
Validation and Testing

September 29, 2021

After looking at some specific predictors (polynomials, nearest-neighbor predictors, linear pre-
dictors), we return to a more general discussion pertaining to the evaluation of the performance of
machine learning algorithms. Given this broadening of scope, it may be useful to summarize first
some of the concepts we have encountered so far.

1 Summary of Relevant Concepts

This Section collects in one place concepts and definitions concerning (i) training as empirical risk
minimization, (ii) the difference between data fitting and machine learning, and (iii) the concept
of validation for the estimation of hyper-parameters.

Training as Empirical Risk Minimization The predictors we have encountered so far are
trained through data fitting: Define the loss that a predictor incurs on the training data, and find a
predictor that minimizes the average loss (risk) on the training set. To summarize, when a predictor
h predicts value h(x) for a data point x and the true value associated with x is y, we experience
a loss `(y, h(x)). The loss is zero when h(x) = y and positive otherwise. The loss function has
signature

` : Y × Y → R+
0

where R+
0 is the set of nonnegative real numbers. We have seen some possible definitions of loss

for different problems, for either classification or regression. For instance, the zero-one loss is very
commonly used for classification:

`(y, h(x)) =

{
0 if h(x) = y
1 otherwise

and so is the cross-entropy loss for score-based classifiers

`(y,p) = − log py ,

where p = [p1, . . . , pK]T is a vector that scores each of the K classes with a real value pk ∈ [0, 1].
For regression, the square loss is a popular choice:

`(y, h(x)) = (h(x)− y)2 .

1

The empirical risk over the training set T of data point/value pairs is the average loss over that
set:1

LT (h)
def
=

1

|T |
∑

(x,y)∈T

`(y, h(x)) .

Given a training set T and a hypothesis space H, Empirical Risk Minimization (ERM) is the
problem of finding a predictor in H with the lowest empirical risk2 on T :

ERMT (H) ∈ arg min
h∈H

LT (h) .

Notation: This notation should be familiar by now. To recall, the quantity minh∈H LT (h) is a single (non-

negative) number, the smallest achievable risk over all choices of h in H. The notation arg minh∈H LT (h)

represents the set of all functions in H that achieve that minimal risk (there could be more than one such

function). Finally, ERMT (H) is one of these functions, it does not matter which.

ERM is a fitting problem, as it seeks a function h that best fits the data in T .

Generalization What is the point of fitting a predictor to a set of data if we only look at how
well the predictor does on that data, as the risk LT does? A predictor estimates a value ŷ from
a data point x, but we already know the correct answer y: What is the point of estimating the
answer again?

This question goes to the key difference between data fitting and machine learning: Data fitting
is asked to do well on the training set, and is used when something about the predictor itself is of
interest. Perhaps an economist postulates that price and demand are linearly correlated, and wants
to determine the regression coefficients. The goal of such a study is not so much to predict new
prices for new levels of demand, but rather to use the slope of the regression line to understand the
effects of a demand fluctuation on changes of price.

In contrast, machine learning focuses on prediction, and is asked to do well on previously unseen
data. The parameters of the predictor are not of interest per se, and the goal is instead to estimate
values ŷ corresponding to new data points x. A predictor that does this well is said to generalize
well. What can we say about new data points, that is, data we have not yet seen? Specifically,
how can we formalize the notion of “doing well on previously unseen data?” Since prediction is the
goal, rather than fitting, the empirical risk LT (ĥ) is not a good measure of performance. How else
can we measure prediction performance? Part of this note focuses on this question.

Optimizing the Hyper-Parameters A closely related issue is how to determine the hyper-
parameter(s) of a predictor, if any. So far we have encountered two predictors whose hypothesis
space H is a function of some hyper-parameter. Specifically, the maximum degree k of the fitting
polynomial is the hyper-parameter of a polynomial regressor, and the hyper-parameter of the k-
Nearest-Neighbor (k-NN) predictor is the number k of neighbors to consider. How can we compute
a good value for k in either case?

