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Neural nets are a class of predictors that have been shown empirically to achieve very good
performance on tasks whose inputs are images, speech, or audio signals. They have also been
applied to inputs of other types, with varied results. The reasons why these predictors work so well
are still unclear. What is clear is that they are very expressive, in the sense that the hypothesis
space that they define is very large. Theorems show that any Lipschitz function1 from a hypercube
in Rd to an interval in R can be approximated arbitrarily closely (that is, within any pre-specified
ε > 0) with a neural net.

While expressive power is good, we know that it entails dangers. First, the approximation
theorems just mentioned are practically irrelevant, because the computational complexity of a
neural net needed to achieve a given accuracy ε turns out to grow exponentially with the dimension
d of the input space. Thus, neural nets can approximate anything, but at an unrealistically high
cost. Second, the fact that an approximator exists in a given hypothesis class does not mean
that we know how to find it: Training a predictor amounts to minimizing the empirical risk LT

over the training set T , and if LT is not a convex function, finding a global minimum is generally
computationally intractable. Third, and perhaps most importantly for machine learning, a high
expressive power leads to overfitting, as we know well by now.

The last consideration implies that training a neural net requires large training sets, that is,
that the sample complexity of neural nets is high. Indeed, perhaps the greatest hurdle to the
widespread use of neural nets is the cost of collecting, and most importantly annotating, data sets
with millions of samples. Arguably, the most important reason for the success of neural nets is not
so much the nets themselves, but the emergence of the Amazon Mechanical Turk, a crowdsourcing
marketplace made available by Amazon. With the Turk, you can post millions of data samples on
a web site, and let any user anywhere annotate the data for you, for a reward of a few cents per
sample. There would be no successful deep neural nets without the Turk. More recently, several
companies have emerged that offer annotation as a paid service.

At the same time, even the large sizes of current training nets cannot fully explain their ability
to generalize: The inputs to neural nets often have dimensionality d in the tens or hundreds of
thousands, and no amount of data under the sun can keep up with the exponential growth of X
with d. There must be deeper reasons at play, that have to do with (i) the special structure of
image space (or audio space, and so forth); (ii) the specialized architectures proposed for neural
nets; and (iii) tricks and techniques used to regularize training.

In summary, neural nets are very expressive and data hungry. In spite of their expressiveness,
they often generalize better than one would predict. We don’t fully know why, although theoreti-

1Somewhat loosely speaking, a differentiable function is Lipschitz when its gradient is uniformly bounded by a
constant. This notion can be defined more generally without reference to differentiability.
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cians are making constant progress towards an answer. Because of the still immature degree of
theoretical understanding of neural nets, the treatment in these notes will have to be based on
half-baked intuitions and empirical evidence.

This note covers one particular way to build a particular type of deep feed-forward network.
Such a network can be used for either classification or regression, and we will focus on classification.
More variants and details can be found in many books or articles on neural nets [1], convolutional
neural nets [6], and deep learning in general [2, 3].

A later note on training will describe how to determine the parameters (weights) of a deep
feed-forward network of a given structure and for a given classification task.

1 Circuits

Suppose that you want to implement a predictor h : X → Y on a computer. There are various
ways to describe the implementation of h. The one we are most familiar with is in terms of an
algorithm, a sequence of steps to be performed in sequence over time. Another way is to specify
a circuit, a computational model that mimics how electrical circuits are built. A (computational)
circuit is made of a possibly large number of gates, each of which implements one of a small set of
predefined functions. For example, logical circuits are made mostly out of NAND (not-and) gates,
which when combined can produce any Boolean function.

Circuits and algorithms are equivalent to each other: You can build a Boolean function by
buying NAND gates at Radio Shack and wiring them together, or you can write a piece of Python
code that simulates the circuit. Since the simulation simulates one gate at a time, it may take
a long time to simulate a complex circuit. You can also go the other way: Given an algorithm,
come up with a circuit that implements the same (Boolean) function. This must be possible: After
all, a computer is a large circuit that runs algorithms. You may object that computers compute
more than just Boolean functions, including, say, real-valued functions, but they really do not: A
number is represented by a finite string of bits in a computer, so the output is still a set of Boolean
variables, which are functions of the Boolean variables that represent the inputs.

