Training Neural Nets

COMPSCI 371D — Machine Learning

COMPSCI 371D — Machine Learning

< ロ > < 同 > < 回 > < 回 >

Outline

- 1 The Softmax Simplex
- 2 Loss and Risk
- Back-Propagation
- 4 Stochastic Gradient Descent

< 🗇 > < 🖻 > <

-

The Softmax Simplex

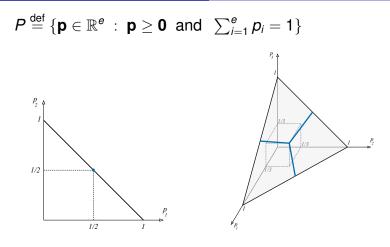
- Neural-net classifier: $\hat{y} = h(\mathbf{x}) : \mathbb{R}^d \to Y$
- The last layer of a neural net used for classification is a soft-max layer

$$\mathbf{p} = \sigma(\mathbf{z}) = rac{\exp(\mathbf{z})}{\mathbf{1}^T \exp(\mathbf{z})}$$

• The net is
$$\mathbf{p} = f(\mathbf{x}, \mathbf{w}) : X \to P$$

- The classifier is $\hat{y} = h(\mathbf{x}) = \arg \max \mathbf{p} = \arg \max f(\mathbf{x}, \mathbf{w})$
- *P* is the set of all nonnegative real-valued vectors **p** ∈ ℝ^e whose entries add up to 1 (with *e* = |*Y*|):

$$P\stackrel{\mathsf{def}}{=} \{\mathbf{p} \in \mathbb{R}^e : \mathbf{p} \geq \mathbf{0} \text{ and } \sum_{c=1}^e p_c = 1\}.$$



- Decision regions are polyhedral: $P_c = \{p_c \ge p_i \text{ for } j \ne c\}$ for $c = 1, \dots, e$
- A network transforms images into points in P

< A >

Loss and Risk (Déjà Vu)

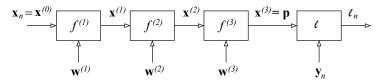
- Ideal loss would be 0-1 loss on network output ŷ
- 0-1 loss is constant where it is differentiable!
- Not useful for computing a gradient
- Use cross-entropy loss on the softmax output p as a proxy loss

$$\ell(y,\mathbf{p}) = -\log p_y$$

- Risk, as usual: $L_T(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_n(\mathbf{w})$ where $\ell_n(\mathbf{w}) = \ell(y_n, f(\mathbf{x}_n, \mathbf{w}))$
- We need $\nabla L_T(\mathbf{w})$ and therefore $\nabla \ell_n(\mathbf{w})$

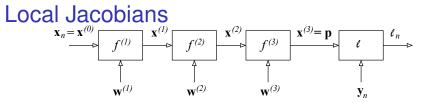
・ 同 ト ・ ヨ ト ・ ヨ ト …

Back-Propagation



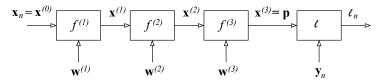
- We need $\nabla L_T(\mathbf{w})$ and therefore $\nabla \ell_n(\mathbf{w}) = \frac{\partial \ell_n}{\partial \mathbf{w}}$
- Computations from **x** to ℓ_n form a chain
- Apply the chain rule
- Every derivative of l_n w.r.t. layers before k goes through x^(k)

$$\frac{\partial \ell_n}{\partial \mathbf{w}^{(k)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(k)}} \frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{w}^{(k)}}$$
$$\frac{\partial \ell_n}{\partial \mathbf{x}^{(k-1)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(k)}} \frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{x}^{(k-1)}} \quad (\text{recursion!})$$
$$\bullet \text{ Start: } \frac{\partial \ell_n}{\partial \mathbf{x}^{(K)}} = \frac{\partial \ell}{\partial \mathbf{p}}$$