A first idea is to incorporate k into the optimization performed for training the predictor, that
is, optimize jointly over parameters and hyper-parameters. This approach would eliminate the

1We will look at empirical risks over sets other than the training set T . In view of this greater generality, we
denote the size of set T as |T | rather than N .

2We are assuming that the minimum in this expression exists. Discussion of this assumption is beyond the scope
of these notes.

2

distinction between parameters and hyper-parameters. However, there are two difficulties in doing
so. The first one is technical: For nearest-neighbor, there is no training. For polynomials, the
coefficients are real-valued, while k is a positive integer. Because of this, we cannot simply use
a descent method, as the gradient of the loss function with respect to k is undefined. For either
scenario, one needs to rethink some of the techniques. However, this issue is minor: For both
problems, we could just try values of k = 1, 2, . . . and look for one that yields good results.

The second difficulty, on the other hand, is fundamental and unsurmountable: The answer from
optimization would be trivial and useless. Specifically, for k-NN, setting k = 1 gives zero risk on
T , as every data point xn is closest to itself. Thus, the value of k that minimizes LT (h) is 1, and
this cannot possibly be the answer we are looking for. For polynomials, we know that we can
interpolate k + 1 points exactly with a polynomial of degree k, so the bigger k, the better, up to a
limit: Just set k = N − 1, where N is the size of the training set, and the resulting training error
will be, again, exactly zero.

In other words, for both k-NN and polynomial fitting we can drive LT (h) to zero with a suitable
choice of hyper-parameter, but this does not tell us anything about how well we will do on data we
have not yet seen. Again, the ERM risk is not adequate for determining hyper-parameters.

Not all types of predictor face this quandary. For instance, a linear predictor has no hyper-
parameters,3 and we can achieve LT (h) = 0 only when T happens to be linearly separable (for a
linear classifier) or when the training samples (xn, yn) happen to be on a hyperplane (for a linear
regressor). Whether the data complies with these assumptions or not, the smallest possible (and
typically nonzero) LT (h) says little on how well the predictor does on previously unseen data.

Thus, we face at least three broad problems, which we discuss in the sections that follow:

1. How to think about “previously unseen data.” The answer is probabilistic, in the form of
what is called a generative data model (Section 2).

2. How to choose good hyper-parameters, if H has any. This problem is called model selection,
and a common technique for it is called validation (Section 3).

3. How to evaluate the generalization performance of a predictor. This is called testing (Section
4).

2 A Generative Data Model

A predictor has no chance to do well on data that is different from the data it was trained on unless
the training data bears some resemblance or connection to the new data. For instance, it would
not be fruitful to train a predictor on human faces and evaluate its performance on handwritten
digits, or even on cat muzzles. Performance is likely to be very bad in those cases. More subtly, if
the human faces in the training set are all frontal snapshots and the resulting classifier is tested on
profiles of human heads, we cannot hope for the classifier to do well. Generalization performance
may be poor even if the test images are of the same type as the training images, but perhaps taken
under systematically different lighting. We need some way to formalize the notion of “resemblance
or connection” between two data sets.

A probabilistic formulation of machine learning provides the conceptual link between “seen”
and “unseen” data. Specifically, one assumes that all samples (x, y), both those in the training set

3Unless regularization is used. In that case, the regularization coefficient is a hyper-parameter.

3

and those seen after training, are drawn independently and at random from some joint probability
distribution p(x, y) called the generative model of the data, or “model” for short. The model is the
link between training and testing data. Of course, when we deploy a trained predictor we only see
the data point x, and it is the predictor’s job to guess the corresponding target h(x). However,
we can think of the true target y as being “out there:” we just don’t have access to it. Thus, it
makes mathematical sense to ask what the loss `(y, h(x)) is even during deployment, although we
may not be able to compute it. In this spirit, the goal of machine learning is not to minimize the
empirical risk, bur rather the risk :

Lp(h) = Ep[`(y, h(x))] ,

that is, the statistical expectation of the loss over the model p. This is a measure of how poorly h
is expected to do not just over the training set, but rather over all possible data drawn from the
model. Sometimes, the risk is called statistical risk for emphasis, when it is necessary to distinguish
it from the empirical risk. The problem of machine learning is then (Statistical) Risk Minimization,
that is, the problem of finding

RMp(H) ∈ arg min
h∈H

Lp(h) ,

a much taller order than ERM. The predictor RMp(H) is an optimal predictor in H and the risk it
achieves is the lowest risk on H, denoted by

Lp(H)
def
= min

h∈H
Lp(h) .

