Decision Trees and Forests

COMPSCI 371D — Machine Learning
Outline

1. Motivation
2. Recursive Splits and Trees
3. Prediction
4. Purity
5. Splitting
6. Forests: Bagging and Randomization
7. Forest Training and Inference
8. Out-of-Bag Statistical Risk Estimate
Linear Predictors \rightarrow Trees \rightarrow Forests

- **Linear predictors:**
 - Few parameters \rightarrow Good generalization, efficient training
 - Convex risk \rightarrow Unique minimum risk, easy optimization
 - Score-based \rightarrow Measure of confidence
 - Few parameters \rightarrow Limited expressiveness:
 - Regressor is an affine function
 - Classifier is a set of convex regions in X

- **Decision trees:**
 - Score based (in a sophisticated way)
 - Arbitrarily expressive: Flexible, but generalizes poorly
 - Interpretable: We can audit a decision

- **Random decision forests:**
 - Ensembles of trees that vote on an answer
 - Expressive (somewhat less than trees), generalize well
Splitting X Recursively
A Decision Tree

Choose splits to maximize *purity*

- **a:** \(j = 2 \)
 \[t = 0.265 \]
 \[p = [0, 1, 0] \]

- **b:** \(j = 1 \)
 \[t = 0.41 \]
 \[p = [1, 0, 0] \]

- **c:** \(j = 2 \)
 \[t = 0.34 \]
 \[p = [1, 0, 0] \]

- **d:** \(j = 1 \)
 \[t = 0.16 \]
 \[p = [0, 0, 1] \]

- **e:** \(j = 2 \)
 \[t = 0.55 \]
 \[p = [0, 0, 1] \]
What’s in a Node

- **Internal:**
 - Split parameters: Dimension $j \in \{1, \ldots, d\}$, threshold $t \in \mathbb{R}$
 - Pointers to children, corresponding to subsets of S:

 $$
 L \overset{\text{def}}{=} \{(x, y) \in S \mid x_j \leq t\}
 $$

 $$
 R \overset{\text{def}}{=} \{(x, y) \in S \mid x_j > t\}
 $$

- **Leaf:** Distribution of training values y in this subset of X:
 - p, discrete for classification, histogram for regression

 - At inference time, return a *summary* of p as the value for the leaf

 - Mode (majority) for a classifier
 - Mean or median for a regressor
 (Remember k-NN?)
Why Store p?

- Can’t we just store $\text{summary}(p)$ at the leaves?
- With p, we can compute a confidence value
- (More important) We need p at every node during training to evaluate purity
Prediction

\begin{verbatim}
function y ← predict(x, τ, summary)
 if leaf?(τ) then
 return summary(τ.p)
 else
 return predict(x, split(x, τ), summary)
 end if
end function

function τ ← split(x, τ)
 if x_{τ.j} \leq τ.t then
 return τ.L
 else
 return τ.R
 end if
end function
\end{verbatim}
Design Decisions for Training

• How to define (im)purity
• How to find optimal split parameters j and t
• When to stop splitting
Impurity Measure 1: The Error Rate

- Simplest option: $i(S) = \overline{err}(S) = 1 - \max_y p(y|S)$
- S: subset of T that reaches the given node
- Interpretation:
 - Put yourself at node τ
 - The distribution of training-set labels that are routed to τ is that of the labels in S
 - If the distribution is representative:
 - The best the classifier can do is to pick the label with the highest fraction, $\max_y p(y|S)$
 - $\overline{err}(S)$ is the probability that the classifier is wrong at τ
 (empirical risk)
Impurity Measure 2: The Gini Index

