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Ingredient 2: The Logistic Function

¢ Want to make the score of x be only a function of the signed
distance A(x)
Given A, all points s.t. A(X) = A have the same score
Score s(x) = f(A(x))
How to pick f?
lima_,_oo f(A) =0 f(0)=1/2 lima_e0 F(A) = 1

Logistic function: f(A) € 1
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The Logistic Function

e Logistic function: f(A) € 14
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e Scale-free: Why not —; — 17

e Can use both ¢ and A(x) &' brw'x

[[wl]

.. or more simply use no c¢ but use a(x) ©b+wix
¢ The affine function takes care of scale implicitly
e Score: s(x) < f(a(x)) = ==n
e Write s(x ; b,w) to remind us of dependence
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Optimize the Regressor, not the Classifier

e We would like to minimize the average of

[0 ify=Jp
50-1(}’7}’)—{1 otherwise

 However, %%t = 0 almost everywhere

(and is undeflned everywhere else)

e Use the score p = s(x ; b,w) instead of y:

e y c{0,1} while p € [0, 1]

e Instead of measuring the loss on y = h(x), we measure it
on p=s(x; b,w), aproxy for y

e We still need a different ((y, p) for differentiability and & 7é 0
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.~ TheCrossEmopyLoss
Differentiable Risk with Nonzero Gradient

e We want /(y, p) to be differentiable in p and g—f; #0

e Since p = s(x ; b,w) is differentiable in (b, w), then ¢ will
be, too, and the gradient has a chance to be nonzero

e Why do we insist on differentiability and nonzero gradient,
again?

e Risk: Lr(b,w) = L SN t(yn, S(Xn; b, W))

e Use a gradient method (steepest descent, Newton, ...)

e We have not yet chosen the specific form of ¢

e We can make L(b, w) a differentiable and convex
function of v = (b, w) by a suitable choice of ¢
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The Cross-Entropy Loss
def | —logp ify=1
Ay.p) = { log(1—p) ity=0
e Base of log is unimportant: unit of loss is conventional

£(y,p)

* Same as ((y,p) = —ylogp — (1 — y)log(1 — p)
(Second is more convenient for differentiation)
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The Cross-Entropy Loss
e Domain: {0,1} x [0,1]
((1,p) = €(0,1 —p)
0(1,1/2) = £(0,1/2) = — log(1/2)
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. ThecrssEnopyloss
Why Cross-Entropy?

¢ Literature (and Appendix in the class notes) gives an
interpretation in terms of information theory
e A more cogent explanation: With cross-entropy and the
logistic function,
® The risk becomes a convex function of the parameters
v=(bw)
® The gradient and Hessian of the risk are easy to compute
¢ A crucial cancellation occurs when computing derivatives of
the risk with respect to the parameters
¢ You will be asked to use gradient and Hessian, and be able
to compute them
¢ You will not be asked to remember their formulas, or know
how to derive them
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. ThecrssEnopyloss
The Magic

Logistic function and loss were chosen to simplify the math
Here is the magic:

Lr(v) = Lr(((f(a(v))), so VLr = G &V a

(= —ylogf— (1—y)log(1 — f) so that & = 7

f(a) = y5= sothat &£ = f(1 — 1)
e Therefore, 42 — f— y

This is the cancellation that simplifies everything
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Turning the Crank

e Gradient of the risk (recall that s(x ; v) = f(a(x; v))):

VLr(v

IIMZ

n:V)—yn]“n}

Hessian of the risk:

i (v —NZ o ) (1= st 1 ] 11 %]

Each term in the summation for H;, is an outer product
This implies (easily) that H;, is positive semidefinite

Lr(v) is a convex function

No need to check eigenvalues (See Appendix if you are curious)
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. ThecrssEnopyloss
Training