Notation: Here and elsewhere, the subscript for risks and predictors (that is for L, ERM, and RM) denotes

what the risk is computed on, so the notational distinction between ERM and RM is redundant: A risk

computed on a data set is always an empirical average, and a risk computed over a probability distribution

is always a statistical mean. Nonetheless, this distinction is maintained for both emphasis and consistency

with the literature. The term in parentheses denotes either a predictor (h) or a hypothesis space (H). In the

latter case, the risk is the smallest over all predictors in that hypothesis space. Thus, Lp(H) is a minimum

over a set, while Lp(h) is not.

If the optimal predictor RMp(H) in H does well (on average, on all possible data), then it does
well also on the training set T only to the extent that T is a statistically representative sample of the
data model p. If this is not the case, then there is no immediate relation between the performance
of RMp(H) and that of ERMT (H): The training set T may just be a “fluke,” that is, have low
probability in p, so how well we do on T may not say much about how we do on other data drawn
from p.

Unfortunately, T being a “fluke” is rather common: The data points x often represent complex
objects (images or emails or web pages, for instance) and therefore live in a data space X ⊆ Rd

with many dimensions (d � 1). The curse of dimensionality then implies that it is effectively
impossible for the training set T to sample any significant part of X to any reasonable extent.
Machine learning is quite often starved of data.

For later reference, we define a hypothesis space H to be realizable over the model p if zero
statistical risk can be achieved in H, that is, if Lp(H) = 0. This terminology is a bit awkward.
What is really realizable is the choice of a predictor from H that performs perfectly. However, it
would be more cumbersome to say “the choice of a perfect predictor from H is realizable” than to
say “H is realizable.”

4

The Model is Unknown If the empirical risk LT (h) on the training set T is not a good indicator
of performance, why not just use as indicator the lowest statistical risk Lp(H) on the hypothesis
space H according to the model p? Given a data model p and a hypothesis space H, we could just
find an optimal predictor on H and its corresponding statistical risk, and we are done.

The fly in the ointment is that we typically do not know the data model p: What is, for
instance, the probability distribution over the set of all possible images? Or over all possible
English sentences? All we usually have is data, and it may well be that the training set T is all the
data we have. Even if we have large amounts of data, the curse of dimensionality suggests, as noted
earlier, that estimating probability distributions over spaces with many dimensions is hopeless.
Thus, for all but the simplest cases, the optimal predictor RMp(H) is beyond computing.

A deeper question then arises: If we cannot know the data model p, what use is there in
introducing it? There are several answers to this question.

• While RMp(H) itself may be beyond reach, we can try and estimate it. There will be some
uncertainty around the estimate, but that’s better than nothing. For the estimate we need
data, but we know how to use data to estimate statistical means—and risks are means—even
if we don’t know the underlying distribution.

• We may be able to bound some of these quantities. For instance, can we compute two numbers
that bound the lowest risk Lp(H) on a given hypothesis space H from above and from below,
and over all possible choices of model p? To do so, we don’t need to know a particular p, but
just how to marginalize over all of them.

• Perhaps most importantly, it is hard to find a way to link training and testing data that is
conceptually cleaner and simpler than introducing p. In some sense, assuming a probabilistic
model is conceptually the right thing to do, and we can think of p as the holy grail we only
know of indirectly and keep referring to.

A useful mental picture of the model p is that of an oracle that gives out samples from X × Y
upon request. The oracle knows the distribution, but we do not. In addition, samples do not come
for free, and a larger set of samples comes at a higher price than a small one. While the actual
price is not part of the model, this cost consideration reflects the reality that collecting data points,
especially with their targets, is laborious and potentially expensive.

