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Roadmap

• SVMs so far are linear classifier, so they won’t work well for
non linearly separable data
• Feature augmentation: Add entries to the data point vectors

xn to make the data separable (or close to)
• Increases computational complexity and sample complexity

(we need more training data in higher dimensions)
• The representer theorem lets us address this conundrum
• The effect is to make SVM decision boundaries very

nonlinear
• This increases applicability of SVM enormously
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Linear Separability and Feature Augmentation

Data Representations
• Linear separability is a property of the data in a given

representation
• A set that is not linearly separable. Boundary x2 = x2

1
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Linear Separability and Feature Augmentation

Feature Transformations

• x = (x1, x2) → z = (z1, z2) = (x2
1 , x2)

• Now it is! Boundary z2 = z1
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Linear Separability and Feature Augmentation

Feature Augmentation

• Feature transformation:
x = (x1, x2) → z = (z1, z2) = (x2

1 , x2)

• Problem: We don’t know the boundary!
• We cannot guess the correct transformation
• Feature augmentation:

x = (x1, x2) → z = (z1, z2, z3) = (x1, x2, x2
1 )

• Why is this better?
• Add many features in the hope that some combination will

help
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Linear Separability and Feature Augmentation

Not Really Just a Hope!

• Add all monomials of x1, x2 up to some degree k
• Example: k = 3 ⇒ d ′ =

(d+k
d

)
=
(2+3

2

)
= 10 monomials

z = (1 , x1 , x2 , x2
1 , x1x2 , x2

2 , x3
1 , x2

1 x2 , x1x2
2 , x3

2 )

• From Taylor’s theorem, we know that with k high enough we
can approximate any hypersurface by a linear combination
of the features in z
• Issue 1: Sample complexity: More dimensions, more

training data (remember the curse)
• Issue 2: Computational complexity: More features, more

work
• With SVMs, we can address both issues
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Sample and Computational Complexity

Sample Complexity from 30,000 Feet

• The more training samples we have, the better we
generalize
• With a larger N, the set T represents the model p(x, y)

better
• Sample complexity is a measure of how many training

samples (N) are needed to achieve some level of
performance (error rate)
• The sample complexity of a machine learning problem turns

out to grow with the dimensionality d of the data space X
• It also grows as the target error rate decreases
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Sample and Computational Complexity

Sample Complexity for SVMs

• For a binary logistic-regression classifier, and given some
target level of performance (error rate), the sample
complexity grows linearly with the dimensionality d of X
• Not too bad, this is why linear classifiers are so successful
• SVMs with bounded data space X do even better
• “Bounded:” Contained in a hypersphere of finite radius
• For SVMs with bounded X , the sample complexity is

independent of d . No curse!
• We can augment features to our heart’s content
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Sample and Computational Complexity

What About Computational Complexity?

• Remember our plan: Go from x = (x1, x2) to
z = (1 , x1 , x2 , x2

1 , x1x2 , x2
2 , x3

1 , x2
1 x2 , x1x2

2 , x3
2 )

in order to make the data separable
• Can we do this without paying the computational cost?
• Yes, with SVMs
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The Representer Theorem and Support Vectors

Support Vector Machines Summary

ŷ = h(x) = sign(w∗T x + b∗)
b∗,w∗ ∈ argminb,w LT (w,b)

LT (w,b)
def
= 1

2‖w‖
2 + C0

N

∑N
n=1 max{0,1− yn(wT xn + b)}
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The Representer Theorem and Support Vectors

The Representer Theorem and Support
Vectors
• The representer theorem: w∗ =

∑N
n=1 βnxn

• The separating-hyperplane parameter w is a linear
combination of the training data points xn ∈ X ⊆ Rd

• This is surprising, especially when N � d
• It turns out that only few of the βn are nonzero
• The corresponding data points xn are called the support

vectors
• These facts have important repercussions, so we will prove

them first
• Prove the representer theorem
• Show why many βn are zero
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The Representer Theorem and Support Vectors

