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Why Neural Networks?

Why Neural Networks?

• Neural networks are very expressive (large H)
• Can approximate any well-behaved function from a

hypercube in Rd to an interval in R within any ε > 0
• Universal approximators
• However

• Complexity grows exponentially with d = dim(X )
• LT is not convex (not even close)
• Large H ⇒ overfitting ⇒ lots of data!

• Amazon’s Mechanical Turk made neural networks possible
• Even so, we cannot keep up with the curse of

dimensionality!
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Why Neural Networks?

Why Neural Networks?

• Neural networks are data hungry
• Availability of lots of data is not a sufficient explanation
• There must be deeper reasons
• Special structure of image space (or audio space, or

language)?
• Specialized network architectures?
• Regularization tricks and techniques?
• We don’t really know. Stay tuned...
• Be prepared for some hand-waving and empirical

statements
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Circuits

Circuits
• Describe implementation of h : X → Y on a computer
• Algorithm: A finite sequence of steps
• Circuit: Many gates of few types, wired together

• These are NAND gates. We’ll use neurons
• Algorithms and circuits are equivalent
• Algorithm can simulate a circuit
• Computer is a circuit that runs algorithms!
• Computer really only computes Boolean functions...
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Circuits

Deep Neural Networks as Circuits

• Neural networks are typically described as circuits
• Nearly always implemented as algorithms
• One gate type, the neuron
• Many neurons that receive the same input form a layer
• A cascade of layers is a network
• A deep network has many layers
• Layers with a special constraint are called convolutional

COMPSCI 371D — Machine Learning Deep Convolutional Neural Nets 6 / 25



Neurons, Layers, and Networks

The Neuron
• y = ρ(a(x)) where a = vT x + b

x ∈ Rd , y ∈ R
• v are the gains, b is the bias
• Together, w = [v,b]T are the weights
• ρ(a) = max(0,a) (ReLU, Rectified Linear Unit)
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Neurons, Layers, and Networks

The Neuron as a Pattern Matcher (Almost)
• Left pattern is a drumbeat g (a pattern template):

• Which of the other two patterns x is a drumbeat?
• Normalize both g and x so that ‖g‖ = ‖x‖ = 1
• Then gT x is the cosine of the angle between the patterns
• If gT x ≥ −b for some threshold −b, output a = gT x + b

(amount by which the cosine exceeds the threshold)
otherwise, output 0
• y = ρ(gT x + b)
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Neurons, Layers, and Networks

The Neuron as a Pattern Matcher (Almost)

• y = ρ(gT x + b)
• A neuron is a pattern matcher, except for normalization and

with a partial decision function
• In neural networks, normalization may happen in later or

earlier layers
• This interpretation is not necessary to understand neural

networks
• Nice to have a mental model, though
• Many neurons wired together can approximate any function

we want: A neural network is a universal function
approximator
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Neurons, Layers, and Networks

Layers and Networks
• A layer is a set of neurons that share the same input

y
1

x

d(1)
y y

x

• A neural network is a cascade of layers
• A neural network is deep if it has many layers
• Two layers can make a universal approximator
• If neurons did not have nonlinearities, any cascade of layers

would collapse to a single layer
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Correlation and Convolution

Convolutional Layers

• A layer with input x ∈ Rd and output y ∈ Re has e neurons,
each with d gains and one bias
• Total of (d + 1)e weights to be trained in a single layer
• For images, d ,e are in the order of hundreds of thousands

or even millions
• Too many parameters
• Convolutional layers are layers restricted in a special way
• Many fewer parameters to train
• Also good justification in terms of basic principles
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Correlation and Convolution

Hierarchy, Locality, Reuse
• To find a person, look for a face, a torso, limbs,...
• To find a face, look for eyes, nose, ears, mouth, hair,...
• To find an eye look for a circle, some corners, some curved

edges,...
• A hierarchical image model is less sensitive to viewpoint,

body configuration, ...
• Hierarchy leads to a cascade of layers
• Low-level features are local: A neuron doesn’t need to see

the entire image
• Circles are circles, regardless of where they show up: A

single neuron can be reused to look for circles anywhere in
the image
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Correlation and Convolution

Correlation, Locality, and Reuse
• Does the drumbeat on the left show up in the clip on the

right?

