
17
A Practical Architecture for an Anycast CDN

HUSSEIN A. ALZOUBI, Case Western Reserve University
SEUNGJOON LEE, AT&T Research
MICHAEL RABINOVICH, Case Western Reserve University
OLIVER SPATSCHECK and JACOBUS VAN DER MERWE, AT&T Research

IP Anycast has many attractive features for any service that involve the replication of multiple instances
across the Internet. IP Anycast allows multiple instances of the same service to be “naturally” discovered,
and requests for this service to be delivered to the closest instance. However, while briefly considered as an
enabler for content delivery networks (CDNs) when they first emerged, IP Anycast was deemed infeasible
in that environment. The main reasons for this decision were the lack of load awareness of IP Anycast and
unwanted side effects of Internet routing changes on the IP Anycast mechanism.

In this article we re-evaluate IP Anycast for CDNs by proposing a load-aware IP Anycast CDN architec-
ture. Our architecture is prompted by recent developments in route control technology, as well as better
understanding of the behavior of IP Anycast in operational settings. Our architecture makes use of route
control mechanisms to take server and network load into account to realize load-aware Anycast. We show
that the resulting redirection requirements can be formulated as a Generalized Assignment Problem and
present practical algorithms that address these requirements while at the same time limiting connection
disruptions that plague regular IP Anycast. We evaluate our algorithms through trace based simulation
using traces obtained from a production CDN network.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design; C.2.5 [Computer-Communication Networks]: Local and Wide-Area Networks

General Terms: Performance, Algorithms, Design

Additional Key Words and Phrases: Anycast, content delivery networks, autonomous system, load
balancing, routing

ACM Reference Format:
Alzoubi, H. A., Lee, S., Rabinovich, M., Spatscheck, O., and Van Der Merwe, J. 2011. A practical architecture
for an Anycast CDN. ACM Trans. Web 5, 4, Article 17 (October 2011), 29 pages.
DOI = 10.1145/2019643.2019644 http://doi.acm.org/10.1145/2019643.2019644

1. INTRODUCTION

The use of the Internet to distribute media content continues to grow. The media con-
tent in question runs the gambit from operating system patches and gaming software,

The preliminary version of this article appeared in Proceedings of the 17th International World Wide Web
Conference (WWW’08).
This material is based on work supported in part by the National Science Foundation under Grant No. CNS-
0615190. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Author’s addresses: H. A. Alzoubi and M. Rabinovich, Case Western Reserve University, Electrical Engi-
neering & Computer Science, 10900 Euclid Avenue, Cleveland, OH 44106-7071; email: {Hussein.Alzoubi,
Michael.Rabinovich@case.edu; S. Lee, O. Spatscheck, and J. Van der Merwe, AT&T Research Labs, 180 Park
Ave., Florham Park, NJ 07932; email: {slee, spatsch, kobus}@research.att.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1559-1131/2011/10-ART17 $10.00

DOI 10.1145/2019643.2019644 http://doi.acm.org/10.1145/2019643.2019644

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:2 H. A. Alzoubi et al.

to more traditional Web objects and streaming events and more recently user gener-
ated video content [Cha et al. 2007]. Because of the often bursty nature of demand for
such content [Jung et al. 2002], and because content owners require their content to
be highly available and be delivered in timely manner without impacting presentation
quality [Reibman et al. 2004], content distribution networks (CDNs) have emerged
over the last decade as a means to efficiently and cost effectively distribute media
content on behalf of content owners.

The basic architecture of most CDNs is simple enough, consisting of a set of CDN
nodes distributed across the Internet [Biliris et al. 2001]. These CDN nodes serve as
proxies where users (or “eyeballs” as they are commonly called) retrieve content from
the CDN nodes, using a number of standard protocols. The challenge to the effective
operation of any CDN is to send eyeballs to the “best” node from which to retrieve the
content, a process normally referred to as “redirection” [Barbir et al. 2003]. Redirec-
tion is challenging, because not all content is available from all nodes, not all nodes
are operational at all times, nodes can become overloaded and, perhaps most impor-
tantly, an eyeball should be directed to a node that is in close proximity to it to ensure
satisfactory user experience.