A More General Version of the Representer
Theorem
• The theorem still holds if we generalize

LT (w,b) =
1
2
‖w‖2 +

C0

N

N∑
n=1

max{0,1− yn(wT xn + b)}

to

L(w,b) = R(‖w‖) + S
(
wT x1 + b, . . . , wT xN + b

)
where
• R(·) is any strictly increasing function R+ → R
• S(a1, . . . ,aN) is any function RN → R
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The Representer Theorem and Support Vectors

Proof of the Representer Theorem

• If L(w,b) = R(‖w‖) + S
(
wT x1 + b, . . . , wT xN + b

)
where R(·) is strictly increasing, then w∗ in
b∗,w∗ = argminb,w LT (w,b) satisfies

w∗ =
N∑

n=1

βnxn

• Restate: If

w∗ =
N∑

n=1

βnxn + u

where X = span(x1, . . . ,xN) and u ∈ X⊥, then u = 0
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The Representer Theorem and Support Vectors

Proof of the Representer Theorem, Cont’d

[L(w,b) = R(‖w‖) + S
(
wT x1 + b, . . . , wT xN + b

)
]

• If

w∗ =

w︷ ︸︸ ︷
N∑

n=1

βnxn +u

where X = span(x1, . . . ,xN) and u ∈ X⊥, then u = 0
• By contradiction, assume u 6= 0
• Pythagoras: w⊥u ⇒ ‖w∗‖2 = ‖w‖2 + ‖u‖2

• u 6= 0 ⇒ ‖w‖ < ‖w∗‖
• R(·) increasing⇒ R(‖w‖) < R(‖w∗‖)
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The Representer Theorem and Support Vectors

Proof of the Representer Theorem, Cont’d

[L(w,b) = R(‖w‖) + S
(
wT x1 + b, . . . , wT xN + b

)
]

• So far: u 6= 0 ⇒ R(‖w‖) < R(‖w∗‖)
• Since u⊥xn, we have

wT xn+b = (w∗−u)T xn+b = (w∗)T xn−uT xn+b = (w∗)T xn+b
so that S

(
wT x1 + b, . . . , wT xN + b

)
=

S
(
(w∗)T x1 + b, . . . , (w∗)T xN + b

)
• Therefore, R(‖w‖) + S

(
wT x1 + b, . . . , wT xN + b

)
<

R(‖w∗‖) + S
(
(w∗)T x1 + b, . . . , (w∗)T xN + b

)
i.e., L(w,b) < L(w∗,b) for all b ⇒ L(w,b∗) < L(w∗,b∗)
• Contradiction: w∗ is not optimum
• Therefore u = 0 and w∗ =

∑N
n=1 βnxn
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The Representer Theorem and Support Vectors

Many βn are Zero
w∗ =

∑N
n=1 βnxn

• b∗,w∗ minimize the average
hinge loss
• Samples that are classified

correctly with margin greater
than µ∗ incur zero loss
• The residual risk L(w∗,b∗) does

not depend on these samples
• Therefore b∗,w∗ do not depend

on them either
• Only samples that are either

misclassified or correctly classified
but with margin ≤ µ∗ can be in w∗

n

reference 
margin

separating 
hyperplane

ŷ = 1= −1ŷ

1

µ (x, 1)v
µ*

1

µ*µ (x, -1)v

reference 
margin

l (x, -1)v

l (x, 1)v
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The Representer Theorem and Support Vectors

The Support Vectors
• Only samples that are either misclassified or correctly

classified but with margin less than µ∗ can appear in w∗

• These data points are called the support vectors

• Sparsity: w∗ =
∑

n∈SV βnxn
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The Representer Theorem and Support Vectors

The Sign of the Nonzero βn

• With much heavier machinery (duality theory) it can be
proven that the sign of the nonzero βn is yn:

βn = yn|βn|

(Of course the equation holds also when βn = 0)
• We omit the proof in this course
• There may be simpler proofs, I just couldn’t find one
• If you come up with one let me know!
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The Representer Theorem and Support Vectors

Consequences of the Representer Theorem

• Insights from support vectors
• Support vector machines are “more interpretable” than

logistic regression classifiers
• The kernel idea

• Feature augmentation without the computational cost
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Kernels and Nonlinear SVMs

SVMs and the Representer Theorem

• Recall the formulation of SVMs
• Augment x ∈ Rd to ϕ(x) ∈ Rd ′, with d ′ � d (typically)
• Optimal risk LT (w∗,b∗) =

1
2‖w

∗‖2 + C0
N

∑N
n=1 max{0,1− yn((w∗)Tϕ(xn) + b∗)}

• Do inference by computing ŷ = h(x) = sign(w∗Tϕ(x)+ b∗)
• Plug in representer theorem: w∗ =

∑N
n=1 βnϕ(xn)

LT (w∗,b∗) = 1
2‖w

∗‖2 +
C0
N

∑N
n=1 max

{
0,1− yn

(∑N
m=1 βmϕ(xm)

Tϕ(xn) + b∗
)}

ŷ = h(x) = sign
(∑N

n=1 βnϕ(xn)
Tϕ(x) + b∗

)
• Data points always show up in inner products, never alone
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Kernels and Nonlinear SVMs

The Kernel
LT (w∗,b∗) = 1

2‖w
∗‖2 +

C0
N

∑N
n=1 max

{
0,1− yn

(∑N
m=1 βmϕ(xm)

Tϕ(xn) + b∗
)}

ŷ = h(x) = sign
(∑N

n=1 βnϕ(xn)
Tϕ(x) + b∗

)
• Data points always show up in inner products, never alone

• The value K (xm,xn)
def
= ϕ(xm)

Tϕ(xn) is a number
• The optimization algorithm needs to know only K (xm,xn),

not ϕ(xn). K is called a kernel. Rewrite:
LT (w∗,b∗) =
1
2‖w

∗‖2 + C0
N

∑N
n=1 max

{
0,1− yn

(∑N
m=1 βmK (xm,xn) + b∗

)}
ŷ = h(x) = sign

(∑N
n=1 βnK (xn,x) + b∗

)
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Kernels and Nonlinear SVMs

Kernel Idea 1 (Minor)
• Start with some ϕ(x) and use the kernel to save

computation
• Example: ϕ(x) =
(1 , x1 , x2 , x2

1 , x1x2 , x2
2 , x3

1 , x2
1 x2 , x1x2

2 , x3
2 )

• Don’t know how to simplify. Try this: ϕ(x) =
(1 ,
√

3x1 ,
√

3x2 ,
√

3x2
1 ,
√

6x1x2 ,
√

3x2
2 , x3

1 ,
√

3x2
1 x2 ,

√
3x1x2

2 , x3
2 )

• Can show (see notes) that
K (x,x′) = ϕ(x)Tϕ(x′) = (xT x′ + 1)3

• Something similar works for any d and k
• 4 products and 2 sums instead of 10 products and 9 sums
• Meager savings, but grows exponentially with d and k , as

we know
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Kernels and Nonlinear SVMs

Kernel Idea 2 (Major!)