A neural network is a class of algorithms that are typically described as circuits, and are made
by neurons. A set of neurons is said to form a layer if each neuron in the set receives the same
inputs. A neural network is a cascade of layers, in which the outputs from one layer are the inputs
to the next. The network is deep if it has many layers. Every neuron has parameters, so a neural
network has many parameters. The network is convolutional if the parameters of the neurons in
each layer are constrained in a special way. The Sections that follow define these concepts. Training
a neural network amounts to finding the parameters that minimize the training risk. Training is
discussed in a later note.

2 Neurons

A neuron (in the computational sense) is a function Rd → R of the form

y = ρ(a(x)) where a = wT x̃ , x̃ =

[
x
1

]
.

The entries of the vector w ∈ Rd+1 are called the weights, and the activation function is a nonlinear
and weakly monotonic function R→ R. The input a(x) to ρ is called the activation of the neuron,
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and the particular type of activation function

ρ(a) = max(0, a)

is called the Rectified Linear Unit (ReLU, Figure 1).

a

ρ

Figure 1: The Rectified Linear Unit (ReLU).

We view the tilde (as in x̃) as an operator: Given any vector x, this operator appends a 1 at
the end of x.

The activation can be rewritten as follows

a = vTx + b where vT = [w1, . . . , wd] and b = wd+1 ,

and is an inner product between a gain2 vector v and the input x plus a bias b. Figure 2 shows a
neuron in diagrammatic form.

For different inputs x of the same magnitude3, the activation is maximum when x is parallel to
v, and the latter can be viewed as a pattern or template to which x is compared. The bias b then
raises or lowers the activation before it is passed through the activation function.

The ReLU will respond (that is, return a nonzero output) if the inner product vTx is greater
than −b (so that a is positive), and the response thereafter increases with the value of a. So the
negative of the bias can be viewed as a threshold that the inner product between pattern and input
must exceed before it is deemed to be significant, and the neuron can be viewed as a score function
that measures the similarity of the suitably normalized input x to the pattern v when the similarity
is significant (that is, greater than −b). When the similarity is not significant, the neuron does not
respond.

A pattern classifier would add a stage that decides if the score is large enough to declare the
input x to contain the pattern represented by v. So another way to view a neuron is a pattern
classifier without the decision stage.

3 Two-Layer Neural Nets

A neural-net layer is a vector of d(1) neurons, that is, a function Rd → Rd(1)

y = ρ(a(x)) where a(x) = W x̃ ,

the weight matrix W is d(1) × (d+ 1), and the activation function ρ is applied to each entry of the

activation vector a(x) ∈ Rd(1) . So a neural-net layer can be viewed as a bank of pattern scoring
devices, one pattern per neuron. Figure 3 illustrates.

2Gains are often called weights as well.
3As measured by its Euclidean norm ‖x‖.
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Figure 2: The internal structure of a neuron (left) and a neuron as a black box (right). The black
box corresponds to the part inside the dashed rectangle on the left.
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Figure 3: The internal structure of a layer (left) and a layer as a black box (right). The black box
corresponds to the part inside the dashed rectangle on the left.
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To compute the output of a layer from its input one needs to perform d(1)d multiplications and
as many additions to compute the activation vector, and then compute the activation function d(1)

times. So if d(1) is of the same order of magnitude as d, the cost of this computation is quadratic
in the size d of the input x. Even more importantly, there are O(d2) parameters (the entries of W )
that need to be determined when the layer is trained.

A two-layer neural net is a cascade of two layers,

x(1) = ρ(W (1)x̃)

y = ρy(W (2)x̃(1))

where the activation function ρy can be different from ρ and W (2) is d(2) × (d(1) + 1).

It can be proven [7] that any mapping Rd → Rd(2) that is Lebesgue-integrable and has Lebesgue-
integrable Fourier transform4 can be approximated to any finite degree of accuracy over a hypercube
in Rd with a two-layer neural net where ρy is the identity function and ρ is the ReLU. This result,
along with similar ones for other activation functions [4], shows that two-layer neural nets are
universal approximators.

