
Decision Trees and Random Decision Forests

Carlo Tomasi

November 1, 2021

1 Decision Trees

Linear regressors from X = Rd to Y = RK have a limited expressive power, because they fit K
affine functions to the training set. Functions that are more complex than that are approximated
poorly. Similarly, K-class linear classifiers partition the data space X into K convex regions. If
the true decision regions are not convex, the predictors underfit and perform poorly even on the
training data.

This limited expressive power has also a silver lining: The number m of parameters of linear
predictors is relatively small, m = K(d + 1), so that a linear predictor requires fewer training
samples to train, relative to a more expressive predictor, in order to achieve a certain value for the
training risk. In other words, linear predictors have low sample complexity and, as a result, they
generalize better than more expressive ones.

Kernel SVMs can combine the best of both worlds to some extent: They can model complex
decision boundaries and at the same time generalize well, thanks to the fact that the sample
complexity of SVMs with bounded data spaces is independent of d. However, kernels need to be
designed so as to adapt well to the true decision boundary geometry, and this problem is typically
addressed in an empirical fashion by trial and error.

When we studied logistic-regression classifiers, we also saw one of the advantages of score-based
classifiers, namely that scores provide more information than just an estimated label. Specifically,
scores for different classes can be the basis for simple extensions of binary classifiers to the multi-
class case.

Decision trees combine the advantages of a score-based predictor (for both classifiers and re-
gressors!) with the expressiveness deriving from a very flexible partition of X. Specifically, they
recursively split X with hyperplanes, and they assign class scores or target values (depending on
whether the problem is one of regression or classification) to each subset of the partition. This re-
cursive splitting leads to effectively arbitrary expressiveness, as long as the partition is fine enough.

Since the splitting is recursive, the resulting partition of the data space X can be represented by
a strictly binary tree. As will be seen in more detail below, the root of the tree represents all of X,
and contains the parameters of the hyper-plane used for the first split. The two children of the root
represent the two half-spaces that that hyper-plane divides X into. Each of the two children in turn
contains an additional hyper-plane that splits the child’s half-space, and the structure continues
recursively.

The tree can then be used for prediction: Given a data point x, check which side of the root
partition it belongs to, and send it to the corresponding child. This check is repeated at every
internal tree node encountered in this way, until a leaf is reached. The leaf corresponds to a

1

(possibly small) convex region of X, and predicted scores or values ŷ = h(x) are associated to
that region. We will see in the next section how the hyper-planes are constructed, and how the
prediction values at each leaf are computed.

Staying at a high level for now, decision trees determine each of the hyper-planes greedily, by
choosing the hyper-plane (out of a set of choices that is typically restricted, as we will see) that
maximizes the predictor’s confidence, gauged through a measure called purity. Different definitions
of purity have been proposed, but they are all based on the distribution p(y|XS) of the values
y for data points x ∈ XS , where XS is one of the regions of the partition. Loosely speaking,
p(y|XS) is pure if it is heavily concentrated around a small set of values, so that there is at least
an approximate agreement as to what individual value should be assigned to data points x in XS .

Of course, p(y|XS) is unknown, but it can be estimated from the training data:

p(y|XS) ≈ p(y|S)

where S is the subset of the training set T whose data points are in XS :

S
def
= {(x, y) ∈ T : x ∈ XS}

and p(y|S) denotes an empirical estimate of a distribution, for instance, a histogram. With this
approximation, the empirical probability distributions of values in subsets S of the training set T
are interpreted as (estimates of the) statistical probability distributions of values for entire regions
XS of data space X.

In particular, the distributions p(y|S) for the leaves of the tree are used to compute a prediction
value through a statistical summary of p(y|S):

ŷ(XS) = summary(p(y|XS)) .

Typically, the summary is a mode (majority value) for classification, and either a mean or a median
for regression. These choices are akin to the ones used for k-nearest-neighbor classification when
k > 1.

As should be clear from the discussion so far, decision trees also have limitations. First, the
partition into regions is greedy, and therefore sub-optimal: It is possible (and indeed likely) that
to achieve an optimal partition overall one may have to make partition decisions which, when seen
individually and out of context, appear to be sub-optimal.