• Just come up with K (x,x′) without knowing the
corresponding ϕ(x)
• Not just any K . Must behave like an inner product
• For instance, xT x′ = (x′)T x and (xT x′)2 ≤ ‖x‖2 ‖x′‖2

(symmetry and Cauchy-Schwartz), so we need at least
K (x,x′) = K (x′,x) and K 2(x,x′) ≤ K (x,x) K (x′,x′)
• These conditions are necessary, but they are not sufficient
• Fortunately, there is a theory for this
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Mercer’s Conditions

Mercer Conditions
• K (x,x′) : Rd × Rd → R is a kernel function if there exists ϕ

for which K (x,x′) = ϕ(x)Tϕ(x′)
• Finite case: Given xn ∈ Rd for n = 1, . . . ,N (as in T ), a

symmetric function K (x,x′) is a kernel function on that set
iff the N × N matrix A = [K (xi ,xj)] is positive semi-definite
• Problem: We would like to know if K (x,x′) is a kernel for

any T , or even for x we have not yet seen
• Infinite case: K (x,x′) is a kernel function iff

for every f : Rd → R s.t.
´
Rd f (x)dx is finite,´

Rd
×Rd K (x,x′) f (x) f (x′)dx dx′ ≥ 0

• Immediate extension of positive-definiteness to the
continuous case
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Mercer’s Conditions

The “Kernel Trick”

• There is a theory for checking the Mercer conditions
algorithmically (eigenfunctions instead of eigenvectors)
• There is a calculus for how to build new kernel functions
• A whole cottage industry tailors kernels to problems
• This is rather tricky. However, the Gaussian kernel is very

popular

K (x,x′) = e−
‖x−x′‖2

σ2

• A measure of similarity between x and x′

• Gaussian kernels are also called Radial Basis Functions
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Gaussian Kernels and Support Vectors

Kernels and Support Vectors
• Recall: Decision rule for SVM is h(x) = sign((w∗)Tϕ(x) + b)

(in transformed space, where the SVM is linear)
• The separating hyper-plane is (w∗)Tϕ(x) + b = 0
• From representer theorem, w∗ =

∑
n βnϕ(xn)

where the sum is over support vectors only
• Therefore the separating hyperplane is∑

n βnϕ(xn)
Tϕ(x) + b = 0

• That is,
∑

n βnK (xn,x) + b = 0
• xn and x are in the original data space X
• This equation describes the decision boundary induced in

the original data space X
• An affine boundary in ϕ(X ) is a nonlinear boundary in X
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Gaussian Kernels and Support Vectors

The “Kernel Trick:” Summary, Part 1

• In a linear SVM, feature vectors x always
show up in inner products: xT

mxn or xT
n x

• If features are augmented, x→ ϕ(x), also ϕ(x) always
shows up in inner products: ϕ(xm)

Tϕ(xn) or ϕ(xn)
Tϕ(x)

• Define a kernel K (x,x′) such that there exists an (often
unknown) mapping ϕ() for which

K (x,x′) = ϕ(x)Tϕ(x′)

• We always work with K (x,x′) without ever involving ϕ(x) or
ϕ(x′) (which are large, possibly infinite)
• We avoid the computational cost of feature augmentation
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Gaussian Kernels and Support Vectors

The “Kernel Trick:” Summary, Part 2
• Given K (x,x′) to there exists a mapping ϕ() for which

K (x,x′) = ϕ(x)Tϕ(x′)

iff K satisfies the Mercer condition:
For every f : Rd → R s.t.

´
Rd f (x)dx is finite,´

Rd
×Rd K (x,x′) f (x) f (x′)dx dx′ ≥ 0

• This condition can be verified through eigenfunction
computations
• Important examples: The Radial Basis Function (RBF)

K (x,x′) = e−
‖x−x′‖2

σ2 is a kernel
• What does the decision boundary look like now?
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Gaussian Kernels and Support Vectors

Gaussian Kernels and Support Vectors
• The decision boundary in the original space is∑

n βnK (xn,x) + b = 0
where the sum is over support vectors

• For RBF SVMs,
∑

n βne−
‖x−xn‖2

σ2 = −b
• Simple geometric interpretation
• Recall that the sign of βn is yn
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Gaussian Kernels and Support Vectors

Classification

http://mldemos.b4silio.com
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Gaussian Kernels and Support Vectors

Regression

http://mldemos.b4silio.com
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