Because virtually all Internet interactions start with a domain name system (DNS)
query to resolve a hostname into an IP address, the DNS system provides a convenient
mechanism to perform the redirection function [Barbir et al. 2003]. In this mechanism,
the DNS system operated by the CDN receives queries for hostnames of the accelerated
URLs and resolves them into the IP address of a CDN node that the DNS system se-
lects for a given query. Most commercial CDNs make use of this mechanism to perform
redirection. DNS-based redirection, however, exhibits several well-known limitations.
First, in DNS-based redirection, the client sends its DNS query through its local DNS
server, and the CDN’s DNS system only knows the latter when making its redirection
decision. In other words, the actual eyeball request is not redirected, rather the local
DNS server of the eyeball is redirected [Barbir et al. 2003]. Unfortunately, not all eye-
balls are in close proximity to their local-DNS servers [Mao et al. 2002; Shaikh et al.
2001], and what might be a good CDN node for a local DNS server is not necessarily
good for all of its eyeballs. Second, the DNS system was not designed for very dynamic
changes in the mapping between hostnames and IP addresses. As a consequence, the
local DNS server can cache and reuse its DNS query responses for a certain period
of time and for multiple clients. This complicates load distribution decisions for the
CDN by limiting the granularity of its control over load balancing; furthermore, be-
cause the number of eyeballs behind a local DNS server is unknown to the CDN, the
amount of load on a CDN node resulting from a single redirection decision can be diffi-
cult to predict. This problem can be mitigated significantly by having the DNS system
make use of very short time-to-live (TTL) values, which control the extent of the DNS
response reuse. However, a rather common practice of caching DNS queries by local-
DNS servers, and especially certain browsers, beyond specified TTL means that this
remains an issue [Pang et al. 2004]. Finally, the DNS-based redirection assumes that
the CDN explicitly selects a nearby CDN node for the originator of a given DNS query.
To know the distance between any two IP addresses on the Internet requires a complex
measurement infrastructure.

In this work we revisit IP anycast as redirection technique, which, although
examined early in the CDN evolution process [Barbir et al. 2003], was considered
infeasible at the time. IP anycast refers to the ability of the IP routing and forwarding
architecture to allow the same IP address to be assigned to multiple endpoints, and to
rely on Internet routing to select between these different endpoints. Endpoints with
the same IP address are then typically configured to provide the same service. For
example, IP anycast is commonly used to provide redundancy in the DNS root-server

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:3

deployment [Hardie 2002]. Similarly, in the case of a CDN, all endpoints with the
same IP anycast address can be configured to be capable of serving the same content.

Because it fits seamlessly into the existing Internet routing mechanisms, IP any-
cast packets are routed “optimally” from an IP forwarding perspective. That is, for a
set of anycast destinations within a particular network, packets are routed along the
shortest path and thus follow a proximally optimal path from a network perspective.
Packets traveling towards a network advertising an IP anycast prefix, will similarly
follow the most proximal path towards that destination within the constraints of the
inter-provider peering agreements along the way.

From a CDN point of view, however, there are a number of problems with IP anycast.
First, because it is tightly coupled with the IP routing apparatus, any routing change
that causes anycast traffic to be re-routed to an alternative instance of the destination
IP anycast address may cause a session reset to any session-based traffic such as TCP.
Second, because the IP routing infrastructure only deals with connectivity, and not the
quality of service achieved along those routes, IP anycast likewise is unaware of and
can not react to network conditions. Third, IP anycast is similarly not aware of any
server (CDN node) load, and therefore cannot react to node overload conditions. For
these reasons, IP anycast was originally not considered a viable approach as a CDN
redirection mechanism.

Our revisiting of IP anycast as a redirection mechanism for CDNs was prompted
by two recent developments. First, route control mechanisms have recently been de-
veloped that allow route selection within a given autonomous system to be informed
by external intelligence [Duffield et al. 2007; Van der Merwe et al. 2006; Verkaik et al.
2007]. Second, recent anycast-based measurement work [Ballani et al. 2006] shed light
on the behavior of IP anycast, as well as the appropriate way to deploy IP anycast to
facilitate proximal routing.