A second weakness of decision trees results from their very expressiveness, as we have by now
come to expect: Flexibility leads to over-fitting (or high sample complexity, if over-fitting is to be
avoided). Because of this, a large body of literature has been devoted to ways of pruning decision
trees, that is, curbing their ability to partition X so as to improve generalization. We will not
study pruning methods, because a better way to improve generalization is to build multiple trees
with different views of the data (in a sense to be clarified later), and let them vote on a value. This
is the basic idea of random decision forests, the subject of a later section.

The present section first defines decision trees in general, and then considers how decision trees
are trained. Choosing a training method involves defining (i) a measure of purity, (ii) a way to infer
a locally optimal partition of a set S into two subsets L and R so as to increase purity as much as
possible, and (iii) a criterion for stopping the recursive partition process.

2

1.1 The Structure of Decision Trees and their Use as Predictors

A decision tree is a binary tree that defines a recursive partition of the data space X into subregions.
Specifically, the root τ of the tree is associated to all of X, and contains a predicate Pτ (x) called
a split rule. The left child τ.L of τ is associated to the subset XL of X of all the points in X that
satisfy the predicate. The right child τ.R of τ is associated to the complement XR of XL in X.
Each child is then expanded recursively in the same way, by its own predicate.

During training, the predicates in the tree’s nodes are applied to the data points in the training
set T , rather than in the data space X, with the result of splitting T into subsets. Specifically, the
set S at an internal node is split into those samples whose data points are in XL and those whose
data points are in XR:

L
def
= {(x, y) ∈ S | x ∈ XL} and R

def
= {(x, y) ∈ S | x ∈ XR} .

Just as before, we can view p(y|L) and p(y|R) as estimates of the probability distributions of y
in XL and XR, respectively:

p(y|L) ≈ PT [y | x ∈ XL] and p(y|R) ≈ PT [y | x ∈ XR] .

The split rules are learned by partitioning the training set T recursively in a way that increases
the purity of the subsets formed by each split, in a sense to be made more precise later on.

A popular binary split rule called a 1-rule partitions a subset S ⊆ X × Y into the two sets

L = {(x, y) ∈ S |xj ≤ t} and R = {(x, y) ∈ S |xj > t} (1)

where xj is the j-th component of x and t is a real number. Thus, a 1-rule only allows for separating
hyper-planes that are aligned with the coordinate axes: Pick a coordinate index j, and check if xj
is above or below a threshold t.

This note considers only binary decision trees1 with 1-rule splits, and the word “binary” is
omitted in what follows.

Concretely, the split rules are placed on the interior nodes of a binary tree and the probability
distributions are on the leaves. The tree τ can be defined recursively as either a single (leaf) node
with values of the posterior probability p(y|S) collected in a vector τ.p or an (interior) node with a
split function with parameters τ.j and τ.t that returns either the left or the right descendant (τ.L
or τ.R) of τ depending on the outcome of the split. At inference time, a prediction tree τ takes a
new data point x, looks up its posterior distribution in the tree by following splits in τ down to a
leaf, and returns the value y obtained by summarizing τ.p. This algorithm is detailed in Algorithm
1 and illustrated in Figure 1 for a three-class classifier (so that the summary is arg max(τ.p)).

1.2 Training Prediction Trees

Optimal training of a prediction tree would compute the partition of X that leads to the lowest
possible generalization error. In addition, a good tree from a computational point of view would use
the minimum possible number of splits. The second requirement, optimal efficiency, is unrealistic,
since building the most efficient tree is NP-complete, as can be proven by a reduction of the set
cover problem [9].

1The tree is binary, but the predictor is not necessarily binary. For instance, a binary classification tree can handle
more than two classes.