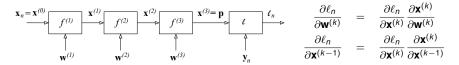
- Local computations at layer k: $\frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{w}^{(k)}}$ and $\frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{x}^{(k-1)}}$
- Partial derivatives of *f*^(*k*) with respect to layer weights and input to the layer
- Local Jacobian matrices, can compute by knowing what the layer does
- The start of the process can be computed from knowing the loss function, $\frac{\partial \ell_n}{\partial \mathbf{x}^{(K)}} = \frac{\partial \ell}{\partial \mathbf{p}}$
- Another local Jacobian

The Forward Pass



- All local Jacobians, $\frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{w}^{(k)}}$ and $\frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{x}^{(k-1)}}$, are computed numerically for the current values of weights $\mathbf{w}^{(k)}$ and layer inputs $\mathbf{x}^{(k-1)}$
- Therefore, we need to know x^(k-1) for training sample n and for all k
- This is achieved by a *forward pass* through the network: Run the network on input \mathbf{x}_n and store $\mathbf{x}^{(0)} = \mathbf{x}_n, \mathbf{x}^{(1)}, \dots$

Back-Propagation Spelled Out for K = 3



(after forward pass)

$$\frac{\partial \ell_n}{\partial \mathbf{x}^{(3)}} = \frac{\partial \ell}{\partial \mathbf{p}}$$

$$\frac{\partial \ell_n}{\partial \mathbf{w}^{(3)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(3)}} \frac{\partial \mathbf{x}^{(3)}}{\partial \mathbf{w}^{(3)}}$$

$$\frac{\partial \ell_n}{\partial \mathbf{x}^{(2)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(3)}} \frac{\partial \mathbf{x}^{(2)}}{\partial \mathbf{x}^{(2)}}$$

$$\frac{\partial \ell_n}{\partial \mathbf{w}^{(2)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(2)}} \frac{\partial \mathbf{x}^{(2)}}{\partial \mathbf{x}^{(2)}}$$

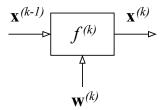
$$\frac{\partial \ell_n}{\partial \mathbf{x}^{(1)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(2)}} \frac{\partial \mathbf{x}^{(2)}}{\partial \mathbf{x}^{(1)}}$$

$$\frac{\partial \ell_n}{\partial \mathbf{w}^{(1)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{x}^{(0)}}$$

$$\frac{\partial \ell_n}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial \ell_n}{\partial \mathbf{w}^{(1)}} \\ \frac{\partial \ell_n}{\partial \mathbf{w}^{(2)}} \\ \frac{\partial \ell_n}{\partial \mathbf{w}^{(3)}} \end{bmatrix}$$

(Jacobians in blue are local, those in red are what we want eventually)

Computing Local Jacobians



$$\frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{w}^{(k)}}$$
 and $\frac{\partial \mathbf{x}^{(k)}}{\partial \mathbf{x}^{(k-1)}}$

- · Easier to make a "layer" as simple as possible
- **z** = V**x** + **b** is one layer (Fully Connected (FC), affine part)
- $\mathbf{z} = \rho(\mathbf{x})$ (ReLU) is another layer
- Softmax, max-pooling, convolutional,...

(口) (同) (三) (三) …

Local Jacobians for a FC Layer

 $\mathbf{z} = \mathbf{V}\mathbf{x} + \mathbf{b}$

- $\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = V$ (easy!)
- $\frac{\partial z}{\partial w}$: What is $\frac{\partial z}{\partial V}$? Three subscripts: $\frac{\partial z_i}{\partial v_{jk}}$. A 3D tensor?
- For a general package, tensors are the way to go
- Conceptually, it may be easier to vectorize everything:

$$m{V} = \left[egin{array}{ccc} m{v}_{11} & m{v}_{12} & m{v}_{13} \ m{v}_{21} & m{v}_{22} & m{v}_{23} \end{array}
ight], \ \ m{b} = \left[egin{array}{ccc} m{b}_1 \ m{b}_2 \end{array}
ight]
ightarrow \ m{w} = [m{v}_{11}, m{v}_{12}, m{v}_{13}, m{v}_{21}, m{v}_{22}, m{v}_{23}, m{b}_1, m{b}_2]^T$$

