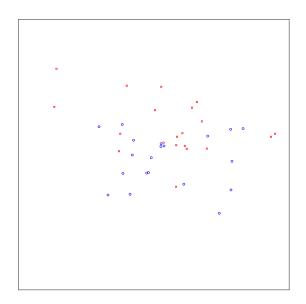
Nearest Neighbor Predictors

COMPSCI 371D — Machine Learning

Outline

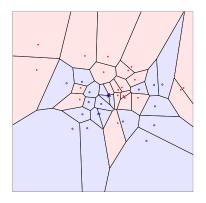

- 1 Nearest Neighbor Prediction
- 2 Complexity Considerations
- 3 The Voronoi Diagram
- Overfitting and k Nearest Neighbors

Nearest Neighbor Prediction

- NN is very simple: This is why we start here
- NN is very unusual:
 - No training!
 - Slow inference (using the predictor)
 - Y can be anything
 - Almost no difference between regression and classification
 - Hypothesis space hard to define

How it Works

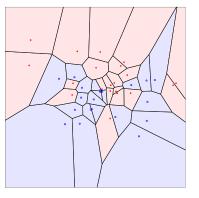
- Given $T = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Just store *T* (memorization)
- Need a distance in the data space X
- Perhaps $\Delta(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} \mathbf{x}'\|^2$
- Then, $h(\mathbf{x}) = y_{\nu(\mathbf{x})}$ where $\nu(\mathbf{x}) \in \arg\min_{n=1,...,N} \Delta(\mathbf{x},\mathbf{x}_n)$
- Return the value y_n for the training point \mathbf{x}_n that is nearest to \mathbf{x}

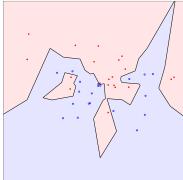


How to find $\nu(\mathbf{x})$?

$$\nu(\mathbf{x}) = \operatorname{arg\,min}_{n=1,\dots,N} \Delta(\mathbf{x},\mathbf{x}_n)$$

- Compute all $\Delta(\mathbf{x}, \mathbf{x}_n)$ and find the smallest
- O(Nd) (where $\mathbf{x} \in \mathbb{R}^d$)
- Cannot do better exactly
- Can do better if we accept $\Delta(\mathbf{x}, \mathbf{x}_{\nu(\mathbf{x})}) < (1 + \epsilon)\Delta(\mathbf{x}, \mathbf{x}_{\nu^*(\mathbf{x})})$ for some $\epsilon > 0$
- "Approximate NN" uses k-d trees, R-trees, locality sensitive hashing

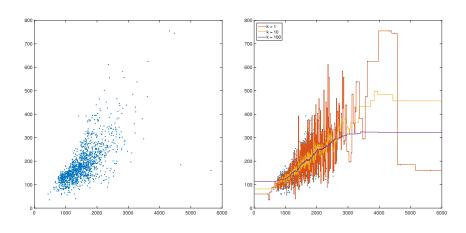

The Voronoi Diagram



- Only conceptual, or for d = 2, 3, maybe 4
- $\Theta(N \log N + N^{\lceil d/2 \rceil})$

Decision Boundary


Overfitting


k Nearest Neighbors

- Retrieve the k nearest neighbors $\mathbf{x}_1, \dots, \mathbf{x}_k$ of \mathbf{x}
- Return a *summary* of the corresponding y_1, \ldots, y_k
- Classification summary: majority
- Regression summary: Mean, median

Less Overfitting (k = 9)

A Simple Regression Example, $\mathbb{R} \to \mathbb{R}$