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

node impurity

a 0.583
b 0.4
c 0.286
d 0.167
e 0.2

(a) (b) (c)

a: j = 2
t = 0.265

b: j = 1
t = 0.41

c: j = 2
t = 0.34

d: j = 1
t = 0.16

p = [0, 1, 0]

e: j = 2
t = 0.55

p = [1, 0, 0] p = [1, 0, 0]

p = [0, 0, 1]

p = [1, 0, 0] p = [0, 0, 1]

(d)

Figure 1: The training samples in (a) belong to three categories (1: red, 2: green, 3: blue).
The partition in (b) is computed in the order a, b, c, d, e, and the impurities of the sets each
line splits are shown in (c). The tree in (d) represents the same partition, and each interior node
corresponds to one line in (c). All the leaves of the tree contain zero-impurity posterior probabilities
p = [p(red|x), p(green|x), p(blue|x)]. This purity corresponds to the fact that all the points in
each region of the partition in (b) have the same label.
The impurity function used in this example is the training error 1 − maxy p(y|S). For example,
before the first split, the training set has 4 red samples, 3 green, and 5 blue, so that p(y|S) is
(4, 3, 5)/12 and the training error is 1− 5/12 ≈ 0.583 (first row in (c)).

4

Algorithm 1 Prediction with a decision tree

function y ← predict(x, τ, summary)
if leaf?(τ) then

return summary(τ.p)
else

return predict(x, split(x, τ), summary)
end if

end function

function τ ← split(x, τ)
if xτ.j ≤ τ.t then

return τ.L
else

return τ.R
end if

end function

Prediction trees are trained with a greedy procedure, and only ensure optimality—on the train-
ing set—at each node separately. The procedure is sketched in Algorithm 2, and is invoked with
the call

trainTree(T, 0) .

The algorithm first determines whether the set S it is given as input is worth splitting.2 If so,
it finds optimal parameters j and t that split S into sets L and R (equation (1)), stores those
parameters at the root of a new tree τ , stores as the root’s children τ.L and τ.R the result of calling
itself recursively on sets L and R, and returns τ .

If on the other hand S is not worth splitting, then the new tree τ is a single leaf node that
contains an estimate of the posterior distribution of labels in S.

This procedure leads to large trees that overfit and therefore generalize poorly, so a second step
of training prunes the tree to improve the generalization error. However, random forest classifiers
address generalization in a different way, by combining the predictions made by several trees.
Because of this, pruning is not performed in random forest predictors, and is not discussed here.
Instead, we now show how to split a set (findSplit), how to decide whether to continue splitting
(split?), and how to estimate the distribution of labels in a set (distribution).

Splitting. The optimal single split of training data in set S into two sets L and R maximizes the
decrease

∆i(S,L,R) = i(S)− |L|
|S|

i(L)− |R|
|S|

i(R) (2)

where i(S) is the impurity of S. The so-called Gini index

i(S) = 1−
∑
y∈Y

p2(y|S)

2Read on to find out when a set is worth splitting, how the optimal split parameters are found, and how the
posterior distribution is estimated.

5

Algorithm 2 Training a prediction tree

function τ ← trainTree(S,depth)
if split?(S, depth) then

[L,R, τ.j, τ.t]← findSplit(S)
τ.L← trainTree(L,depth + 1)
τ.R← trainTree(R,depth + 1)

else
τ.p← distribution(S)

end if
return τ

end function

function [L,R, j, t]← findSplit(S)
iS ← i(S) . i(S) is the impurity of S. See text.
∆opt ← −1 . At the end, ∆opt will be the greatest decrease in impurity.
for j = 1, . . . , d do . Loop on all data dimensions.

for ` = 1, . . . , uj do . Loop on all thresholds for dimension j.

L← {(x, y) ∈ S |xj ≤ t(`)j } . The thresholds t
(`)
j for j = 1, . . . , d and ` = 1, . . . , uj

R← S \ L . are assumed to have been precomputed (see text).