Practical Aspects: Making a Training Set. To get a sense of the difficulty of collecting training
samples, it may be useful to examine what it takes to produce the training images xn for the task of
recognizing handwritten digits described in an earlier note.

One could place a camera above one of the conveyer belts that move envelopes around in a USPS distribution
center, and take a picture of each envelope. That picture, however, contains much more than a digit, and
someone must therefore sit at a computer, display each envelope image on the screen in turn, drag a bounding
box around each digit with a mouse, and save each cropped digit as a separate file. Automatic methods
won’t do: How can we find the digits on the envelope automatically if we haven’t yet trained a system that
knows how to recognize a digit?

Another file will list the names (file names) of all the images and the corresponding labels (what digit each
image represents). This collection of data (images with bounding boxes and labels) is the training set T ,
and associating a label to every training image is called annotation or labeling.

Different images may have different quality depending on factors such as lighting, the ink used to write the

digit, the color of the envelope paper, the size of the digit, and so forth. In addition, the digit images may be

cropped inconsistently if the operator gets tired, or multiple operators are employed to crop and label images.

5

These inconsistencies often make learning harder, and training sets are sometimes curated because of this. In

the USPS example, curation involves running manual procedures to make the images more uniform in terms

of the factors mentioned above.4 Curation helps machine learning research by making the problem easier

for initial study. However, curation cannot be used to train real-life machine learning classifiers, because the

whole point of computing h is to eliminate manual intervention during deployment (testing). In these cases,

only automatic preprocessing of the images is a viable option to make the digits in them easier to recognize,

because the preprocessing can then be applied during both training and testing. Preprocessing techniques

are beyond the scope of these notes.

In the days of Google Images and web crawlers, collecting data for training is often inexpensive
if no curation or preprocessing is needed or can be performed by automatic means. Annotation,
on the other hand, involves humans and is laborious, time-consuming, and error-prone. A common
method for annotating large amounts of data is to publish it to the Amazon Mechanical Turk, an
online marketplace for the type of repetitive work involved in labeling. People around the world
access the marketplace searching for easy jobs, and you pay them a small amount (often 1-3 cents)
per label. Even so, labels are not always of good quality, and various schemes are devised to address
this issue. For instance, multiple people could be employed to label each training sample, and a
majority vote could then be taken to determine the most likely label. In any case, the cost of
labeling is high, and many machine learning algorithms require large amounts of data. This high
cost is arguably the main hurdle to a broader use of machine learning.

3 Model Selection

If the hypothesis space H depends on one or more hyper-parameters, a method is needed to select
these. The problem of finding good hyper-parameters is called model selection, and we saw that
optimizing hyper-parameters over the training set is not an option for accomplishing this task. A
very popular technique for model selection is called validation, and uses a data set V of the same
structure as T (datapoint/value pairs), but disjoint from T . The set V is called the validation set.

When the set of possible hyper-parameters is finite, validation can be understood as a nested
optimization. Specifically, let Π be a set of possible hyper-parameter vectors. If π is a vector of
hyper-parameters out of Π (a vector because there may be more than one hyper-parameter), let
Hπ be the corresponding hypothesis space. Then, validation computes

π̂ = arg min
π∈Π

LV (ERMT (Hπ)) .

Notation: This formula is quite a mouthful, but the idea is simple, and can be understood by unpacking
this expression from the inside-out: Pick each vector π of hyper-parameters out of Π in turn. The choice
of π identifies a particular hypothesis space Hπ. Search this hypothesis space (by a descent method or
whatever other technique is appropriate for the given type of predictor) for an optimal estimator

ĥπ ∈ ERMT (Hπ)

on the training set T . Once ĥπ is found, compute its empirical risk LV (ĥπ) on the validation set V . When

done performing this computation over all choices π out of Π, return the hyper-parameter vector π̂ that

has the smallest empirical risk on V . Another way of viewing this validation procedure is through a loop, as

shown in Algorithm 1.