However, a two-layer approximator to a given function f may be very expensive to implement,
and may have a number of parameters that is exponential in the desired accuracy. This makes both
computational complexity and sample complexity unaffordable. Deep neural nets are introduced
in the hope that they lead to more efficient approximations for the types of function of interest, as
discussed in the next two sections.

4 Convolutional Layers

A neuron matches the input x to a pattern v. What should the patterns in an image recognition
system be? One could make x be the entire image, with its pixels strung into a vector, and then v
could be an image (in vector form as well) of the object to be recognized—say, your grandmother’s
face. This net would not work well, as your grandmother’s face could show up in images that look
very different from v because of viewpoint, lighting, facial expression, other objects or people in
the image, and other causes of discrepancy.

Instead, observe that faces typically have eyes, noses, ears, hair, and wrinkles—especially for
an older person. These features can be analyzed in turn in terms of image edges, corners, curved
segments, small dark regions, and so forth. This suggest building a hierarchy of patterns, where
higher-level ones are made of lower level ones, and only the lowest-level patterns are made directly
out of pixels from the input image. At each level, each pattern should then take only a relatively
small and compact part of the input in consideration: The input of each neuron should be relatively
local.

In addition, many of the lower-level features appear multiple times in images and across objects,
and this suggests that the same neuron could compute scores of patterns of its own type no matter
where they appear in an image: the same detector could be reused over its domain.

Finally, if higher-level patterns are somehow made somewhat insensitive to exactly where in the
image the relevant lower-level patterns occur, then the overall system would be able to recognize
your grandmother’s face even in the presence of at least some amount of spatial variation. A

4Just think of these as mild requirements on the mapping. It is not important for our purposes to know what
they mean.
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hierarchy with many levels may be able to achieve this even more easily, since a small amount
of resilience to spatial variation in each layer might result in more significant resilience once it is
compounded across layers.

These notions of locality, reuse, and resilience to spatial variations suggest imposing a special
structure on a neural-net layer that works on images or signals. Before looking at the overall
structure, we return to the points of “locality” and “reuse” and introduce the notion of correlation.
Correlation is closely related to another concept called “convolution,” which has given Convolutional
Neural Nets (CNNs) their name.

4.1 One-Dimensional Correlation

Consider the affine part of a single layer

a = W x̃ = V x + b

where x ∈ Rd and a ∈ Re, so that the gain matrix V is e × d, and b ∈ Re is a vector of biases.
We saw that if both the input x and the pattern vi were normalized to have unit norm, then entry
number i of the product V x,

si = vT
i x

for i = 0, . . . , e− 1 could be viewed as a score that measures how similar vector x is to pattern vi.

Warnings: In what follows, we reason about pattern vi as if we had to design its values, in order to
understand the issues involved. In reality, the values in vi will be determined by the neural-network training
algorithm so as to minimize the training risk.

The example below, inspired by audio signal analysis, is unrealistic in many ways. It is simply used to make

a mathematical point, not to examine audio-signal analysis.

Suppose that we analyze a clip x of d = 25 sound samples, and we want to determine whether
the clip represents the attack of a drumbeat. One way to figure that out is to record a drumbeat
attack g, which might look like the sequence of 25 samples shown in Figure 4 (a), normalize its
values, and compare it to the input sequence x, also normalized, by an inner product.

As an example, the two clips shown in Figure 4 (b, c) yield inner products of about 0.999 and
0.241, consistently with the fact that the sequences in (a, b) are much more similar to each other
than those in (a, c). We could then compare this inner product with a threshold −b, and if

gTx ≥ −b ,

that is, if
a = gTx + b ≥ 0 ,

we could send the value a, which represents the amount by which the inner product exceeds the
threshold, to other modules for further processing. If a is negative, we send 0, meaning that we
decided that the input x is uninteresting. In other words, if g and x are the normalized versions
of these two sequences, this comparison unit would be a neuron, with output

y = ρ(a) = max(0,gTx + b) .
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(a) (b) (c)

Figure 4: (a) A sequence of samples that represent the attack of a note in a sound clip. (b, c) Two
other sequences of sound samples.

Figure 5: A longer clip of sound samples.