Based on these developments, we design a practical load-aware IP anycast CDN
architecture for the case when the CDN is deployed within a single global network,
such as AT&T’s ICDS content delivery service [ATT ICDS 2010]. When anycast end-
points are within the same network provider, the route control mechanism can install
a route from a given network entry point to the anycast end-point deemed the most
appropriate for this entry point; in particular, both CDN node load and internal net-
work conditions can be taken into account. This addresses the load-awareness concern
and in part the route quality of service concern – although the latter only within the
provider domain. Route control also deals with the concern about resetting sessions be-
cause of route changes. We note that in practice there are two aspects of this problem:
(i) Route changes within a network that deploys IP anycast addresses and (ii) Route
changes outside of the network which deploys anycast IP addresses. Route control
mechanisms can easily deal with the first aspect preventing unnecessary switching
between anycast addresses within the network. As for route changes outside of the IP
anycast network, the study in Ballani et al. [2006] has shown that most IP prefixes
exhibit very good affinity, that is, would be routed along the same path towards the
anycast enabled network.

An anycast CDN is free of the limitations of DNS-based CDNs: it redirects actual
client demand rather than local DNS servers and thus is not affected by the distance
between eyeballs and their local CDN servers; it is not impacted by DNS caching;
and it obviates the need for determining proximity between CDN nodes and external
destinations. Yet it introduces its own limitations. First, it delivers client requests
to the nearest entry point of the CDN network with regard to the forward path from
the client to the CDN network. However, due to route asymmetry, this may not pro-
duce the optimal reverse path used by response packets. Second, while route control
can effectively account for network conditions inside the CDN’s autonomous system,

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:4 H. A. Alzoubi et al.

Fig. 1. Load-aware anycast CDN architecture.

external parts of the routes are purely the result of BGP routing. Thus, an obvious
question, which we could not answer with the data available, is the end-to-end perfor-
mance comparison between the anycast and DNS CDNs. Our contribution is rather to
make the case that, contrary to the common view, anycast CDN is a viable approach
to build a content delivery platform and that it improves the operation of the CDN in
comparison with an existing DNS-based approach within the CDN’s network. The key
aspects of this contribution are as follows.

— We present a practical anycast CDN architecture that utilizes server and net-
work load feedback to drive route control mechanisms to realize CDN redirection
(Section 2).

— We formulate the required load balancing algorithm as a Generalized Assignment
Problem and present practical algorithms for this NP-hard problem that take into
consideration the practical constraints of a CDN (Section 3).

— Using server logs from an operational production CDN (Section 4), we evaluate our
algorithms by trace driven simulation and illustrate their benefit by comparing with
native IP anycast and an idealized load-balancing algorithm, as well as with the
current DNS-based approach (Section 5).

2. ARCHITECTURE

In this section we first describe the workings of a load-aware anycast CDN and briefly
discuss the pros and cons of this approach vis-a-vis more conventional CDN architec-
tures. We also give an informal description of the load-balancing algorithm required
for our approach before describing it more formally in later sections.

2.1.. Load-Aware Anycast CDN

Figure 1 shows a simplified view of a load-aware anycast CDN. We assume a single
autonomous system (AS) in which IP anycast is used to reach a set of CDN nodes
distributed within the AS. For simplicity we show two such CDN nodes, A and B in
Figure 1. In the rest of this article, we use the terms “CDN node” and “content server”
interchangeably. We further assume that the AS in question has a large footprint in
the country or region in which it will be providing CDN service; for example, in the US,

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:5

Tier-1 ISPs have this kind of footprint.1 Our article investigates synergistic benefits
of having control over the PEs of a CDN. We note that these assumptions are both
practical, and, more importantly, a recent study of IP anycast [Ballani et al. 2006] has
shown this to be the ideal type of deployment to ensure good proximity properties.2

Figure 1 also shows the route controller component that is central to our ap-
proach [Van der Merwe et al. 2006; Verkaik et al. 2007]. The route controller activates
routes with provider edge (PE) routers in the CDN provider network. As described
in Van der Merwe et al. [2006], this mechanism involves pre-installed MPLS tunnels
routes for a destination IP address (an anycast address in our case) from each PE to
every other PE. Thus, to activate a route from a given PE PEi to another PE PE j, the
controller only needs to signal PEi to start using an appropriate MPLS label. In par-
ticular, route change does not involve any other routers and in this sense is an atomic
operation.

The route controller can use this mechanism to influence the anycast routes selected
by the ingress PEs. For example, in Figure 1, to direct packets entering through PE
PE1 to the CDN node B, the route controller would signal PE1 to activate the MPLS
tunnel from PE1 to PE5; to send these packets to node A instead, the route controller
would similarly activate the tunnel from PE1 to PE0. For our purposes, the route
controller takes as inputs, ingress load from the PEs at the edge of the network, server
load from the CDN nodes for which it is performing redirection, and the cost matrix
of reaching a given CDN server from a given PE to compute the routes in accordance
with the algorithms described in Section 3.

The load-aware anycast CDN then functions as follows (with reference to Figure 1).
All CDN nodes that are configured to serve the same content (A and B), advertise
the same IP anycast address into the network via BGP (respectively through PE0 and
PE5). PE0 and PE5 in turn advertise the anycast address to the route controller, which
is responsible to advertise the (appropriate) route to all other PEs in the network (PE1
to PE4). These PEs in turn advertise the route via eBGP sessions with peering routers
(PEa to PEd) in neighboring networks so that the anycast address becomes reachable
throughout the Internet (in the figure represented by access networks I and II).

Request traffic for content on a CDN node will follow the reverse path. Thus, a
request will come from an access network, and enter the CDN provider network via
one of the ingress routers PE1 to PE4. In the simple setup depicted in Figure 1, such
request traffic will then be forwarded to either PE0 or PE5 en-route to one of the CDN
nodes.

Based on the two load feeds (ingress PE load and server load) provided to the route
controller, it can decide which ingress PE (PE1 to PE4) to direct to which egress PE
(PE0 or PE5). By assigning different PEs to appropriate CDN nodes, the route con-
troller can minimize the network costs of processing the demand and distributed the
load among the CDN nodes.

In summary, our approach utilizes the BGP-based proximity property of IP anycast
to deliver clients packets to nearest ingress PEs. These external portions of the paths
of anycast packets are determined purely by inter-AS BGP routes. Once packets enter
the provider network, it is the route controller that decides where these packets will be
delivered through mapping ingress PEs to content servers. The route controller makes
these decisions taking into account both network proximity of the internal routes and
server loads.

1http://www.business.att.com, http://www.level3.com
2Note that while our focus in this work is on anycast CDNs, we recognize that these conditions can not al-
ways be met in all regions where a CDN provider might provide services, which suggests that a combination
of redirection approaches might be appropriate.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:6 H. A. Alzoubi et al.

2.2. Objectives and Benefits

We can summarize the goals of the architecture described above as follows: (i) To uti-
lize the natural IP anycast proximity properties to reduce the distance traffic is carried
towards the CDN’s ISP; (ii) To react to overload conditions on CDN servers by steering
traffic to alternative CDN servers; (iii) To minimize the disruption of traffic that results
when ongoing sessions are being re-mapped to alternative CDN servers. Note that this
means that “load-balancing” per server is not a specific goal of the algorithm: while
CDN servers are operating within acceptable engineering loads, the algorithm should
not attempt to balance the load. On the other hand, when overload conditions are
reached, the system should react to deal with that, while not compromising proximity.

A major advantage of our approach over DNS-based redirection systems is that
the actual eyeball request is being redirected, as opposed to the local-DNS request in
the case of DNS-based redirection. Further, with load-aware anycast, any redirection
changes take effect very quickly, because PEs immediately start to route packets based
on their updated routing table. In contrast, DNS caching by clients (despite short
TTLs) typically results in some delay before redirection changes have an effect.

The granularity of load distribution offered by our route control approach is at the
PE level. For large tier-1 ISPs the number of PEs is typically in the high hundreds to
low thousands. A possible concern for our approach is whether PE granularity will be
sufficiently fine grained to adjust load in cases of congestion. Our results in Section 5
indicate that even with PE-level granularity we can achieve significant performance
benefits in practice.

Obviously, with enough capacity, no load balancing would ever be required. How-
ever, a practical platform needs to have load-balancing ability to cope with unexpected
events such as flash crowd and node failures, and to flexibly react to even more grad-
ual demand changes because building up physical capacity of the platform is a very
coarse-grain procedure. Our experiments will show that our architecture can achieve
effective load balancing even under constrained resource provisioning.

Before we describe and evaluate redirection algorithms that fulfill these goals, we
briefly describe two other CDN-related functions enabled by our architecture that are
not further elaborated upon in this article.

2.3. Dealing with Long-Lived Sessions

Despite increased distribution of rich media content via the Internet, the average Web
object size remains relatively small [King 2006]. This means that download sessions
for such Web objects will be relatively short lived with little chance of being impacted
by any anycast re-mappings in our architecture. The same is, however, not true for
long-lived sessions, for example, streaming or large file download [Van der Merwe
et al. 2002]. (Both of these expectations are validated with our analysis of connections
disruption count in Section 5.)

In our architecture, we deal with this by making use of an additional application
level redirection mechanisms after a particular CDN node has been selected via our
load-aware IP Anycast redirection. This interaction is depicted in Figure 2. As before
an eyeball will perform a DNS request that will be resolved to an IP Anycast address
(i and ii). The eyeball will attempt to request the content using this address (iii), how-
ever, the CDN node will respond with an application level redirect (iv) [Van der Merwe
et al. 2003] containing a unicast IP address associated with this CDN node, which the
eyeball will use to retrieve the content (v). This unicast address is associated only
with this CDN node, and the eyeball will therefore continue to be serviced by the same
node regardless of routing changes along the way. While the additional overhead as-
sociated with application level redirection is clearly unacceptable when downloading

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:7

Fig. 2. Application level redirection for long-lived sessions.

small Web objects, it is less of a concern for long-lived sessions where the startup over-
head is amortized.

In parallel work, we proposed an alternative approach to handle extremely large
downloads using anycast, without relying on HTTP redirection [Al-Qudah et al. 2009].
Instead, the approach in Al-Qudah et al. [2009] recovers from an disruption by reis-
suing the HTTP request for the remainder of the object using a range HTTP request.
The CDN could then trigger these disruptions intentionally to switch the user to a dif-
ferent server mid-stream if the conditions change. However, that approach requires a
browser extension.

Recently, some CDNs started moving into utility (also known as cloud) comput-
ing arena, by deploying applications at the CDN nodes. In this environment, appli-
cations often form long-lived sessions that encompass multiple HTTP requests, with
individual requests requiring the entire session state to execute correctly. Commer-
cial application servers, including both Weblogic and Websphere, allow servers to form
a wide-area cluster where each server in the cluster can obtain the session state af-
ter successfully receiving any HTTP request in a session. Based on this feature, our
approach for using anycast for request redirection can apply to this emerging CDN
environment.

2.4. Dealing with Network Congestion

As previously described, the load-aware CDN architecture only takes server load into
account in terms of being “load-aware”. (In other words, the approach uses network
load information in order to effect the server load, but does not attempt to steer traffic
away from network hotspots). The Route Control architecture, however, does allow for
such traffic steering [Van der Merwe et al. 2006]. For example, outgoing congested
peering links can be avoided by redirecting response traffic on the PE connecting to
the CDN node (e.g., PE0 in Figure 1), while incoming congested peering links can
be avoided by exchanging BGP Multi-Exit Discriminator (MED) attributes with ap-
propriate peers [Van der Merwe et al. 2006]. We leave the full development of these
mechanisms for future work.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:8 H. A. Alzoubi et al.

3. REMAPPING ALGORITHM

The algorithm for assigning PEs to CDN nodes has two main objectives. First, we
want to minimize the service disruption due to load balancing. Second, we want to
minimize the network cost of serving requests without violating server capacity con-
straints. In this section, after presenting an algorithm that minimizes the network
cost, we describe how we use the algorithm to minimize service disruption.

3.1. Problem Formulation

Our system has m servers, where each server i can serve up to Si concurrent requests.
A request enters the system through one of n ingress PEs, and each ingress PE j
contributes rj concurrent requests. We consider a cost matrix cij for serving PE j at
server i. Since cij is typically proportional to the distance between server i and PE j
as well as the traffic volume rj, the cost of serving PE j typically varies with different
servers.

