What We Did Not Cover

COMPSCI 371D — Machine Learning

COMPSCI 371D — Machine Learning

< ロ > < 同 > < 回 > < 回 > < 回 > <

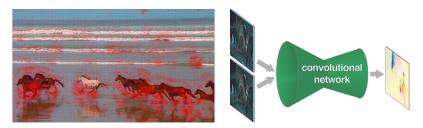
What We Did Not Cover

- Much More Detail
- 2 Statistical Machine Learning
- Other Supervised Techniques
- 4 Reducing the Burden of Labeling
- Onsupervised Methods
- 6 Addressing Multiple Learning Tasks Together
- Prediction over Time

・ 同 ト ・ ヨ ト ・ ヨ ト

Much More Detail

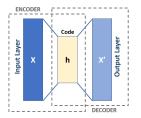
- Computationally efficient training algorithms: Optimization techniques
- Deep learning architectures for special problems: Image motion analysis, video analysis, ...



< D > < P > < E > <</pre>

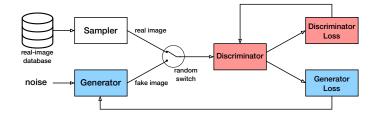
Beyond Discriminative Neural Networks

- Abstraction for its own sake: Auto-encoders
- A game-theoretical technique to draw from a distribution: Generative Adversarial Networks



Which image is fake?

Generative Adversarial Networks



- Discriminator guesses if input is real or fake
- Discriminator loss penalizes wrong predictions
- Generator loss penalizes correct predictions
- After training keep only the generator

・ 同 ト ・ ヨ ト ・ ヨ

Statistical Machine Learning

- How to measure the size of \mathcal{H} : Vapnik-Chervonenkis dimension, Rademacher complexity
- How large must *T* be to get an *h* that is within *ϵ* of a performance target with probability greater than 1 *δ*: Probably Approximately Correct (PAC) learning
- *H* is *learnable* if there exists a size of *T* that is large enough for this goal to be achieved
- Which $\mathcal{H}s$ are learnable?
- How large must S be to get a performance measure accurate within ε: Concentration bounds, statistical estimation theory, PAC-like techniques

Other Supervised Techniques

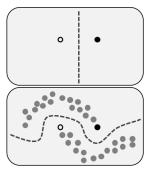
- Boosting: How to use many bad predictors to make one good one
 - Similar in principle to ensemble predictors, different assumptions and techniques
- Learning to rank

Example: Learning a better Google

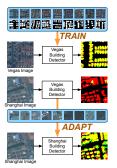
< ロ > < 同 > < 回 > < 回 > < 回 > <

Reducing the Burden of Labeling

- Semi-supervised methods: Build models of the data x to leverage sparse labels y
- Domain adaptation: Train a classifier on source-domain labeled data (x, y) and target-domain unlableled data x so that is works well in the target domain

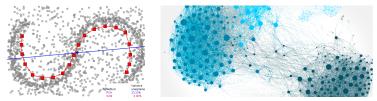


https://en.wikipedia.org



Unsupervised Methods

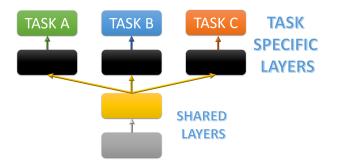
- Dimensionality reduction:
 - Compressing $X \subseteq \mathbb{R}^d$ to $X' \subseteq \mathbb{R}^{d'}$ with $d' \ll d$
 - Principal or Independent Component Analysis (PCA, ICA)
 - Manifold learning, GANs
- Clustering:
 - K-means
 - Expectation-Maximization
 - Agglomerative methods
 - Splitting methods



< D > < A > < B >

Addressing Multiple Learning Tasks Together

 Multi-task learning: How to learn representations that are common to different but related prediction tasks



Prediction over Time

- State-space methods
 - Time series analysis
 - Stochastic state estimation
 - System identification
- Recurrent neural networks
- Reinforcement learning: Actions over time Learning policies underlying observed sequences