If we had, say, four different types of instruments (drum, guitar, bass, piano), we could have
four different prototype samples g0,g1,g2,g3, one per instrument, and have four separate neurons
that “recognize” each instrument. These neurons would form a layer, with output

y =


y0
y1
y2
y3

 = ρ(V x + b) where V =


gT
0

gT
1

gT
2

gT
3

 and b =


b0
b1
b2
b3

 .

Suppose now that we have a longer clip x of sound samples, such as the sequence in Figure 5.
Going back to a single instrument (drum), the problem now is not to determine whether the entire
clip is a drumbeat, but rather to find all the drumbeats in the clip.

If the clip x is, say, d = 100 samples long, since a drumbeat attack g is k = 25 samples long,
we could have

e = d− k + 1 = 76

separate neurons, each specializing on a k-sample long subsequence of the clip by taking the inner
product of g with that subsequence. The first neuron looks at samples 1 through 25 of x, the second
looks at samples 2 through 26, and so forth, and the 76-th neuron looks at samples 76 through 100
of x.
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If we think of all of x as the input to each of the 76 neurons, then the neurons form a layer. To
“specialize” on samples i to i+ 24, neuron i has the following 100 gains:

vT
i = [0, . . . , 0︸ ︷︷ ︸

i−1

, g0, . . . , g24︸ ︷︷ ︸
g

, 0, . . . 0︸ ︷︷ ︸
76−i

]

and if we arrange these 76 row vectors into a matrix we obtain the 76× 100 gain matrix

V =


g0 · · · g24 0 0 · · · 0
0 g0 · · · g24 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 g0 · · · g24

 .

Each row of this matrix represents a local computation in that each neuron (row of V ) only “sees”
a small part of the input x, corresponding to the nonzero entries in the row. This matrix also
reuses the same set g of coefficients, which reoccur in every row.

Storing the entire matrix is wasteful, given all the zeros. A more compact computation of

z = V x

can be represented row by row as follows:

zi =

24∑
a=0

gaxi+a for i = 0, . . . , 75 .

More generally, with k samples in g,

zi =

k−1∑
a=0

gaxi+a for i = 0, . . . , e− 1 = d− k . (1)

This is the standard definition of inner product (or, in the language of matrices, row by column
product), but focusing only on the nonzero terms, and with the acknowledgement that every row
uses the same k coefficients ga.

The operation defined in equation 1 is called the (one-dimensional) correlation of input x with
kernel g. Equation 1 reflects the order of computation that would be followed if the outputs zi
were computed in sequence: The kernel g is first (i = 0) aligned with the leftmost entries of x.
Corresponding entries in g and x are multiplied together and the products added up to yield z0.
The window is then slid by one position to the right, and the operation is repeated to compute z1.
The process ends when the right edge of g “hits” the right edge of x.

Figure 6 illustrates the computation of one-dimensional correlation in the various forms intro-
duced so far for the smaller case d = 8, k = 3 (so that e = 8− 3 + 1 = 6):

zi =
2∑

a=0

gaxi+a for i = 0, . . . , 5 .

If we now had four instruments, like earlier, we would stack the four corresponding matrices V0
(drum), V1 (guitar), V2 (bass), v3 (piano) in a third dimension. Each matrix has its own kernel gc
for c = 0, 1, 2, 3. This third dimension corresponds to what are called channels in a convolutional
neural network.
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zi =

2∑
a=0

gaxi+a for i = 0, . . . , 5

(a) (b)

z = V x =



g0 g1 g2 0 0 0 0 0
0 g0 g1 g2 0 0 0 0
0 0 g0 g1 g2 0 0 0
0 0 0 g0 g1 g2 0 0
0 0 0 0 g0 g1 g2 0
0 0 0 0 0 g0 g1 g2

x

z

x

V

(c) (d)

Figure 6: Four different views of a one-dimensional correlation from x ∈ R8 to z ∈ R6 with a
kernel g of length k = 3. (a) The scalar view is a formula for the computation of each entry zi
of the output z. (b) The sliding-window view: The kernel g (orange) is slid over all positions
that overlap fully with the input x (black). At each position, the entries of g are multiplied with
the corresponding entries of x, and the products are added up to yield the output entry of z. (c)
Matrix representation. All rows contain the same entries, and the matrix is sparse. Three diagonals
contain repetitions of one of g0, g1, g2. (d) Circuit view: Red links correspond to multiplication by
g0, green by g1, blue by g2. The summation is left implicit.