The first objective we consider is to minimize the overall cost without violating the
capacity constraint at each server. The problem is called Generalized Assignment Prob-
lem (GAP) and can be formulated as the following integer linear optimization prob-
lem [Shmoys and Tardos 1993].

minimize
m∑

i=1

n∑

j=1

cijxij

subject to
m∑

i=1

xij = 1, ∀ j

n∑

j=1

rjxij ≤ Si, ∀i

xij ∈ {0, 1}, ∀i, j

where indicator variable xij=1 iff server i serves PE j, and xij=0 otherwise. Note that
this formulation reflects our “provider-centric” perspective with the focus on minimiz-
ing the costs on the network operator. In particular, the model favors overall cost
reduction even if this means redirecting some load to a far-away server. In principle,
one could bound the proximity degradation for any request by adding a constraint that
no PE be assigned to a content server more than k times farther away than the clos-
est server. In practice, however, as we will see later (Figure 9), the penalty for a vast
majority of requests is very small relative to the current system.

When xij is an integer, finding an optimal solution to GAP is NP-hard, and even
when Si is the same for all servers, no polynomial algorithm can achieve an approxi-
mation ratio better than 1.5 unless P=NP [Shmoys and Tardos 1993]. Recall that an
α-approximation algorithm always finds a solution that is guaranteed to be at most a
times the optimum.

Shmoys and Tardos [1993] present an approximation algorithm (called ST-algorithm
in this article) for GAP, which involves a relaxation of the integrality constraint and
a rounding based on a fractional solution to the LP relaxation. It first obtains the
initial total cost value C using linear programming optimization, by removing the re-
striction that xij be integer (in which case, this problem formulation becomes an LP
optimization problem). Then, using a rounding scheme based on the fractional solu-
tion, the algorithm finds an integer solution whose total cost is at most C and the load
on each server is at most Si+max rj. ST-algorithm forms the basis for the traffic control
decisions in our approach, as discussed in rest of this section.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:9

In our approach, the route controller periodically re-examines the PE-to-server as-
signments and computes a new assignment if necessary using a remapping algorithm.
We call the period between consecutive runs of the mapping algorithm the remapping
interval. We explore two remapping algorithms: one that attempts to minimize the
cost of processing the demand from the clients (thus always giving cost reduction a
priority over connection disruption), and the other that attempts to minimize the con-
nection disruptions even if this leads to cost increase.

3.2. Minimizing Cost

Algorithm 1. Minimum Cost Algorithm
INPUT: Offered Load[j] for each PE j, Current Load[i] for each server i, and cost matrix
Cost[Servers][PEs] {as Miles*Mbps}
Run expanded ST-algorithm
{Post Processing}
repeat

Find the most overloaded server i;
Let Pi be the set of PEs served by i. Map PEs from Pi to i, in the descending order of
Offered Load, until i reaches it capacity
Remap(i, {the set of still-unmapped PEs from Pi})

until None of the servers is overloaded OR No further remapping would help
return
...
Remap(Server: i, PE Set: F):
for all j in F, in the descending order of Offered Load: do

Find server q with the minimum Cost[][j]] and enough residual capacity for Offered Load[j]
Find server t with the highest residual capacity
if q exists and q != i then

Remap j to q
else

Map j to t {t is less overloaded than i}
end if

end for

The remapping algorithm for minimizing costs is shown in pseudocode as Algo-
rithm 1. It begins by running what we refer to as expanded ST-algorithm to try to
find a feasible solution as follows. We first run ST-algorithm with given server capac-
ity constraints, and if it could not find a solution (which means the load is too high to be
satisfied within the capacity constraints at any cost), we increase the capacity of each
server by 10% and try to find a solution again.3 In our experiments, we set the max-
imum number of tries at 15, after which we give up on computing a new remapping
and retain the existing mapping scheme for the next remapping interval. However,
in our experiments, the algorithm found a solution for all cases and never skipped a
remapping cycle.

Note that ST-algorithm can lead to server overload (even relative to the increased
server capacities), although the overload amount is bounded by max rj. In practice,
the overload volume can be significant since a single PE can contribute a large re-
quest load (e.g., 20% of server capacity). Thus, we use the following post-processing on

3Note that the capacity constraints are just parameters in the algorithm and in practice assigned to be less
than the physical capacity of the servers.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:10 H. A. Alzoubi et al.

the solution of ST-algorithm to find a feasible solution without violating the (possibly
increased) server capacities.