• Drumbeat g has 25 samples, clip x has 100
• Make 100− 25 + 1 = 76 neurons that look for g in every

possible position
• yi = ρ(vT

i x + bi) where vT
i = [0, . . . ,0︸ ︷︷ ︸

i−1

, g0, . . . ,g24︸ ︷︷ ︸
g

, 0, . . .0︸ ︷︷ ︸
76−i

]

• Layer gain matrix V =



g0 · · · g24 0 0 · · · 0
0 g0 · · · g24 0 · · · 0
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Correlation and Convolution

Compact Computation

• Gain matrix V =



g0 · · · g24 0 0 · · · 0
0 g0 · · · g24 0 · · · 0
.
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• Rows of Vx: zi = vT

i x =
∑24

a=0 gaxi+a for i = 0, . . . ,75
• In general,

zi =
k−1∑
a=0

gaxi+a for i = 0, . . . ,e − 1 = 0, . . . ,d − k

• (One-dimensional) correlation
• g is the kernel
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Correlation and Convolution

A Small Example

zi =
2∑

a=0

gaxi+a for i = 0, . . . ,5

z = Vx =


g0 g1 g2 0 0 0 0 0
0 g0 g1 g2 0 0 0 0
0 0 g0 g1 g2 0 0 0
0 0 0 g0 g1 g2 0 0
0 0 0 0 g0 g1 g2 0
0 0 0 0 0 g0 g1 g2

 x

z

x

V
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Correlation and Convolution

Correlation and Convolution

• The correlation of x with g = [g0, . . . ,gk−1] is the convolution
of x with r = [r0, . . . , rk−1] = [gk−1, . . . ,g0]

• There are deep reasons why mathematicians prefer
convolution to correlation
• We do not need to get into these, but see notes
• A layer whose gain matrix V is a correlation matrix is called

a convolutional layer
• Also includes biases b
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Correlation and Convolution

Input Padding
• If the input has d entries and the kernel has k , then the

output has e = d − k + 1 entries
• This shrinkage is inconvenient when cascading several

layers
• Pad input with k −1 zeros to make the output have d entries
• Padding is typically asymmetric when index is time,

symmetric when index is position in space
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• Shape-preserving or ‘same’ correlation or convolution
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Correlation and Convolution

2D Correlation
• Generalize in a straightforward way for 2D images:

zij =

k1−1∑
a=0

k2−1∑
b=0

gab xi+a,j+b

for i = 0, . . . ,e1 − 1 = 0, . . . ,d1 − k1

and j = 0, . . . ,e2 − 1 = 0, . . . ,d2 − k2
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Correlation and Convolution

Stride

• Images often vary slowly over space
• Output zij is often similar to zi,j+1 and zi+1,j

• Reduce the redundancy in the output by computing
correlations with a stride sm greater than one
• Only compute every sm output values in dimension

m ∈ {1,2}
• Output size shrinks from d1 × d2 to about d1/s1 × d2/s2
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Correlation and Convolution

Max Pooling

• Another way to reduce output resolution is max pooling
• This is a layer of its own, separate from correlation
• Consider k × k windows with stride s
• Often s = k (adjacent, non-overlapping windows)
• For each window, output the maximum value
• Output is about d1/s × d2/s
• Returns highest response in window, rather than the

response in a fixed position
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AlexNet

The Input Layer of AlexNet
• AlexNet circa 2012, classifies color images into one of 1000

categories
• Trained on ImageNet, a large database with millions of

labeled images

input x

response maps ρ(a)
convolution 

kernels

feature maps a 

receptive field 
of convolution

max pooling

output 
y = π(ρ(a))

COMPSCI 371D — Machine Learning Deep Convolutional Neural Nets 21 / 25



AlexNet

A more Compact Drawing

input x
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max pooling

output 
y = π(ρ(a))
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AlexNet

AlexNet

27x27x96 13x13x384 13x13x384 13x13x256

5x5 3x3 3x3 3x3

4096x1 4096x1 1000x1

224x224x3

11x11

dense dense dense

55x55x96

COMPSCI 371D — Machine Learning Deep Convolutional Neural Nets 23 / 25



AlexNet

Output

• The last layer of a neural net used for classification is a
soft-max layer
p = σ(y) = exp(y)

1T exp(y)

• The function from x to p is (nearly) differentiable
• Use cross-entropy loss on p to train
• After training, replace loss function with argmaxp
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AlexNet

AlexNet Numbers

• Input is 224× 224× 3 (color image)
• First layer has 96 feature maps of size 55× 55
• A fully-connected layer would have about

224× 224× 3× 55× 55× 96 ≈ 4.4× 1010 weights
• With convolutional kernels of size 11× 11, there are only

96× 112 = 11,616 weights
• That’s a big deal! Locality and reuse
• Most of the complexity is in the last few, fully-connected

layers, which still have millions of parameters
• More recent neural nets have much lighter final layers, but

many more layers
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