∆← iS − |L||S| i(L)− |R||S| i(R) . See text for a faster way to compute ∆
if ∆ > ∆opt then

[∆opt, Lopt, Ropt, dopt, topt]← [∆, L,R, j, t]
end if

end for
end for
return [Lopt, Ropt, dopt, topt]

end function

function answer← split?(S, depth)
return i(S) > 0 and |S| > smin and depth < dmax . smin and dmax are predefined thresholds

end function

function p← distribution(S)
p← [0, . . . , 0] . A vector of K zeros
n← 0
for (x, y) ∈ S do

p(y)← p(y) + 1
n← n+ 1

end for
return p/n

end function

6

is often used for either classifiers or regressors, where

p(y|S) =
1

|S|
∑

(xi,yi)∈S

I(yi ≈ y)

is the fraction of training values in set S that fall into the same bin as (or are equal to, for classifiers)
value y. The Gini index minimizes the training error for the stochastic decision rule

ŷ = hGini(x) = y with probability p(y|S(x))

where S(x) is the region of data space that data point x falls into. When this predictor returns
value y as the answer, it contributes to the training error with probability that is approximately
1 − p(y|S) when estimated over the entire training set T . This is because that is the fraction of
samples in S whose values do not fall into the same bin as y. So the training error for the Gini
classifier is the sum of these error probabilities, weighted by the probability that the predictor
returns y:

errGini(S) =
∑
y∈Y

p(y|S)(1− p(y|S)) = 1−
∑
y∈Y

p2(y|S) = i(S) .

Note that in this interpretation the number of possible values for y is finite even for regressors, be-
cause the true distribution p(y|XS) is replaced with the empirical histogram p(y|S). This limitation
could be overcome by other representations for p(y|XS) that do not resort to bins.

For classifiers, a simpler alternative measure of impurity is

i(S) = err(S) ,

the training error accrued for the elements in S if this set were no longer split. This measure of
impurity is therefore the fraction of labels in S that are different from the label that occurs most
frequently in S, since all these labels would be misclassified:

err(S) = 1−max
y
p(y|S) .

Both the Gini index and the training error are empirical measures of the impurity of the distri-
bution of the training data in set S, in the sense that when and only when all training data in S
have the same value (S is “pure”) one obtains

err(S) = errGini(S) = 0 ,

and the two measures are otherwise positive. The choice of impurity measure depends on the
application domain, and it is difficult to give general rules of thumb for which one is better.

With either measure of impurity, the best split is found in practice by cycling over all values
of the component index j ∈ 1, . . . , d and all possible choices of threshold t in equation (1). The
number of thresholds to be tried is finite because the number of training samples and therefore
values of xj is finite as well: If xj and x′j are consecutive values for the j-th component of x among
all the samples in T , there is no need to evaluate more than one threshold between xj and x′j .

Specifically, one can build a sorted list

x
(0)
j , . . . , x

(uj)
j

7

of the uj + 1 unique values of xj in T and set the thresholds to be tested as

t = t
(1)
j , . . . , t

(uj)
j where t

(`)
j =

x
(`−1)
j + x

(`)
j

2
for ` = 1, . . . , uj

to maximize the prediction margin.
The function findSplit in Algorithm 2 summarizes the computation of the optimal split. Effi-

ciency can be improved by sorting the values of xj and updating |L|, |R|, i(R), i(L) and ∆ while
traversing the list from left to right, rather than computing ∆ from scratch at every iteration.

Stopping Criterion. It is dangerous to stop splits when the change in training error falls below
some threshold, because a split that seems useless now might lead to good splits later on. Consider
for instance the data space

X = {x ∈ R2 | − 1 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1}

for a classification problem with K = 2 classes and true labels

y = c1 for x1x2 > 0 and y = c2 for x1x2 < 0 .

Splitting on either x1 or x2 once does not change the misclassification rate, but splitting twice leads
to a good classifier. In other words, neither dimension is predictive by itself, but the two of them
together are.

Instead, one typically stops when the impurity of a set is zero, or when splitting a set would
result in too few samples in the resulting subsets, or when the tree has reached a maximum depth.
See function split? in Algorithm 2.