- $\frac{\partial z}{\partial w}$ is a 2 × 8 matrix
- With *e* outputs and *d* inputs, an $e \times e(d+1)$ matrix

・ 同 ト ・ ヨ ト ・ ヨ ト …

Jacobian_w for a FC Layer

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} w_7 \\ w_8 \end{bmatrix}$$

Don't be afraid to spell things out:

 $z_1 = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_7$

$$z_2 = w_4 x_1 + w_5 x_2 + w_6 x_3 + w_8$$

$$\frac{\partial \mathbf{z}}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial z_1}{\partial w_1} & \frac{\partial z_1}{\partial w_2} & \frac{\partial z_1}{\partial w_3} & \frac{\partial z_1}{\partial w_4} & \frac{\partial z_1}{\partial w_5} & \frac{\partial z_1}{\partial w_6} & \frac{\partial z_1}{\partial w_7} & \frac{\partial z_1}{\partial w_8} \\ \frac{\partial z_2}{\partial w_1} & \frac{\partial z_2}{\partial w_2} & \frac{\partial z_2}{\partial w_3} & \frac{\partial z_2}{\partial w_4} & \frac{\partial z_2}{\partial w_5} & \frac{\partial z_2}{\partial w_6} & \frac{\partial z_2}{\partial w_7} & \frac{\partial z_2}{\partial w_8} \end{bmatrix}$$
$$\frac{\partial \mathbf{z}}{\partial \mathbf{w}} = \begin{bmatrix} x_1 & x_2 & x_3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & x_1 & x_2 & x_3 & 0 & 1 \end{bmatrix}$$

- Obvious pattern: Repeat x^T, staggered, e times
- Then append the e × e identity at the end

Training

- Compute $\nabla \ell_n(\mathbf{w}) = \nabla \ell(\mathbf{y}_n, h(\mathbf{x}_n); \mathbf{w})$
- Loop over T to compute $\nabla L_T(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^N \nabla \ell_n(\mathbf{w})$
- $\hat{\mathbf{w}} = \arg\min L_T(\mathbf{w})$
- $L_T(\mathbf{w})$ is (very) non-convex, so we look for local minima
- $\mathbf{w} \in \mathbb{R}^m$ with *m* very large: No Hessians
- Gradient descent
- Even so, every step calls back-propagation N times
- Back-propagation computes *m* derivatives ∇ℓ_n(**w**)
- Computational complexity is Ω(*mN*) *per step*
- Even gradient descent is way too expensive!

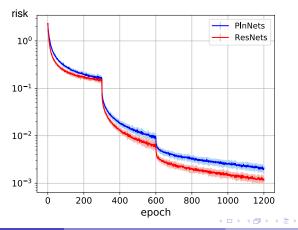
-

No Line Search

- Line search is out of the question
- Fix some step multiplier α, called the *learning rate* w_{t+1} = w_t α∇L_T(w_t)
- How to pick α? Cross-validation is too expensive
- Tradeoffs:
 - α too small: Slow progress
 - *α* too big: Jump over minima
- Frequent practice:
 - Start with α relatively large, and monitor L_T(w)
 - When $L_T(\mathbf{w})$ levels off, decrease α
- Alternative: Fixed decay schedule for α
- Another (recent) option: Change α adaptively (Adam, 2015, later improvements)

Manual Adjustment of α

- Start with α relatively large, and monitor L_T(w_t)
- When $L_T(\mathbf{w}_t)$ levels off, decrease α
- Typical plots of $L_T(\mathbf{w}_t)$ versus iteration index *t*:



Batch Gradient Descent (Review)

- We have seen GD and SGD under function optimization
- We review these as they are crucial for neural networks
- $\nabla L_T(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^N \nabla \ell_n(\mathbf{w})$
- Taking a macro-step −α∇L_T(**w**_t) is the same as taking the *N* micro-steps −^α/_N∇ℓ₁(**w**_t),..., −^α/_N∇ℓ_N(**w**_t)
- First compute all the *N* steps at **w**_t, then take all the steps
- Thus, standard gradient descent is a *batch* method:
 Compute the gradient at w_t using the entire batch of data, then move
- Even with no line search, N micro-steps are expensive
- Can we spend the same amount of effort more effectively?