9



4.2 Correlation and Convolution

Given a correlation kernel g, let r be the kernel obtained by listing the entries of g in reverse order:

r = [r0, . . . , rk−1] = [gk−1, . . . , g0] .

Then, the correlation of input x with kernel g is also called the convolution of x with r (and vice
versa, of course).

There are many important reasons why mathematicians prefer to work with convolutions rather
than correlations. For instance, the extension of convolutions to infinite-dimensional inputs (d =∞)
and kernels (k = ∞) is commutative, while the extension of correlation is not. This is important
also for finite d and k, because padding x and g with infinitely many zeros on both sides is a
convenient way to work with convolution (and correlation, for that matter) without having to
worry about what happens at boundaries.

With this type of infinite zero-padding (or with an equivalent but finite redefinition of convo-
lution), it turns out that convolution represents polynomial multiplication, in the sense that the
sequence of coefficients of the polynomial Z(α) resulting from the product

Z(α) = X(α)G(α)

of polynomials X(α) and G(α) is the convolution of the sequence of coefficients of X(α) with the
sequence of coefficients of G(α). This property leads in turn to important results in the theory of
Fourier and Laplace transforms, used extensively in signal processing.

Layers that are made only of convolutions are called convolutional layers in the theory of
neural networks, and a neural network that contains convolutional layers is called a Convolutional
Neural Network (CNN). A neural network that contains only convolutional layers is called a Fully
Convolutional Neural Network.

4.3 Input Padding

Convolutional kernels compute convolutions. However, it is less confusing to work with correla-
tion than it is to work with convolutions, because there is no need to think about “flipping” the
kernel. Because of this, this Section continues the discussion in terms of correlations. After all, a
convolution is also a correlation, albeit with a reversed kernel.

When several convolutional layers are stacked in a cascade, with each layer taking the output
of the previous one as its input, it is inconvenient that each layer is a bit smaller (e = d − k + 1)
than the previous one. Because of this the input x is often padded with p = d− e = k− 1 zeros to
produce a bigger input x′, and the output z is computed as the standard correlation of x′ and the
kernel g. In the processing of temporal signals, it would make most sense to place the p zeros at
the end of the sequence (Figure 7 (a)). For images, where there is no notion of “before” or “after,”
a symmetric padding is used instead. One places p` = bp/2c zeros on the left and pr = p− p` zeros
on the right. Figure 7 (b) and (c) illustrate for k odd and even, respectively.

The correlation z of the padded version of x with a kernel g of length k has length d, the same
as that of x. While the first p` and last pr entries of z are not meaningful, the output is now equal
in size to the input, and it is easier to stack several layers in a cascade. The meaningless “rim”
around the output of a correlation is negligible when the input size d is large and the kernel size k
is small, which is typically the case.
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Figure 7: Input padding. In all cases, if the kernel g has k entries, it takes p = k − 1 zeros for
the correlation z of the padded input x′ and the kernel to have the same length as the unpadded
input x. Padding is shown with dashed contours and zeros, and the kernel (orange) is shown in
its first and last valid position relative to x′. The entries in the output z whose computation
involves padding are shown with dashed contours and question marks. (a) In applications where
sequences have a natural left-to-right ordering, such as when entries are indexed by time, padding
may be added to the end of the sequence. (b) When entries of the sequences are indexed by spatial
coordinates, as in images, a symmetric padding is more natural. (c) However, when k is even, the
number p of padding entries is odd, and they cannot be placed with exact symmetry. In the case
in this panel, k = 4, and the padding adds p` = 1 zero on the left and pr = 2 zeros on the right.

Correlation with input padding is called shape-preserving correlation, or padded correlation, or
‘same’ correlation. To distinguish it from this style, the original, unpadded correlation is called
valid correlation, because all of its output entries are computed form legitimate (“valid”) input
entries, rather than from zeros. CNN software packages usually implement both shape-preserving
and valid correlation operators.