Label Distribution. The training algorithm places an estimate of the posterior distribution of
labels given the data point at each leaf of the prediction tree. This estimate is simply the empirical
estimate from the training set. Specifically, for a classifier the set of possible values is Y . For a
regressor, the possible values in Y are binned into a predetermined number of bins, indexed by an
index y. Either way, if the leaf set S contains Ny samples with index y, the distribution is

p(y|S) =
Ny

|S|
.

8

2 Random Decision Forests

Decision trees can represent arbitrarily complex hypothesis spaces H. For instance, one can sub-
divide the unit interval [0, 1] on the real line into segments of length ε for any ε > 0 with a deep
enough tree that splits each parent segment in half. In multiple dimensions, to subdivide [0, 1]d into
small hypercubes of side ε, build a tree that interleaves d interval-splitting trees, one per dimen-
sion. One can then assign a separate value to each hypercube, thereby approximating any desired
distribution function to any degree.

Because of their expressiveness, decision trees must be curbed lest they overfit. The complexity
of individual decision trees is typically controlled by pruning them after expansion [6]. Empirical
evidence shows that a better alternative is to use random forest predictors, which combine the
predictions of several trees through a voting scheme.

A random forest [5] is a predictor that consists of a collection of decision trees hm(x) for
m = 1, . . . ,M that depend on independent identically distributed sets of random parameters. Each
tree is trained on a different view of the data, and casts a unit vote for the label (for classification) or
value (for regression) associated to input x. Votes are aggregated by a suitable summary function:
Majority for classification, mean or median for regression.

Of course, multiple votes would be useless if they all agreed. Because of this consideration,
several ways have been proposed and compared to each other [2, 7] to ensure that the votes that
different trees cast are independent of each other. These include the following:

Bagging, that is, applying the bootstrap resampling method we saw in an earlier note to train
different trees with different bags out of T . The bags are made of training samples drawn
independently and uniformly at random from T with replacement, and have the same size as
T [4].

Boosting, in which the random subsets of samples are drawn in sequence, each subset is drawn
from a distribution that favors samples on which previous predictors in the sequence failed,
and predictors vote with a weight proportional to their performance [8].

Arcing, similar to boosting but without the final weighting of votes [3].

Random forests combine bagging with random feature selection for each node of every tree in
the forest [1, 5]. Bagging ensures that different trees have different views of the data. Random
feature selection means that instead of picking the best dimension d on which to split at any given
node of any given tree, the dimension d is chosen at random.

The combination has proven very effective in compromising between expressiveness and gener-
alization. In Breiman’s words,

i Its accuracy is as good as boosting and sometimes better.

ii It’s relatively robust to outliers and noise.

iii It’s faster than bagging or boosting alone.

iv It gives useful internal estimates of statistical risk, strength, correlation and vari-
able importance.

v It’s simple and easily parallelized.

9

Algorithm 3 summarizes how to train a random forest and use it for prediction. Using Breiman’s
training method, the function findSplit we developed for decision trees is modified to pick the
feature component index j on which to split at random. This random selection is in contrast with
the optimal choice of j, that is, the one that maximizes the decrease in impurity. Randomness is
preferred over optimality in the splitting rule, since randomness increases the diversity of the trees
in the forest and decreases the statistical risk as a consequence. Typical values of M , the number of
trees, are in the tens or hundreds, and this hyper-parameter can be optimized by cross-validation.
The size |S| of each subset S is equal to the size N of the entire training set.

2.1 Out-of-Bag Estimate of the Statistical Risk

Recall that the goal of machine learning is not to minimize the training risk, but rather the statistical
risk of the predictor, that is, the expected loss over samples drawn out of the (unknown) data model
p(x, y). Interestingly, bagging enables a way to estimate the statistical risk of the random forest
predictor as follows.

We saw that when drawing a set (or bag) B of N samples uniformly at random and with
replacement out of the training set T , about 37% of the samples are left out of B on average (and
an equal fraction of samples are repetitions). Let now B1, . . . , BM be the M bags used to train the
M predictors h1, . . . , hM in a random forest. As mentioned above, each bag contains N samples
drawn out of T with replacement, where N = |T |. An out-of-bag predictor hoob that works only on
training data can be constructed by letting predictor hm provide a value for a training sample if
and only if the sample is not in Bm, and then taking a summary (majority, mean, median) of the
vote:

∀x such that (x, y) ∈ T , hoob(x) = summary({hm(x) |m = 1, . . . ,M and (x, y) /∈ Bm}) .