Lr(v)is convexinv e R"withm=d + 1

e Use any gradient-based method to minimize

When d is not too large, use Newton’s method

More efficient, problem-specific algorithms exist

They capitalize on Ly(v) being a sum of squares
Typically, train with cross-entropy loss, test with 0-1 loss
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~ MuliClass Linear Predictors
Multi-Class Linear Predictors

e Obvious approach 1: One-versus-rest
e Build K — 1 classifiers ¢ versus not cx
e Works for K = 2 but not for K = 3

not ¢, not ¢,
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~ MuliClass Linear Predictors
Multi-Class Linear Predictors

e Obvious approach 2: One-versus-one
e Build (%) classifiers ¢; versus ¢;
e Works for K = 2 but not for K = 3
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| sClessUneerPredcion |
A Symmetric View of the Binary Score

Rename classes: 0 becomes 1 and 1 becomes 2
Activation: a= b+ w’x

Score for class 1: s1(a) = 4=

Score for class 2: s;(a) =1 — si(a) = si(—a)

More symmetrically, two activations:
a = b+wa, a=—-b-—w'x

a a
_e2 1 _ ez2
Note: 1+e S s
2 a1
Score for class 1: 51 = s(ay) = 52— = =5
e2 2 e2 +e2
a2
Score for class 2 (switch a; with a): s, = s(az) = ="+

Class with highest score wins

COMPSCI 371D — Machine Learning

15/21



| sClessUneerPredcion |
Exploiting Scalable Activations

2

e Score forclass k € {1,2}: s = =22 %
e2 tez2

e Activations are freely scalable, so write s, = m
¢ Different function, same separating hyperplane
¢ This generalizes Replace 2 classes with K

Sk(X) = Ze1k where ax(X) = bx + W] x
]

e Satisfies Zk:1 Sk(x) =1
e Class with highest score wins: y = h(x) € arg max Sk(X)

e This is the Linear-Regression Multi-Class Classifier:
Compute k scores, each with parameters vi = (bx, W),
and pick the class with the highest score

instead
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~ MuniClass Linear Precictors
The Soft-Max Function

eak(x)
e
sk(x) > 0 and Zf:1 sk(x) = 1 for all x
If @ > a; for j # i then ZjK:1 e3(®) ~ ga(x)
Therefore, s~ 1 and s; ~ 0 for j # i

Sk(X) =

® “Brings out the biggest:” soft-max
More formally:

lim a’s(aa) = max(a)

a—00
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Geometry of Multi-ClassDecision Regions

e Separating hyperplane for classes i,j € {1,...,K}:
bi +w/x = b; + w/x (equal activations = equal scores)
Total of M = (£) hyperplanes, just as in one-vs-one
Example: d =2, K = 4 = 6 lines on the plane
There are degeneracies (M x (d + 1) matrix of rank K — 1)
Crossing a line switches two scores. Example:
S3>S>>8,>8 — 83>8514>8 >8§

\
\

\
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| sClessUneerPredcion |
Geometry of Decision Regions

4515852 1543852 1>3>452

i i 1]
415253 —to
4525153 —to

4>2>3>1

3>1>254

ANANA g

254531

3525451

23451 3>2>1>4

e Crossing a line switches two scores:
S4>S>8>8 — 84>83>8 >8
e When the top two scores switch, cross a boundary:
S4>8 >8>S — S >5>8>5
e Decision regions are intersections of half-spaces = convex
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N e et
Multi-Class Cross-Entropy Loss

e Cross-entropy loss for K = 2:
(remember that we renamed Y = {0,1} to Y = {1,2})

Wy )d:ef{—|0gp ify =1 :{—Iogp1 ify =1
’ —log(1—p) ify=2 —logp, ify=2

Same as /(y,p) = —log p,

But this is general!

Can also write as follows:  £(y,p) = — Sk, gk(¥) log p«

q is the one-hot encoding of y

Example: K =5, then y = 4 is represented by
q=1[0,0,0,1,0]
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_ MuhkClass Linear Pradictors
Convex Risk, Again

e Even with K > 2, the risk is a convex function of
V= (b1,W1,...,bK,WK) € R™with m= (d—l— 1)K

¢ Proof analogous to K = 2 case, just technically more
involved

e Can still use gradient descent methods, including Newton
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