6

https://www.mturk.com

Algorithm 1 Model Selection by Validation

procedure Validation(H,Π, T, V, `)
L̂ =∞ . Stores the best risk so far on V
for π ∈ Π do

h ∈ arg minh′∈Hπ LT (h′) . Use loss ` to compute best predictor ERMT (Hπ) on T
L = LV (h) . Use loss ` to evaluate the predictor’s risk on V
if L < L̂ then

(π̂, ĥ, L̂) = (π, h, L) . Keep track of the best hyper-parameters, predictor, and risk
end if

end for
return (π̂, ĥ, L̂) . Return best hyper-parameters, predictor, and risk estimate

end procedure

Logically, since the goal of validation is to select a good set of hyper-parameters, the validation
procedure only needs to return π̂, the best set it found. Practically, however, it would be wasteful
to then train a predictor on Hπ̂ again, since that predictor was trained during the procedure.
Because of this, Algorithm 1 also returns the optimal predictor on the optimal hypothesis space.
The validation risk is also returned for informational purposes.

A complication arises when the set Π of possible hyper-parameters is not finite. Even so, this
set is often discrete. The validation procedure then scans Π in some order and finds the first local
optimum, that is, a vector π̂ whose validation risk LV (ĥπ) is smaller than previously encountered
risk values, and such that subsequent risks are higher. This idea assumes that the dependence of
Hπ on π is somehow simple and regular. When Π is not even countable, a grid of samples in it is
often scanned in search of a good (but not necessarily optimal) set of hyper-parameters.

An example of validation with a discrete but infinite set Π is the choice of polynomial degree in
polynomial regression or of number of neighbors in k-NN prediction. In these cases, Π is scanned
in the order k = 1, 2, . . ., and the value k̂ corresponding to the first (significant) local minimum in
the validation risk sequence LV (ĥk) is returned. Figure 1 (a) shows the training and validation risk
for the polynomial data fitting problem we saw in an earlier note. The blue dots in panel (b) of
the Figure are the training data, and the orange dots are the validation data. The Least Squares
loss is used to compute risks.

From panel (a) we see that the training risk decreases monotonically. This stands to reason,
because a polynomial of higher degree can fit a given set of points better (or at least no worse).
The validation risk, on the other hand, is high for k = 1, 2, where the training risk is high as well.
The degrees of these two polynomials (shown in yellow and purple in panel (b)) are too low to fit
the data well. A high training risk is a symptom of underfitting.

The validation risk is rather low for all degrees between k = 3 and k = 8 inclusive. This
means that polynomials of these degrees generalize quite well to the given validation data. The
validation risk is minimal when k = 3, and the procedure therefore returns k̂ = 3 as the solution.
The corresponding polynomial is shown as a thick green line in panel (b).

The difference between the validation risks for k = 3 and k = 4 is small. With so few data
points for validation, the choice between these two values is rather uncertain.

The gap between training and validation risk in Figure 1 (a) is always positive. This makes

4Think calibrating, touching up, and re-cropping or resizing images in Photoshop.

7

0 2 4 6 8 10
0

0.5

1

1.5
training risk

validation risk

0 1
0

5

k = 1

k = 2

k = 3

k = 6

k = 9

(a) (b)

Figure 1: (a) Training and validation risk as a function of the degree k of a polynomial fit to the blue
dots in (b). The lowest validation risk is achieved for k = 3, while the training risk keeps decreasing
even beyond that. (b) Polynomials of degrees between 1 and 9 fit to the training data. Blue points
are the training set and orange points are the validation set. Only some of the polynomials are
shown, to reduce figure clutter. The polynomial that generalizes best to the validation data has
degree k = 3 and is shown as a thicker, green line.

sense because the polynomial is fitted to the training data, and the fitting procedure never sees
the validation data, on which it is therefore likely to perform less well. In principle, however, it is
possible for the validation risk to be lower than the training risk.