4.4 Two-Dimensional Correlation

The concept of correlation can be extended in straightforward fashion to signals defined in any
number of dimensions, rather than just one. This extension is now examined in the two-dimensional
case, which is most important for images. Instead of thinking of a kernel as a sound clip (drumbeat),
think of it now as a small image detail (perhaps an eye).

If the input image X is an array with d1 × d2 entries xij and the kernel G is an array with
k1 × k2 entries gab, then the entries zij of the valid correlation Z of X and G are defined by an
immediate extension of equation 1:

zij =

k1−1∑
a=0

k2−1∑
b=0

gab xi+a,j+b for i = 0, . . . , e1−1 = d1−k1 and j = 0, . . . , e2−1 = d2−k2 . (2)

Figure 8, top, shows the sliding-window view of the two-dimensional correlation for the valid
correlation of a d1 × d2 = 4 × 6 image X with a k1 × k2 = 3 × 2 kernel G. The output Z has
e1 × e2 = (4− 3 + 1)× (6− 2 + 1) = 2× 5 entries.

What used to be the “matrix” view can now be generalized in two different ways to the two-
dimensional case. The more natural is a tensor view, in which the array V that represents the
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transformation from X to Z is four-dimensional, and has entries Vijab. We can then write

zij =

d1−1∑
a=0

d2−1∑
b=0

vijabxab for i = 0, . . . , e1 − 1 and j = 0, . . . , e2 − 1 , (3)

and comparison with equation 2 shows that

vijab = gab for i = 0, . . . , e1 − 1 and j = 0, . . . , e2 − 1 . (4)

Thus equation 3 expresses an arbitrary linear transformation between a two-dimensional input
and a two-dimensional output. With the constraints in equation 4, on the other hand, this linear
transformation specializes to a correlation.

The second way to generalize the “matrix view” of correlation to the two-dimensional case is
to first “flatten” input X into a vector x ∈ Rd1d2 and output Z into a vector z ∈ Re1e2 and then
give the corresponding matrix Vf . Figure 8, middle, illustrates.

Padding works in each dimension of a two-dimensional correlation the same way as for one-
dimensional correlation. If the input image is d1 × d2 and the kernel is k1 × k2, then padding
takes

pm = km − 1

zeros in dimension m for m = 1, 2. For the example in Figure 8, the image is 4× 6 and the kernel
is 3× 2, so that

p1 = k1 − 1 = 2 and p2 = k2 − 1 = 1

padding zeros in the two dimensions. With symmetric padding, this means adding a row above, a
row below, and a column to the right of the input image.

4.5 Stride

In a standard correlation operation, the kernel is slid over the entire input. To this end, it is moved
by one pixel to the right in each row. When that row of the output is computed, the kernel is
moved to the beginning of the next row, and the process is repeated.

If the kernel is not too small, the output entry zij is not very different from the output entry
zi,j+1 or the output entry zi+1,j , because images often vary slowly as a function of image coordinates.
To reduce the resulting redundancy in the output, correlations are often computed with a stride
sm grater than one. That is, after zij for some i and j has been computed, the kernel is translated
by s1 pixels horizontally, rather than just one. Once row i has been completed in this fashion, the
kernel is moved down by s2 rows, rather than just one. In this way, the output has size roughly
equal to d1/s1× d2/s2. Padding can be used so that this size holds exactly, if the two fractions are
integer, or approximately otherwise.

5 The Structure of CNNs

The notions of locality, reuse, and resilience to spatial variations discussed earlier suggest the
following structure for a neural-net layer [6, 5].

• Think of the input x as a two-dimensional array, one entry per pixel, rather than a vector,
so that the notion of locality is more readily expressed.
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Figure 9: (Left) The structure of a convolutional neural-net layer. (Right) In the literature, neural
nets with many layers are drawn with each layer shown in a more compact way than on the left,
although there is no standard format. Typically, the maps are stacked in a block, as shown here,
rather than drawn side-to-side. Sometimes, max-pooling is only mentioned and not shown explicitly.

• Group the activations ai (the entries of a) into m maps: each map takes care of one type of
pattern through a separate correlation kernel with a small support k1 × k2. A pattern kernel
with a small support is also called a feature, so the m maps are called feature maps. The
(common) activation function ρ is then applied to each feature map, entry by entry.

• Reduce the size of each feature map by max-pooling. Specifically, square supports are defined
in each feature map in turn, with a size and stride that is common to all the feature maps.
A new, smaller feature map is then computed whose values are each the maximum value in
its support.

In addition to reducing the size of the feature maps in the output from the layer, max-pooling
makes the output of the layer somewhat less sensitive to the exact location of the features in
the image. For instance, with a 3× 3 support for max-pooling and a stride of 3 (no overlap
between pools), the output of the maximum is oblivious to which of those 32 activations
produced the final output from the layer. In other words, max-pooling achieves some degree
of translation-invariance. If the same is done in every layer of a deep network, the amounts
of invariance add up.

This convolutional organization for a layer is illustrated in figure 9. As a result of this structure,
the number of distinct parameters in W drops dramatically. If the layer were fully connected, that
is, if every entry in W were nonzero and had its own separate value, then there would be about d4

parameters if the input image were a d× d array (that is, a square, black-and-white image).
With m feature maps, the number of parameters is about m(k2 + 1) if all the kernels are k× k,

and if biases are counted as well. For color images, the count drops from about 9n4 to about
3m(k2 + 1), if each color band gets a separate set of feature maps.

For instance [5], for a 224×224×3-pixel color image and 96 maps each with an 11×11 support,
the drop is from about 22.7 billion to a mere 96 × 112 = 11,616 parameters. More specifically,
in that example [5], illustrated in Figure 9, the first layer of a convolutional net has a 224 × 224
color image as input, so that the input dimensionality is d = 2242 × 3 = 150,528. There are 96
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kernels, feature maps, and response maps, 32 per color. The convolution kernels have supports of
size 11 × 11 pixels, so each output pixel in each color channel is computed from 112 = 121 input
pixels which are combined through 122 weights, including a bias value. The stride for computing
activations is 4 pixels in each direction, so the activation maps and feature maps are 55× 55 pixels
each. Max-pooling uses 3× 3-pixel supports and a stride of 2 pixels, and produces output maps of
size 27× 27 pixels.

The set of activation maps computed by the 96 kernels is a 55 × 55 × 96 block, rather than a
single image, and max pooling is applied to each of the 96 slices in this block. If a subsequent layer
applies convolution to the resulting 27 × 27 × 96 output block from this layer, that convolution
kernel is in general three-dimensional, m × n × p, although p can be equal to 1 for an effectively
two-dimensional kernel.

For the layer in the Figure, the output dimensionality is d(1) = 272×96 = 69,984, a bit less than
half of the input dimensionality d = 2242 × 3 = 150,528. On the other hand, the map resolution
decreases more than eightfold, from 224 to 27 pixels on each side. The representation of the image
has become more abstract, changing from a pixel-by-pixel list of its colors to a coarser map of how
much each of 32 features is present at each location in the image and in each color channel.

6 Deep Convolutional Neural Nets

The architecture of a neural-net layer embodies the principles of feature reuse, locality, and translation-
invariance. Deep Convolutional Neural Nets (CNNs) are CNNs with many layers, and reflect the
principle of hierarchy. After several convolutional layers, deep CNNs typically add one or a few
fully-connected layers, that is, layers where the weight matrix W is dense. The reasons for doing
so are somewhat mixed and not entirely compelling, but are nonetheless plausible: Far away from
the input, spatial location is both partially lost and relatively irrelevant to, say, recognition, so the
local supports of CNNs are no longer useful. In addition, signals in late stages of a deep net have
relatively low dimensionality, and one can then better afford the greater representational flexibility
that a fully-connected layer carries.

The output from a deep CNN is fed to a computation that depends on the purpose of the net.
For regression, for instance, the outputs may be used as they are. For classification, one could use
the outputs as inputs to a support vector machine or random forest. More commonly, the output
stage is a softmax function,

z = σ(y) =
exp(y)

1T exp(y)

where 1 is a column vector of ones. As we saw in an erlier note, the exponential makes all quantities
positive, and normalization makes sure the entries of z add up to 1. In this way, the entries of the
softmax output can be viewed as normalized scores for each of the categories, and the result of
classification is then class

h(x) = arg max
i
zi .
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