- A classifier that always picks the most likely label does best at inference time
- However, it ignores all other labels at training time
 \[p = [0.5, 0.49, 0.01] \] same error rate as \[q = [0.5, 0.25, 0.25] \]
- In \(p \), we have almost eliminated the third label
- \(q \) closer to uniform, perhaps less desirable
- For evaluating splits (only), consider a stochastic predictor:
 \[\hat{y} = h_{\text{Gini}}(x) = y \text{ with probability } p(y|S) \]
- The Gini index measures the empirical risk for the stochastic predictor (looks at all of \(p \), not just \(p_{\text{max}} \))
- Says that \(p \) is a bit better than \(q \): \(p \) is less impure than \(q \)
 \[i(S_p) \approx 0.51 \text{ and } i(S_q) \approx 0.62 \]
The Gini Index

- **Stochastic predictor**:
 \[\hat{y} = h_{\text{Gini}}(x) = y \text{ with probability } p(y|S) \text{ for } y \in Y \]
- What is the empirical risk for \(h_{\text{Gini}} \)?
- Answer \(y \) is chosen as \(\hat{y} \) with probability \(p(y|S) \)
- When the answer is \(y \), it is wrong with probability \(\approx 1 - p(y|S) \) (fraction of training samples that have true answer \(y \))
- Therefore, impurity defined as the empirical risk of \(h_{\text{Gini}} \) is
 \[i(S) = L_S(h_{\text{Gini}}) = \sum_{y \in Y} p(y|S)(1 - p(y|S)) = 1 - \sum_{y \in Y} p^2(y|S) \]
How to Split

• Split at training time:
 If training subset S made it to the current node, put all samples in S into either L or R by the split rule.

• Split at inference time: Send \mathbf{x} either to $\tau.L$ or to $\tau.R$.

• Either way:
 • Choose (training) or retrieve (inference) a dimension j in $\{1, \ldots, d\}$
 • Choose (training) or retrieve (inference) a threshold t
 • Any data point for which $x_j \leq t$ goes to $\tau.L$
 • All other points go to $\tau.R$

• How to pick j and t at training time?
How to Pick j and t at Each Node?

- Try all possibilities and pick the best
- “Best:” Maximizes the decrease in impurity:
 \[
 \Delta i(S, L, R) = i(S) - \frac{|L|}{|S|}i(L) - \frac{|R|}{|S|}i(R)
 \]
- “All possibilities:” Choices are finite in number
 - Sorted unique values in x_j across T: $x_j^{(0)}, \ldots, x_j^{(u_j)}$
 - Possible thresholds: $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
 \[
 t_j^{(\ell)} = \frac{x_j^{(\ell-1)} + x_j^{(\ell)}}{2} \quad \text{for} \quad \ell = 1, \ldots, u_j
 \]
- Nested loop: for $j = 1, \ldots, d$
 - for $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
- Efficiency hacks are possible
Stopping too Soon is Dangerous

- Temptation: Stop when impurity does not decrease
When to Stop Splitting

• Possible stopping criteria
 • Impurity is zero
 • Too few samples in either L or R
 • Maximum depth reached

• Overgrow the tree, then prune it

• There is no optimal pruning method
 (Finding the optimal tree is NP-hard)
 (Reduction from set cover problem, Hyafil and Rivest)

• Better option: *Random Decision Forests*
Summary: Training a Decision Tree

- Use exhaustive search at the root of the tree to find the dimension j and threshold t that splits T with the biggest decrease in impurity.
- Store j and t at the root of the tree.
- Make new children with L and R.
- Repeat on the two subtrees until some criterion is met.
Summary: Predicting with a Decision Tree

• Use $\tau.j$ and $\tau.t$ at the root τ to see if x belongs in $\tau.L$ or $\tau.R$
• Go to the appropriate child
• Repeat until a leaf is reached
• Return $\text{summary}(p)$
• summary is majority for a classifier, mean or median for a regressor
From Trees to Forests

- Trees are flexible \rightarrow good expressiveness
- Trees are flexible \rightarrow poor generalization
- Pruning is an option, but messy and heuristic
- *Random Decision Forests* let several trees vote
- Use the bootstrap to give different trees different views of the data
- Randomize split rules to make trees even more independent
Random Forests