Two dramatic events occur for k = 9: The training risk goes to zero, and the validation risk
jumps suddenly to a large value. The first event occurs because k = N − 1: If the degree of a
polynomial is at least the number of data points minus one, a perfect fit can be achieved. Thus,
a training risk of zero has to do with polynomials and the size of T . The large upward jump
in validation risk, on the other hand, when compared to a much smaller training loss (zero or
otherwise), implies overfitting: The magenta polynomial (k = 9) in panel (b) follows the vagaries of
the specific data sample too closely, and does poorly on previously unseen data as a consequence.

4 Measuring Generalization Performance

Suppose that you train a predictor on a data set T . This procedure may or may not involve
validation, depending on whether the hypothesis space H depends on hyper-parameters or not.
Either way, once the optimal predictor ĥ has been found, the following question arises: How well
can you expect your predictor to do on new data? That is, how well does ĥ generalize? This
question is what makes machine learning different from data fitting.

If no validation is used, the answer should be rather obvious by now, in light of our previous
discussion: We cannot use T to measure generalization, because a low empirical risk is not nec-
essarily an indication of good performance. Instead, we collect a new data set S, called the test
set, and compute the predictor’s empirical risk LS(ĥ) on S as an estimate of its statistical risk.

8

None of S is used for training, and all of it used exclusively for testing, that is, for measuring the
generalization performance of the predictor.

If validation is used, on the other hand, one may be tempted to use the validation risk LV (ĥ)
as a measure of generalization performance, since this risk is computed on a data set V that has
not been used for training ĥ.

However, just as training “taints” the training data, so that validation must be performed
on a data set separate from the training set, validation “taints” the validation data. In other
words, model selection, just like training, is an estimation procedure that finds an optimal hyper-
parameter set π̂ by evaluating the performance of various choices of π ∈ Π on the validation set
V . If V is too small, overfitting may occur during validation as well, and π̂ may adapt too much
to the idiosyncrasies of V . Perhaps if we were to use a different V we would obtain a different
π̂. In summary, the issues in validation are analogous to those encountered in training as far as
overfitting is concerned.

Thus, we generally need the following three sets:

• A training set T to train the predictor given a specific set of hyper-parameters (if any).

• A validation set V to choose good hyper-parameters, if the hypothesis space H depends on
any.

• A test set S to evaluate the generalization performance of the predictor ĥ learned by training
on T (and, optionally, by hyper-parameter validation on V).

All these sets contain data point/value pairs (x, y), that is, they are all subsets of X × Y .
If collecting a training set is difficult (and we saw that it typically is), collecting three data sets

is even harder, and may even be unrealistic in applications where each sample is very costly. As an
example, think of a regression system that predicts the effectiveness of a certain medical treatment
for patients that exhibit certain types of symptoms. In that case, x may be some encoding of the
symptoms, and y may be the number of years the patient survives. Clearly, following up a patient
until he or she passes away is a very costly procedure, and yields just a single data sample.

Even when expense is not an overriding issue, using a separate training set T , validation set
V , and testing set S means that we forgo using all the available data T ∪ V ∪ S for training, and
we therefore make the predictor intentionally worse than it could be, in order to hold out data for
validation and testing.

Because of these considerations, some resampling techniques have been developed that allow
using a single data set for both training and model selection. The most popular of these techniques
is called cross-validation. Another technique, called boosting, is used less frequently in this context,
but shows up in an important category of predictors called decision forests, which we will study
later in this course. The next Section examines these resampling techniques.

While the need for a separate validation set may often be dispensed with through resampling,
the availability of a test set S, entirely disjoint from all other data sets used during training, is
indispensable. No research article in machine learning is ever accepted for publication if there is
even the suspicion that any part of S has been used during training, either directly or indirectly.

Most new contributions in the field are tested on standard benchmark data sets, and the test
data set S is closely guarded. For instance, the organizers of image recognition competitions typi-
cally make training and validation data sets available to all, but withhold test data. Performance
evaluation then occurs in one of two ways. In one protocol, the data points x from the test set S

9

are published, but not the corresponding labels y. Researchers then run their predictors on these
data points and submit the predictions ŷ to the organizers. These estimate the generalization risk
using ŷ and the true values y they keep secret. An alternative protocol is to keep all of S secret.
Researchers submit their code to the organizers, and these run the code for performance evaluation
on S. The sanctity of S is indeed a big deal in practice!

