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The Logistic Function

Ingredient 2: The Logistic Function
• Want to make the score of x be only a function of the signed

distance∆(x)

• Given ∆0, all points s.t. ∆(x) = ∆0 have the same score
• Score s(x) = f (∆(x))

• How to pick f?
• lim∆→−∞ f (∆) = 0 f (0) = 1/2 lim∆→∞ f (∆) = 1

• Logistic function: f (∆)
def
= 1

1+e−∆
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The Logistic Function

The Logistic Function
• Logistic function: f (∆)

def
= 1

1+e−∆

0

0

0.5

1

• Scale-free: Why not 1
1+e−∆/c ?

• Can use both c and ∆(x)
def
= b+wT x

‖w‖

... or more simply use no c but use a(x)
def
= b + wT x

• The affine function takes care of scale implicitly
• Score: s(x)

def
= f (a(x)) = 1

1+e−b−wT x

• Write s(x ; b,w) to remind us of dependence
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The Cross-Entropy Loss

Optimize the Regressor, not the Classifier

• We would like to minimize the average of

`0-1(y , ŷ) =

{
0 if y = ŷ
1 otherwise

• However, ∂`0-1
∂ŷ = 0 almost everywhere

(and is undefined everywhere else)
• Use the score p = s(x ; b,w) instead of ŷ :
• ŷ ∈ {0,1} while p ∈ [0,1]

• Instead of measuring the loss on ŷ = h(x), we measure it
on p = s(x ; b,w), a proxy for ŷ
• We still need a different `(y ,p) for differentiability and ∂`

∂p 6= 0
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The Cross-Entropy Loss

Differentiable Risk with Nonzero Gradient

• We want `(y ,p) to be differentiable in p and ∂`
∂p 6= 0

• Since p = s(x ; b,w) is differentiable in (b,w), then ` will
be, too, and the gradient has a chance to be nonzero
• Why do we insist on differentiability and nonzero gradient,

again?
• Risk: LT (b,w) = 1

N

∑N
n=1 `(yn, s(xn ; b,w))

• Use a gradient method (steepest descent, Newton, ...)
• We have not yet chosen the specific form of `
• We can make LT (b,w) a differentiable and convex

function of v = (b,w) by a suitable choice of `
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The Cross-Entropy Loss

The Cross-Entropy Loss
`(y ,p)

def
=

{
− log p if y = 1
− log(1− p) if y = 0

• Base of log is unimportant: unit of loss is conventional

0 1

p

0

y=1

y=0

• Same as `(y ,p) = −y log p − (1− y) log(1− p)

(Second is more convenient for differentiation)
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The Cross-Entropy Loss

The Cross-Entropy Loss
• Domain: {0,1} × [0,1]
`(1,p) = `(0,1− p)
`(1,1/2) = `(0,1/2) = − log(1/2)

0 1

y

0

1

p

0 1

p

0

y=1

y=0
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The Cross-Entropy Loss

Why Cross-Entropy?
• Literature (and Appendix in the class notes) gives an

interpretation in terms of information theory
• A more cogent explanation: With cross-entropy and the

logistic function,
• The risk becomes a convex function of the parameters

v = (b,w)
• The gradient and Hessian of the risk are easy to compute

• A crucial cancellation occurs when computing derivatives of
the risk with respect to the parameters
• You will be asked to use gradient and Hessian, and be able

to compute them
• You will not be asked to remember their formulas, or know

how to derive them
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The Cross-Entropy Loss

The Magic

• Logistic function and loss were chosen to simplify the math
• Here is the magic:

LT (v) = LT (`(f (a(v))), so ∇LT = dLT
d`

d`
df

df
da∇a

` = −y log f − (1− y) log(1− f ) so that d`
df = f−y

f (1−f )

f (a) = 1
1+e−a so that df

da = f (1− f )

• Therefore, d`
df

df
da = f − y

• This is the cancellation that simplifies everything
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The Cross-Entropy Loss

Turning the Crank
• Gradient of the risk (recall that s(x ; v) = f (a(x ; v))):

∇LT (v) =
1
N

N∑
n=1

[s(xn ; v)− yn]

[
1
xn

]
• Hessian of the risk:

HLT (v) =
1
N

N∑
n=1

s(xn ; v) [1− s(xn ; v)]

[
1
xn

] [
1 xn

]
• Each term in the summation for HLT is an outer product
• This implies (easily) that HLT is positive semidefinite
• LT (v) is a convex function
• No need to check eigenvalues (See Appendix if you are curious)

COMPSCI 371D — Machine Learning Linear Predictors Part 2 11 / 21



The Cross-Entropy Loss

Training

• LT (v) is convex in v ∈ Rm with m = d + 1
• Use any gradient-based method to minimize
• When d is not too large, use Newton’s method
• More efficient, problem-specific algorithms exist
• They capitalize on LT (v) being a sum of squares
• Typically, train with cross-entropy loss, test with 0-1 loss
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Multi-Class Linear Predictors