- M trees instead of one
- Train trees to completion (perfectly pure leaves) or to near completion (few samples per leaf)
- Give tree m training bag B_m
 - Draw $|T|$ training samples independently at random with replacement out of T
 - $|B_m| = |T|$
 - About 63% of samples from T are in B_m
- Make trees more independent by randomizing split dim:
 - Original trees: $\text{for } j = 1, \ldots, d$
 $\text{for } t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
 - Forest trees: $j = \text{random out of } 1, \ldots, d$
 $\text{for } t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
Randomizing Split Dimension

$$j = \text{random out of } 1, \ldots, d$$

for $$t = t_j^{(1)}, \ldots, t_j^{(u_j)}$$

- Still search for the optimal threshold
- Give up optimality for independence
- Dimensions are revisited anyway in a tree
- Tree may get deeper, but still achieves zero training risk
- Independent splits and different data views lead to good generalization when voting
- Bonus: training a single tree is now $$d$$ times faster
Training

function \(\phi \leftarrow \text{trainForest}(T, M) \) \(\triangleright \) \(M \) is the desired number of trees

\[\phi \leftarrow \emptyset \] \(\triangleright \) The initial forest has no trees

for \(m = 1, \ldots, M \) do

\[S \leftarrow |T| \text{ samples unif. at random out of } T \text{ with replacement} \]

\[\phi \leftarrow \phi \cup \{ \text{trainTree}(S, 0) \} \] \(\triangleright \) Slightly modified trainTree

end for

end function
Inference

function $y \leftarrow \text{forestPredict}(x, \phi, \text{summary})$

$V = \{\}$ \hspace{1cm} ▷ A set of values, one per tree, initially empty

for $\tau \in \phi$ do

$y \leftarrow \text{predict}(x, \tau, \text{summary})$ \hspace{1cm} ▷ The predict function for trees

$V \leftarrow V \cup \{y\}$

end for

return $\text{summary}(V)$

end function
Out-of-Bag Statistical Risk Estimate

- Random forests have “built-in” training/validation or training/testing splits
- Tree m: B_m for training, $V_m = T \setminus B_m$ for testing
- h_{oob} is a predictor that works only for $(x_n, y_n) \in T$:
 - Let tree m vote for y only if $x_n \notin B_m$
 - $h_{oob}(x_n)$ is the summary of the votes over participating trees
 - Summary: majority (classification); mean, median (regression)
- Out-of-bag risk estimate:
 - $T' = \{ t \in T \mid \exists m \text{ such that } t \notin B_m \}$
 (samples that were left out of some bag, so some trees can vote on them)
 - Statistical risk estimate: empirical risk of h_{oob} over T':
 $L_{T'}(h_{oob}) = \frac{1}{|T'|} \sum_{(x,y) \in T'} \ell(y, h_{oob}(x))$
$T' \approx T$

- $L_{T'}(h_{oob})$ can be shown to be an unbiased estimate of the statistical risk
- No separate test set needed if T' is large enough
- How big is T'?
 - $|T'|$ has a binomial distribution with N points, $p = 1 - (1 - 0.37)^M \approx 1$ as soon as $M > 20$
 - Mean $\mu = pN$, variance $\sigma^2 = p(1 - p)N$
 - $\sigma/\mu = \sqrt{\frac{1-p}{pN}} \rightarrow 0$ quite rapidly with growing M and N
 - For reasonably large N, the size of T' is very predictably close to N: All samples in T are also in T' nearly always
Summary of Random Forests

- Random views of the training data by bagging
- Independent decisions by randomizing split dimensions
- Ensemble voting leads to good generalization
- Number M of trees tuned by cross-validation
- OOB estimate can replace final testing
- (In practice, that won’t fly for papers)
- More efficient to train than a single tree if $M < d$
- Still rather efficient otherwise, and parallelizable
- Conceptually simple, easy to adapt to different problems
- Lots of freedom about split rule
- Example: Hybrid regression/classification problems