5 Resampling Methods for Validation

Since using data sets separate from training data for validation or testing is an expensive proposi-
tion, and is sometimes unaffordable, we consider two different resampling techniques called cross-
validation and the bootstrap that make a single data set serve double duty, for both training and
validation.

These methods repeatedly split the training set T into two complementary sets5 Tk and Vk,
for k = 1, . . . ,K. For each split, the predictor is trained on Tk and tested on Vk, and the average
performance of these predictors is then used as an estimate of the statistical risk of yet another
predictor trained on all of T . The difference between cross-validation and the bootstrap is in how
the splits are made.

5.1 Cross-Validation

In K-fold cross-validation, the training data are split once and for all into K (approximately)
equal-sized sets Vk chosen at random. For every k = 1, . . . ,K, one trains the predictor on all
training data points except those in Vk. The empirical risk of the predictor on Vk is then recorded.
Once K empirical risks have been computed in this way, their mean is computed as an estimate of
the generalization risk, and their variance, if desired, gives an idea of the uncertainty about this
estimate. This variance is not available when standard validation (no cross-validation) is used, so
this is another advantage of cross-validation. Algorithm 2 details model selection by cross-validation
procedurally. Of course, V is no longer a parameter to this procedure, in contrast with validation.

Leave-one-out cross-validation (LOOCV) is K-fold cross-validation with K = N : In each split,
each sample is held out in turn, and the predictor is trained on the remaining N − 1 samples and
evaluated on the lone held-out sample.

The cross-validation risk is generally a biased estimate of the statistical risk, because the data
sets used for training and validation are drawn from the same set T . However, since training and
validation set are distinct within each split, the cross-validation risk is a better estimate of the
generalization risk than the training risk.

Choosing a Good Value for K: Since the training set in each split is (K − 1)/K times the size of T , each

predictor is somewhat worse than it would be if all of T were used, and the cross-validation risk estimate is

therefore somewhat pessimistic (that is, biased upward). This bias decreases monotonically as the number

K of folds increases. It is smallest for LOOCV, since then (K − 1)/K = (N − 1)/N ≈ 1. Nadeau and

Bengio [1] show theoretically and empirically that the variance of a K-fold cross validation decreases with K

as well. Thus, LOOCV (K = N) would seem to be the method of choice, as it leads to the smallest bias and

variance. However, LOOCV is very expensive, because training is repeated N times. In addition, Nadeau

5The letter k is commonly used in the literature both in “k-nearest-neighbors” and to index rounds (or folds) in
cross-validation, and we adhere to this use. Of course, the two “k” are semantically unrelated.

10

Algorithm 2 Model Selection by K-Fold Cross-Validation

procedure CrossValidation(H,Π, T,K, `)
{V1, . . . , VK} = Split(T,K) . Split T in K approximately equal-sized sets at random
L̂ =∞ . Will hold the lowest risk over Π
for π ∈ Π do

s, s2 = 0, 0 . Will hold sum of risks and their squares to compute risk mean and variance
for k = 1, . . . ,K do

Tk = T \ Vk . Use all of T except Vk as training set
h ∈ arg minh′∈Hπ LTk

(h′) . Use the loss ` to compute h = ERMTk
(Hπ)

L = LVk
(h) . Use the loss ` to compute the risk of h on Vk

(s, s2) = (s+ L, s2 + L2) . Keep track of quantities to compute risk mean and variance

end for
L = s/K . Sample mean of the risk over the K folds
if L < L̂ then

σ2 = (s2 − s2/K)/(K − 1) . Sample variance of the risk over the K folds
(π̂, L̂, σ̂2) = (π, L, σ2) . Keep track of the best hyper-parameters and their risk statistics

end if
end for
ĥ = arg minh∈Hπ̂

LT (h) . Train predictor afresh on all of T with the best hyper-parameters

return (π̂, ĥ, L̂, σ̂2) . Return best hyper-parameters, predictor, and risk statistics
end procedure

and Bengio show that the improvements deriving from greater and greater values of K tend to saturate

once K is around 10. As a result of their studies, they recommend K = 15 as a good compromise between

accuracy and precision, on one hand, and computational cost on the other.