Notation: Let us unpack this expression. Pick a sample (x, y) out of the training set T . For prediction,
of course, we ignore the true label y. To form the prediction hoob(x), we first ask the trees in the forest
to provide their best estimates ŷ of the prediction. However, we only accepts values from trees that were
trained without using the sample (x, y). Therefore, hoob lets tree number m provide a value hm(x) if and
only if there is a sample (x, y) in the training set T for which

(x, y) /∈ Bm .

Finally, we form the prediction hoob(x) by summarizing the values provided by all participating trees. For

data points x that do not come from T , the value of hoob(x) is undefined.

The out-of-bag risk is then the risk of hoob estimated on T ′, the set of samples out of T that
were not used to train all the trees:

T ′ = {t ∈ T | ∃ m such that t /∈ Bm} .

The set T ′ may be a proper subset of T , because some of the samples in T may show up in all of the
bags, and are therefore not included in T ′. These omni-present samples are not used to compute
the out-of-bag risk, because no tree is allowed to vote on them. The out-of-bag risk is defined as

eoob(h, T ′) =
1

|T ′|
∑

(x,y)∈T ′

`(y, hoob(x))

where ` is the loss function. This empirical risk can be shown to be an unbiased estimate of the
random forest’s statistical risk [5].

10

Algorithm 3 Training a random forest and using it for prediction

function φ← trainForest(T,M) . M is the desired number of trees
φ =← ∅ . The initial forest has no trees
for m = 1, . . . ,M do

S ← set of |T | samples drawn uniformly at random out of T with replacement
φ← φ ∪ {trainTree(S, 0)}

end for
end function

function τ ← trainTree(S,depth)
. This function is the same as in the Algorithm used to train a decision tree, except that it calls
findSplitR instead of findSplit
end function

function [L,R, j, t]← findSplitR(S)
. This function replaces findSplit in trainTree when training a random

forest
iS ← i(S) . i(S) is the impurity of S. See text.
∆opt ← −1 . At the end, ∆opt will be the greatest decrease in impurity.
j ← integer drawn uniformly at random out of {1, . . . , d}
for ` = 1, . . . , uj do . Loop on all thresholds for dimension j.

L← {x |xj ≤ t(`)j } . The splitting thresholds t
(`)
j for j = 1, . . . , d and ` = 1, . . . , uj

R← S \ L . are assumed to have been precomputed (see text).

∆← iS − |L||S| i(L)− |R||S| i(R) . See text for a faster way to compute ∆
if ∆ > ∆opt then

[∆opt, Lopt, Ropt, dopt, topt]← [∆, L,R, j, t]
end if

end for
return [Lopt, Ropt, dopt, topt]

end function

function y ← forestPredict(x, φ, summary)
V = {} . A set of values, one per tree, initially empty
for τ ∈ φ do

y ← predict(x, τ, summary) . The predict function for decision trees
V ← V ∪ {y}

end for
return summary(V)

end function

11

References

[1] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9:1545–1588, 1997.

[2] E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms. Machine
Learning, 36(1/2):105–139, 1999.

[3] L. Breiman. Arcing classifiers. Technical report, Statistics Department, University of California,
Berkeley, CA, 1996.

[4] L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth International Group, 1984.

[7] T. Dietterich. An experimental comparison on three methods for constructing ensembles of
decision trees: bagging, boosting, and randomization. Machine Learning, 40(2):139–157, 2000.

[8] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In 13th International
Conference on Machine Learning, pages 148–156, 1996.

[9] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees in NP-complete. Infor-
mation Processing Letters, 5(1):15–17, 1976.

12

	Decision Trees
	The Structure of Decision Trees and their Use as Predictors
	Training Prediction Trees

	Random Decision Forests
	Out-of-Bag Estimate of the Statistical Risk

