average, as established by a professional assessor, and it is a red square otherwise. Only
homes from the College Circle are included. (b) The black line is the boundary for the logistic-
regression classifier trained on the data in (a). The gold-colored line is the regression line between
the size and price of the homes in (a), and is the same line as in Figure 1(b).

is “good” (red squares) or “bad:” We want a classifier that reproduces the realtor’s assessment,
not a regressor. If we are given size and sale price of a new home, we want to use our classifier to
predict whether that is a house in good or poor conditions.

In addition, since we want a linear classifier, we are looking for a single hyperplane (in our
example, a line) in the data space X (the plane of all home sizes and prices) that separates the two
classes (good and bad homes) as well as possible.

In a probabilistic interpretation, a logistic-regression classifier for a binary problem like this
assumes that one can quantify the probability that a data point x belongs to either class, and that
this probability is an increasing function of the distance of x from the separating hyperplane, on
the appropriate side of it. Specifically, the probability p = P[“good home”] is 1/2 on the separating
hyperplane. It increases towards 1 as we move away from the hyperplane on one side of it, and
it decreases towards 0 as we move away from the hyperplane on the other side. Of course, the
probability 1− p = P[“bad home”] behaves complementarily.

To complete this picture, we need three ingredients:

• Find a way to compute the distance ∆ of a point x ∈ X from a hyperplane χ, and the side
of χ on which the point is on.

• Specify a smooth, monotonically increasing function that turns ∆ into a probability.
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• Define a differentiable loss function `(y, y′) such that the minimum average loss (risk) yields
the optimal classifier.

The first point is a matter of geometry. The second is an arbitrary choice. However, choosing the
last two ingredients well turns the training of a logistic-regression classifier into a convex optimiza-
tion problem, and this is perhaps the main reason for the success of this type of linear classifier: If
a convex function has a minimum, the minimum is global. In addition, smoothness and differen-
tiability, as required above, ensure that this function can be minimized by some of the numerical
optimization methods we studied in an earlier note.

2.1 Signed Distance from a Hyperplane

Let the equation of a hyperplane χ ∈ Rd be

b+ wTx = 0 (4)

where w ∈ Rd is a nonzero vector and b ≤ 0. If b > 0, the equation can be multiplied by −1 to
make b negative.

If w were zero, the equation would not represent a hyperplane. Instead, it would represent all
of Rd if b = 0, or the empty set if b 6= 0 (why?). This is why we require w 6= 0.

If two points a1, a2 are on χ, then their difference c = a1 − a2 is a vector parallel to χ.
Conversely, any vector c parallel to χ can be written in this way: Just pick an arbitrary a1 ∈ χ,
and let a2 = a1 − c. Since c is parallel to χ, the point a2 is on χ. In summary, c is parallel to χ if
and only if it can be written in the form c = a1 − a2 with a1,a2 ∈ χ.

In addition, a1 and a2, being on χ, satisfy the equation that defines χ:

b+ wTa1 = 0 and b+ wTa2 = 0

and therefore, by subtracting these two equations from each other, we obtain

wT c = 0 .

Therefore, the vector w in equation 4 is perpendicular to the hyperplane χ it defines, because it has
zero inner product with any vector c that is parallel to χ. Let

n =
w

‖w‖

be the unit vector along w with the same orientation as w (see Figure 4). The equation of χ can
then be rewritten as follows:

nTx = β where β = − b

‖w‖
≥ 0 . (5)

The point x0 on χ that is closest to the origin of space is the intersection of χ with a line
through χ and the origin, that is, with the line with parametric equation

x = αn for α ∈ R ,
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Figure 4: The geometry of a linear decision boundary in two dimensions d = 2. The two data
points x and x′ have respectively a positive and negative signed distance from the hyper-plane χ,
as determined by the relative position of χ and the unit vector n. This unit vector has the same
direction and orientation as w (not shown, to reduce clutter), and which half-space a point x is in
depends on the sign of b+wTx. The point x0 is the point on χ closest to the origin, and ∆(x0) = 0.
These relationships hold in any dimension d ≥ 1.

and since n has unit norm, α is the distance of any point x on this line from the origin. Replacing
this expression for x into the equation 5 for χ yields

αnTn = β that is, α = β ≥ 0 .

We can conclude that if w is nonzero and b ≤ 0 in equation 5, the distance of χ from the origin is
β, as defined in the same expression, and the point on χ that is closest to the origin is

x0 = βn ,

shown in Figure 4 as well. Let now x be a point in the half-space of X delimited by χ and for
which

nTx ≥ β .

The left-hand side is nonnegative (because β is), and is the length of the projection of x onto n.
Therefore, the distance of x from χ is

nTx− β ≥ 0 .

If x is in the opposite half-space, we have

nTx ≤ β

and the distance of x from χ is
β − nTx .
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If we now allow for b to have an arbitrary sign, we can summarize this discussion as follows:

If w is nonzero in equation 4, the distance of χ from the origin is

β
def
=
|b|
‖w‖

(a nonnegative number) and the quantity

∆(x)
def
=
b+ wTx

‖w‖

is the signed distance of point x ∈ X from hyperplane χ. Specifically, the distance of x
from χ is |∆(x)|, and ∆(x) is nonnegative if and only if x is on the side of χ pointed to by
w. Let us call that side the positive half-space of χ.

It is important to realize that ∆(x) conveys not only the distance of x from the separating
hyperplane χ (through its magnitude), but also which of the two half-spaces x is in (through the
sign of ∆(x)). As an example, Table 1 illustrates the four possible choices of sign for w and b in
two dimensions (d = 2), when the data space X is the real plane and χ is therefore a line. The
two cases at the top represent the same partition of X, but with different signs for the half-spaces.
The same holds for the two cases at the bottom.

[To be continued in Part 2]
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Table 1: The four different sign choices (±b,±w) for b = 12 and w = [1,
√

3]T . The (positive)
distance β of the separating hyperplane χ (the blue line) from the origin is β = |b|/‖w‖ = 12/2 = 6
in all cases. The shaded area is the positive half-space, and the vector w (in red) points towards
it, relative to χ.
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