5.2 The Bootstrap

Notation: A bag or multiset is a set that allows for multiple instances for each of its elements. The number

of repetitions of an element in a bag is called the multiplicity of that element in that bag, and the cardinality

of the bag is the sum of its multiplicities. A set is a bag with the added constraint that every element has

multiplicity 1. For instance, {a, a, b, b, b, c} is a bag of cardinality 6 with multiplicities 2 for a, 3 for b, and 1

for c. The set {a, b, c} is also a bag.

In the bootstrap, one draws K training bags Tk of N samples uniformly at random and with
replacement out of the original training set T , which also has N samples. The result is that each
training bag Tk is missing some of the samples in T , and contains multiple copies of some other
samples.

The predictor is then trained on each bag Tk in turn, and the risk over the set Vk of samples
that are not in Tk is recorded. The average of these risks over all the validation sets is the boot-
strap estimate of the predictor’s statistical risk, and their empirical variance is an estimate of the
statistical variance of the risk.

The algorithm is the same as Algorithm 2 except for the following two changes:

• Replace the line

11

{V1, . . . , VK} = Split(T,K)

with the following code:

for k = 1, . . . ,K do
Tk = Draw(T)

end for

where the function Draw draws |T | elements out of T at random and with replacement.

• Replace the line

Tk = T \ Vk
with the line

Vk = T \ Tk
Of course, the difference

Vk = T \ Tk
between a set and a bag produces a set: An element in the set T is included in the set Vk once if
it does not show up in the bag Tk, that is, if its multiplicity in the bag Tk is zero.

Using repeated training samples effectively changes the risk from an average loss to a weighted
average of losses. Suppose that each of the distinct samples (xj , yj) in bag Tk has multiplicity mj

for j = 1, . . . , J . Then, J ≤ N and

m1 + . . .+mJ = N

because
|Tk| = |T | = N .

Then, the risk on Tk, which the training algorithm minimizes, becomes

LTk
(h) =

1

N

J∑
j=1

mj `(yj , h(xj))

because sample (xj , yj) occurs mj times in Tk.
The risk estimates from the bootstrap are often quite good. They are sometimes more biased

than those from cross-validation, which is therefore the method of choice for selecting a hypothesis
space. However, we will see later on that the bootstrap is a key ingredient of random forests, a
very interesting machine learning algorithm.

Quantitative Aspects of the Bootstrap: On average, about 37% of the samples in the set T are left out
of each bag Tk (and an equal fraction of samples are therefore repetitions), so the size of the set Vk is about
37% that of T on average. To see this, fix k and consider the experiment of drawing a single element out of
T . The probability that any one element is drawn is 1/N , so the probability that it is not drawn is 1− 1/N ,
and the probability that that same element is not drawn in any of the N draws is(

1− 1

N

)N

because the elements are drawn independently of each other. Since all elements in T are treated the same,
this expression is also the expected fraction of elements that do not end up in Tk, and are therefore placed
in Vk. Finally, since

lim
N→∞

(
1− 1

N

)N

=
1

e
≈ 0.37 ,

12

for large enough N about 37% of the elements of T end up in Vk and the remaining 63% end up in Tk, with

repetitions. This approximation is good rather soon. For instance, when N = 24 we have (1−1/24)24 ≈ 0.36.

References

[1] C. Nadeau and Y. Bengio. Inference for the generalization error. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 307–313, 2000.

13

	Summary of Relevant Concepts
	A Generative Data Model
	Model Selection
	Measuring Generalization Performance
	Resampling Methods for Validation
	Cross-Validation
	The Bootstrap

