
Decision Trees and Forests

COMPSCI 371D — Machine Learning

COMPSCI 371D — Machine Learning Decision Trees and Forests 1 / 26

Outline

1 Motivation

2 Recursive Splits and Trees

3 Prediction

4 Purity

5 Splitting

6 Forests: Bagging and Randomization

7 Forest Training and Inference

8 Out-of-Bag Statistical Risk Estimate

COMPSCI 371D — Machine Learning Decision Trees and Forests 2 / 26

Motivation

Linear Predictors→ Trees→ Forests
• Linear predictors:

+ Few parameters→ Good generalization, efficient training
+ Convex risk→ Unique minimum risk, easy optimization
+ Score-based→ Measure of confidence
- Few parameters→ Limited expressiveness:

• Regessor is an affine function
• Classifier is a set of convex regions in X

• Decision trees:
• Score based (in a sophisticated way)
• Arbitrarily expressive: Flexible, but generalizes poorly
• Interpretable: We can audit a decision

• Random decision forests:
• Ensembles of trees that vote on an answer
• Expressive (somewhat less than trees), generalize well

COMPSCI 371D — Machine Learning Decision Trees and Forests 3 / 26

Recursive Splits and Trees

Splitting X Recursively

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COMPSCI 371D — Machine Learning Decision Trees and Forests 4 / 26

Recursive Splits and Trees

A Decision Tree

Choose splits to
maximize purity

a: j = 2
t = 0.265

b: j = 1
t = 0.41

c: j = 2
t = 0.34

d: j = 1
t = 0.16

p = [0, 1, 0]

e: j = 2
t = 0.55

p = [1, 0, 0] p = [1, 0, 0]

p = [0, 0, 1]

p = [1, 0, 0] p = [0, 0, 1]

COMPSCI 371D — Machine Learning Decision Trees and Forests 5 / 26

Recursive Splits and Trees

What’s in a Node

• Internal:
• Split parameters: Dimension j ∈ {1, . . . ,d}, threshold t ∈ R
• Pointers to children, corresponding to subsets of S:

L def
= {(x, y) ∈ S | xj ≤ t}

R def
= {(x, y) ∈ S | xj > t}

• Leaf: Distribution of training values y in this subset of X :
p, discrete for classification, histogram for regression

• At inference time, return a summary of p as the value for
the leaf
• Mode (majority) for a classifier
• Mean or median for a regressor

(Remember k -NN?)

COMPSCI 371D — Machine Learning Decision Trees and Forests 6 / 26

Recursive Splits and Trees

Why Store p?

• Can’t we just store summary(p) at the leaves?
• With p, we can compute a confidence value
• (More important) We need p at every node during training

to evaluate purity

COMPSCI 371D — Machine Learning Decision Trees and Forests 7 / 26

Prediction

Prediction
function y ← predict(x, τ, summary)

if leaf?(τ) then
return summary(τ.p)

else
return predict(x, split(x, τ), summary)

end if
end function

function τ ← split(x, τ)
if xτ.j ≤ τ.t then

return τ.L
else

return τ.R
end if

end function

COMPSCI 371D — Machine Learning Decision Trees and Forests 8 / 26

Purity

Design Decisions for Training

• How to define (im)purity
• How to find optimal split parameters j and t
• When to stop splitting

COMPSCI 371D — Machine Learning Decision Trees and Forests 9 / 26

Purity

Impurity Measure 1: The Error Rate

• Simplest option: i(S) = err(S) = 1−maxy p(y |S)

• S: subset of T that reaches the given node
• Interpretation:

• Put yourself at node τ
• The distribution of training-set labels that are routed to τ is

that of the labels in S
• If the distribution is representative:

• The best the classifier can do is to pick the label with the
highest fraction, maxy p(y |S)

• err(S) is the probability that the classifier is wrong at τ
(empirical risk)

COMPSCI 371D — Machine Learning Decision Trees and Forests 10 / 26

Purity

Impurity Measure 2: The Gini Index
• A classifier that always picks the most likely label does best

at inference time
• However, it ignores all other labels at training time

p = [0.5,0.49,0.01] same error rate as q = [0.5,0.25,0.25]

• In p, we have almost eliminated the third label
• q closer to uniform, perhaps less desirable
• For evaluating splits (only), consider a stochastic predictor:

ŷ = hGini(x) = y with probability p(y |S)

• The Gini index measures the empirical risk for the
stochastic predictor (looks at all of p, not just pmax)
• Says that p is a bit better than q: p is less impure than q
• i(Sp) ≈ 0.51 and i(Sq) ≈ 0.62

COMPSCI 371D — Machine Learning Decision Trees and Forests 11 / 26

Purity

The Gini Index

• Stochastic predictor:
ŷ = hGini(x) = y with probability p(y |S) for y ∈ Y
• What is the empirical risk for hGini?
• Answer y is chosen as ŷ with probability p(y |S)

• When the answer is y , it is wrong with probability
≈ 1− p(y |S) (fraction of training samples that have true
answer y)
• Therefore, impurity defined as the empirical risk of hGini is

i(S) = LS(hGini) =
∑

y∈Y p(y |S)(1− p(y |S)) =

1−
∑

y∈Y p2(y |S)

COMPSCI 371D — Machine Learning Decision Trees and Forests 12 / 26

Splitting

How to Split

• Split at training time:
If training subset S made it to the current node,
put all samples in S into either L or R by the split rule
• Split at inference time: Send x either to τ.L or to τ.R
• Either way:

• Choose (training) or retrieve (inference) a dimension j in
{1, . . . ,d}

• Choose (training) or retrieve (inference) a threshold t
• Any data point for which xj ≤ t goes to τ.L
• All other points go to τ.R

• How to pick j and t at training time?

COMPSCI 371D — Machine Learning Decision Trees and Forests 13 / 26

Splitting

How to Pick j and t at Each Node?

• Try all possibilities and pick the best
• “Best:” Maximizes the decrease in impurity:

∆i(S,L,R) = i(S)− |L|
|S| i(L)− |R||S| i(R)

• “All possibilities:” Choices are finite in number
• Sorted unique values in xj across T : x (0)

j , . . . , x (uj)

j

• Possible thresholds: t = t(1)j , . . . , t(uj)

j

where t(`)j =
x (`−1)

j +x (`)
j

2 for ` = 1, . . . ,uj

• Nested loop: for j = 1, . . . ,d
for t = t (1)j , . . . , t (uj)

j

• Efficiency hacks are possible

COMPSCI 371D — Machine Learning Decision Trees and Forests 14 / 26

Splitting

Stopping too Soon is Dangerous

• Temptation: Stop when impurity does not decrease

+

+

+

+ +

+
+

+

+
+

o
o o

o
o

o
o o

o

o oo

o

COMPSCI 371D — Machine Learning Decision Trees and Forests 15 / 26

Splitting

When to Stop Splitting

• Possible stopping criteria
• Impurity is zero
• Too few samples in either L or R
• Maximum depth reached

• Overgrow the tree, then prune it
• There is no optimal pruning method

(Finding the optimal tree is NP-hard)
(Reduction from set cover problem, Hyafil and Rivest)
• Better option: Random Decision Forests

COMPSCI 371D — Machine Learning Decision Trees and Forests 16 / 26

Splitting

Summary: Training a Decision Tree
• Use exhaustive search at the root of the tree

to find the dimension j and threshold t
that splits T with the biggest decrease in impurity
• Store j and t at the root of the tree
• Make new children with L and R
• Repeat on the two subtrees until some criterion is met

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COMPSCI 371D — Machine Learning Decision Trees and Forests 17 / 26

Splitting

Summary: Predicting with a Decision Tree

• Use τ.j and τ.t at the root τ to see
if x belongs in τ.L or τ.R
• Go to the appropriate child
• Repeat until a leaf is reached
• Return summary(p)

• summary is majority for a classifier,
mean or median for a regressor

COMPSCI 371D — Machine Learning Decision Trees and Forests 18 / 26

Splitting

From Trees to Forests

• Trees are flexible→ good expressiveness
• Trees are flexible→ poor generalization
• Pruning is an option, but messy and heuristic
• Random Decision Forests let several trees vote
• Use the bootstrap to give different trees different views of

the data
• Randomize split rules to make trees even more independent

COMPSCI 371D — Machine Learning Decision Trees and Forests 19 / 26

Forests: Bagging and Randomization

Random Forests
• M trees instead of one
• Train trees to completion (perfectly pure leaves)

or to near completion (few samples per leaf)
• Give tree m training bag Bm

• Draw |T | training samples independently at random with
replacement out of T

• |Bm| = |T |
• About 63% of samples from T are in Bm

• Make trees more independent by randomizing split dim:
• Original trees: for j = 1, . . . ,d

for t = t(1)j , . . . , t(uj)

j
• Forest trees: j = random out of 1, . . . ,d

for t = t(1)j , . . . , t(uj)

j

COMPSCI 371D — Machine Learning Decision Trees and Forests 20 / 26

Forests: Bagging and Randomization

Randomizing Split Dimension

j = random out of 1, . . . ,d

for t = t (1)j , . . . , t (uj)

j

• Still search for the optimal threshold
• Give up optimality for independence
• Dimensions are revisited anyway in a tree
• Tree may get deeper, but still achieves zero training risk
• Independent splits and different data views

lead to good generalization when voting
• Bonus: training a single tree is now d times faster

COMPSCI 371D — Machine Learning Decision Trees and Forests 21 / 26

Forest Training and Inference

Training

function φ← trainForest(T ,M) . M is the desired number of trees
φ← ∅ . The initial forest has no trees
for m = 1, . . . ,M do

S ← |T | samples unif. at random out of T with replacement
φ← φ ∪ {trainTree(S,0)} . Slightly modified trainTree

end for
end function

COMPSCI 371D — Machine Learning Decision Trees and Forests 22 / 26

Forest Training and Inference

Inference

function y ← forestPredict(x, φ, summary)
V = {} . A set of values, one per tree, initially empty
for τ ∈ φ do

y ← predict(x, τ, summary) . The predict function for trees
V ← V ∪ {y}

end for
return summary(V)

end function

COMPSCI 371D — Machine Learning Decision Trees and Forests 23 / 26

Out-of-Bag Statistical Risk Estimate

Out-of-Bag Statistical Risk Estimate
• Random forests have “built-in” training/validation or

training/testing splits
• Tree m: Bm for training, Vm = T \ Bm for testing
• hoob is a predictor that works only for (xn, yn) ∈ T :

• Let tree m vote for y only if xn /∈ Bm
• hoob(xn) is the summary of the votes over participating trees
• Summary: majority (classification); mean, median

(regression)
• Out-of-bag risk estimate:

• T ′ = {t ∈ T | ∃ m such that t /∈ Bm}
(samples that were left out of some bag, so some trees can
vote on them)

• Statistical risk estimate: empirical risk of hoob over T ′:
LT ′(hoob) =

1
|T ′|

∑
(x,y)∈T ′ `(y ,hoob(x))

COMPSCI 371D — Machine Learning Decision Trees and Forests 24 / 26

Out-of-Bag Statistical Risk Estimate

T ′ ≈ T

• LT ′(hoob) can be shown to be an unbiased estimate of the
statistical risk
• No separate test set needed if T ′ is large enough
• How big is T ′?
• |T ′| has a binomial distribution with N points,

p = 1− (1− 0.37)M ≈ 1 as soon as M > 20
• Mean µ = pN, variance σ2 = p(1− p)N

• σ/µ =
√

1−p
pN → 0 quite rapidly with growing M and N

• For reasonably large N, the size of T ′ is very predictably
close to N: All samples in T are also in T ′ nearly always

COMPSCI 371D — Machine Learning Decision Trees and Forests 25 / 26

Out-of-Bag Statistical Risk Estimate

Summary of Random Forests
• Random views of the training data by bagging
• Independent decisions by randomizing split dimensions
• Ensemble voting leads to good generalization
• Number M of trees tuned by cross-validation
• OOB estimate can replace final testing
• (In practice, that won’t fly for papers)
• More efficient to train than a single tree if M < d
• Still rather efficient otherwise, and parallelizable
• Conceptually simple, easy to adapt to different problems
• Lots of freedom about split rule
• Example: Hybrid regression/classification problems

COMPSCI 371D — Machine Learning Decision Trees and Forests 26 / 26

	Motivation
	Recursive Splits and Trees
	Prediction
	Purity
	Splitting
	Forests: Bagging and Randomization
	Forest Training and Inference
	Out-of-Bag Statistical Risk Estimate