Multi-Class Linear Predictors
• Obvious approach 1: One-versus-rest
• Build K − 1 classifiers ck versus not ck

• Works for K = 2 but not for K = 3

c1

c1not c2not

c2

?
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Multi-Class Linear Predictors

Multi-Class Linear Predictors
• Obvious approach 2: One-versus-one
• Build

(K
2

)
classifiers ci versus cj

• Works for K = 2 but not for K = 3

c1 c2

?

c1

c3

c2

c3
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Multi-Class Linear Predictors

A Symmetric View of the Binary Score
• Rename classes: 0 becomes 1 and 1 becomes 2
• Activation: a = b + wT x
• Score for class 1: s1(a) = 1

1+e−a

• Score for class 2: s2(a) = 1− s1(a) = s1(−a)

• More symmetrically, two activations:
a1 = b + wT x, a2 = −b −wT x

• Note: 1
1+e−a = e

a
2

e
a
2

1
1+e−a = e

a
2

e
a
2 +e− a

2

• Score for class 1: s1 = s(a1) = e
a1
2

e
a1
2 +e− a1

2
= e

a1
2

e
a1
2 +e

a2
2

• Score for class 2 (switch a1 with a2): s2 = s(a2) = e
a2
2

e
a1
2 +e

a2
2

• Class with highest score wins

COMPSCI 371D — Machine Learning Linear Predictors Part 2 15 / 21



Multi-Class Linear Predictors

Exploiting Scalable Activations

• Score for class k ∈ {1,2}: sk = e
ak
2

e
a1
2 +e

a2
2

• Activations are freely scalable, so write sk = eak

ea1 +ea2 instead
• Different function, same separating hyperplane
• This generalizes. Replace 2 classes with K

sk (x) = eak (x)∑K
j=1 eaj (x) where ak (x) = bk + wT

k x

• Satisfies
∑K

k=1 sk (x) = 1
• Class with highest score wins: ŷ = h(x) ∈ arg maxk sk (x)

• This is the Linear-Regression Multi-Class Classifier:
Compute k scores, each with parameters vk = (bk ,wk ),
and pick the class with the highest score
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Multi-Class Linear Predictors

The Soft-Max Function

sk (x) =
eak (x)∑K
j=1 eaj (x)

• sk (x) > 0 and
∑K

k=1 sk (x) = 1 for all x
• If ai � aj for j 6= i then

∑K
j=1 eaj (x) ≈ eai (x)

• Therefore, si ≈ 1 and sj ≈ 0 for j 6= i
• “Brings out the biggest:” soft-max
• More formally:

lim
α→∞

aT s(αa) = max(a)
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Multi-Class Linear Predictors

Geometry of Multi-ClassDecision Regions
• Separating hyperplane for classes i , j ∈ {1, . . . ,K}:

bi + wT
i x = bj + wT

j x (equal activations⇒ equal scores)
• Total of M =

(K
2

)
hyperplanes, just as in one-vs-one

• Example: d = 2, K = 4⇒ 6 lines on the plane
• There are degeneracies (M × (d + 1) matrix of rank K − 1)
• Crossing a line switches two scores. Example:

s3 > s2 > s4 > s1 → s3 > s4 > s2 > s1
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Multi-Class Linear Predictors

Geometry of Decision Regions

4>2>3>1

4>2>1>3

4>1>2>3

4>1>3>2 1>4>3>2 1>3>4>2

1>3>2>4

3>1>2>4

3>2>1>4

3>2>4>1

2>3>4>1

2>4>3>1

• Crossing a line switches two scores:
s4 > s2 > s3 > s1 → s4 > s3 > s2 > s1

• When the top two scores switch, cross a boundary:
s4 > s1 > s3 > s2 → s1 > s4 > s3 > s2

• Decision regions are intersections of half-spaces⇒ convex
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Multi-Class Linear Predictors

Multi-Class Cross-Entropy Loss

• Cross-entropy loss for K = 2:
(remember that we renamed Y = {0,1} to Y = {1,2})

`(y ,p)
def
=

{
− log p if y = 1
− log(1− p) if y = 2 =

{
− log p1 if y = 1
− log p2 if y = 2

• Same as `(y ,p) = − log py

• But this is general!
• Can also write as follows: `(y ,p) = −

∑K
k=1 qk (y) log pk

• q is the one-hot encoding of y
• Example: K = 5, then y = 4 is represented by

q = [0,0,0,1,0]
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Multi-Class Linear Predictors

Convex Risk, Again

• Even with K > 2, the risk is a convex function of
v = (b1,w1, . . . ,bK ,wK ) ∈ Rm with m = (d + 1)K
• Proof analogous to K = 2 case, just technically more

involved
• Can still use gradient descent methods, including Newton
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