э

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Stochastic Gradient Descent (Review)

- Taking a macro-step −α∇L_T(**w**_t) is the same as taking the *N* micro-steps −^α/_N∇ℓ₁(**w**_t),..., −^α/_N∇ℓ_N(**w**_t)
- First compute all the *N* steps at **w**_t, then take all the steps
- Can we spend the same amount of effort more effectively?
- Key observation: -∇ℓ_n(**w**) is a poor estimate of -∇L_T(**w**), but an estimate all the same: Micro-steps are correct on average!
- After each micro-step, we are on average in a better place
- How about *computing a new micro-gradient after every micro-step*?
- Now each micro-step gradient is evaluated at a point that is on average better (lower risk) than in the batch method

-

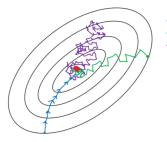
Batch vs Stochastic GD (Review)

- $\mathbf{s}_n(\mathbf{w}) = -rac{lpha}{N}
 abla \ell_n(\mathbf{w})$
- Batch:
 - Compute $\mathbf{s}_1(\mathbf{w}_t), \ldots, \mathbf{s}_N(\mathbf{w}_t)$
 - Move by s₁(w_t), then s₂(w_t), ... then s_N(w_t) (or equivalently move once by s₁(w_t) + ... + s_N(w_t))
- Stochastic (SGD):
 - Compute s₁(w_t), then move by s₁(w_t) from w_t to w⁽¹⁾_t
 - Compute $\mathbf{s}_2(\mathbf{w}_t^{(1)})$, then move by $\mathbf{s}_2(\mathbf{w}_t^{(1)})$ from $\mathbf{w}_t^{(1)}$ to $\mathbf{w}_t^{(2)}$
 - Compute $\mathbf{s}_N(\mathbf{w}_t^{(N-1)})$, then move by $\mathbf{s}_N(\mathbf{w}_t^{(N-1)})$ from $\mathbf{w}_t^{(N-1)}$ to $\mathbf{w}_t^{(N)} = \mathbf{w}_{t+1}$
- In SGD, each micro-step is taken from a better (lower risk) place on average than in batch descent

(日)

Why "Stochastic?" (Review)

- Progress occurs only on average
- Many micro-steps are bad, but they are good on average
- Progress is a random walk



- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

< ロ > < 同 > < 回 > < 回 > < 回 > <

https://towardsdatascience.com/

Reducing Variance: Mini-Batches (Review)

- Each data sample is a poor estimate of *T*: High-variance micro-steps
- Each micro-step take full advantage of the estimate, by moving right away: Lower-bias micro-steps than batch steps
- High variance may hurt more than low bias helps
- Can we lower variance at the expense of slightly increased bias?
- Average B samples at a time: Take mini-steps
- With bigger *B*,
 - Higher bias
 - Lower variance
- The *B* samples are a *mini-batch*

э

Mini-Batches (Review)

- Scramble *T* at random (*T* has *N* samples)
- Divide T into J mini-batches T_j of size B, so $N \approx JB$
- ${f w}^{(0)} = {f w}$
- For *j* = 1, . . . , *J*:
 - Batch gradient: $\mathbf{g}_{j} = \nabla L_{T_{j}}(\mathbf{w}^{(j-1)}) = \frac{1}{B} \sum_{n=(j-1)B+1}^{jB} \nabla \ell_{n}(\mathbf{w}^{(j-1)})$ • Move: $\mathbf{w}^{(j)} = \mathbf{w}^{(j-1)} = \mathbf{g}$
 - Move: $\mathbf{w}^{(j)} = \mathbf{w}^{(j-1)} \alpha \mathbf{g}_j$
- This for loop amounts to one macro-step
- Each execution of the entire loop uses the training data once
- Each execution of the entire loop is an epoch
- Repeat over several epochs until a stopping criterion is met

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト