Elements of Machine Learning

https://www.cs.duke.edu/courses/fall21/compsci371d/

Introduction and Logistics
Machine Learning Applications

- **Data Security**: Is this file malware?
- **Fraud Detection**: Is this transaction money laundering?
- **Personal Security**: What’s in your bag? Is that you?
- **Photo Collections**: Here are all photos of Jenny playing tennis
- **Financial Trading**: Is this trade likely to profit me?
- **Healthcare**: Does this scan have a tumor? Do these symptoms suggest diabetes?
- **Marketing Personalization**: What can I sell you? What movies do you like?
- **Online Search**: Why did/didn’t you like this search result?
- **Speech Processing**: What did you say? Let me transfer your call
- **Natural Language Processing**: Here is the information you need
- **Chatbots**: I can help you with your order. Tell me more about your symptoms
- **Smart Cars**: Are you comfortable? Are you alert? Stay in lane! Let me drive…
- …
Machine Learning in One Slide

- Identify a function \(y = f(x) \):
 \[
 x = \text{email, } \ y = \text{SPAM/NO SPAM}
 \]

- Give lots of examples (a training set):
 \[
 T = \{(x_1, y_1), \ldots, (x_N, y_N)\}
 \]

- A learner is another function \(\lambda \):
 It takes \(T \) as input and outputs an approximation to \(f \):
 \[
 h = \lambda(T)
 \]

- Hopefully, \(f \) and \(h \) behave about the same even for previously unseen data:
 \[
 h(x) \approx f(x)
 \]

- That’s the big problem!

- ML is not (just) data fitting
Logistics
Academic Integrity

• **Short version: Cheating will be prosecuted**
• Cheating: Using someone else’s material in your work without giving credit [Lone exception: class materials need not be cited]
• Ditto for making materials available to others
• Giver/receiver are treated the same
• Format for using/making available is immaterial
• Only communication allowed during homework is with your group peers, if any, and with the teaching staff
Notes, Slides, and Videos

- **Notes on the class Syllabus web page are required reading, and are your main source of information**
- **All appendices in the notes are optional reading**
- Prerecorded videos are for backup, and are *optional*
- In-class lectures are recorded on Panopto, accessible through Sakai
- Feel free to integrate with other sources. See Resources web page
Questions for Discussion

• When possible, some lecture time is reserved for questions on the current topic
• You may submit questions for discussion any time on Ed Discussion
• I will address a sample of the questions submitted by noon of the day before lecture
• If your question is not addressed in class, please ask in recitation or come to office hours
Homework

• One per topic
• Some math, some text, some programming
• OK to work in groups of one, two, three
 [but no division of labor!]
• Jupyter notebooks \rightarrow HTML \rightarrow PDF
• Keep Jupyter cells small
• Two submissions on Gradescope: PDF, Notebook
• Log in to Gradescope through Sakai! <- New this year!
• One pair of submissions (two files, one PDF, one Notebook) per group. Remember to list all names in the files and through the Gradescope interface!
• No late homework accepted
• Two worst homework scores (including 0s for no homework) are dropped
Your Weekly Schedule

• Monday: Attend recitation
• Tuesday: Attend lecture
• Thursday:
 • **Homework** about *previous* topic due by 8:30am EDT
 • Attend lecture
• Any Day: Submit **questions** on Ed Discussion. A sample of the questions submitted by noon the day before class will be answered in class when feasible
Exams and Grades

• Exams:
 • Midterm on October 21, in person, during class period
 • Final on December 11 at 7pm, in person, not cumulative

• Grades:
 • Homework 50%
 • Midterm 25%
 • Final 25%
Programming

- All programming will be in **Python 3** (not 2!)
- If you know how to program, picking up Python takes a few hours and Google while you program
- If you don’t know how to program, this class may not be for you
- You will write **Jupyter Notebooks** for homework. They are easy to get used to, and let you intersperse text, math, figures, and code
- **Best to program in an IDE** (**PyCharm recommended**) for easier debugging, then copy/paste into notebook
- A first homework assignment will help you ease into these tools
- The **Anaconda** distribution for everything you need is very strongly recommended
- See the **Resources** web page for tutorials on Python 3, Jupyter, Anaconda
Teaching Staff

- Graduate TAs: Jack Goffinet, Shivam Kaul
- Undergraduate TAs: Abbey List, Jerry Fang, Kevin Feng, Nithiwat Seesillapachai, Siddarth Madala, Yi Li, Yifan Zhang
- If you like this course, please volunteer to TA next year!
- Each of us will have two office hours per week, times and venues TBA
- Check the online calendar before attending office hours
- We’ll keep listening to Ed Discussion (at reasonable hours)
- Talk to us! We are here to help you learn