We first identify the most overloaded server i, and then among all the PEs served
by i, find the set of PEs F (starting from the least-load PE) such that server i’s load
becomes below the capacity Si after off-loading F. Then, starting with the highest-load
PEs among F, we offload each PE j to a server with enough residual capacity q, as
long as the load on server i is above Si. (If there are multiple such servers for j, we
choose the one with minimum cost to j, although other strategies such as best-fit are
possible.) If there is no server with enough capacity, we find server t with the highest
residual capacity and see if the load on t after acquiring j is lower than the current
load on i. If so, we off-load PE j to server t even when the load on t goes beyond St,
which will be fixed in a later iteration.

Once the overload of server i is resolved, we repeat the whole process with then-
highest overloaded server. Note that the overload comparison between i and t ensures
the monotonic decrease of the maximum overload in the system and therefore termina-
tion of the algorithm either because there are no more overloaded servers in the system
or “repeat” post-processing loop could further offload any of the overloaded servers.

3.3. Minimizing Connection Disruption

Algorithm 2. Minimum Disruption Algorithm
INPUT: Offered Load[j] for each PE j, Current Load[i] for each server i, and cost matrix
Cost[Servers][PEs] {as Miles*Mbps}
Let FP be the set of PEs mapped to non-overloaded servers. {These will be excluded from
remapping}
For every nonoverloaded server i, set server capacity Si to be Si − Current Load[i]
For every overloaded server i and all PEs j currently mapped to i, set Cost[i][j] = 0
Run expanded ST-algorithm for all servers and all PEs that are NOT in FP {This will try to
remap only PEs currently mapped to overloaded servers but can move these PEs to any server
to reduce costs}
{Post Processing}
repeat

Find the most overloaded server i; {Note that before ST-algorithm this server could have
been nonoverloaded so some of its PEs can be in FP}
Map PEs from (Pi ∩ FP) to i {Map fixed PEs}
Map remaining PEs from Pi to i, in the descending order of Offered Load, until i reaches it
capacity
Remap(i, {the set of still-unmapped PEs from Pi})

until None of the servers is overloaded OR no further remapping would help

While Algorithm 1 described in Section 3.2 attempts to minimize the cost, it does
not take the current mapping into account and can potentially lead to a large number
of connection disruptions.

To address this issue, we present another algorithm, which gives connection disrup-
tion a certain priority over cost. For clarity, we start by describing an algorithm that
attempts a remapping only when there is a need to offload one or more overloaded
servers.

The pseudo-code of the algorithm is shown as Algorithm 2. The algorithm divides
all the servers into two groups based on load: overloaded servers and nonoverloaded
servers. The algorithm keeps the current mapping of the nonoverloaded servers and
only attempts to remap the PEs assigned to the overloaded servers. Furthermore, even

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:11

for the overloaded servers, we try to retain the current mappings as much as possible.
Yet for the PEs that do have to be remapped due to overloads, we would like to use
ST-algorithm to minimize the costs.

We manipulate input to ST-algorithm in two ways to achieve these goals. First,
for each nonoverloaded server i, we consider only its residual capacity as the capacity
Si in ST-algorithm. This allows us to retain the server current PEs while optimizing
costs for newly assigned PEs. Second, for each overloaded server j, we set the cost of
servicing its currently assigned PEs to zero. Thus, current PEs will be reassigned only
to the extent necessary to remove the overload.

As described, this algorithm reassigns PEs to different servers only in overloaded
scenarios. It can lead to suboptimal operation even when the request volume has gone
down significantly and a simple proximity-based routing would yield a feasible solution
with lower cost. One way to address this is to exploit the typical diurnal pattern and
perform full remapping once a day at a time of low activity (e.g., 4 am every day).
Another possibility is to compare the current mapping and the potential lowest-cost
mapping at that point, and initiate the reassignment if the cost difference is beyond a
certain threshold (e.g., 70%). Our experiments do not account for these optimizations.

To summarize, in our system, we mainly use the algorithm in Section 3.3 to mini-
mize the connection disruption, while we infrequently use the algorithm in Section 3.2
to find an (approximate) minimum-cost solution for particular operational scenarios.

4. EVALUATION METHODOLOGY

This section describes the methodology of our experimental study.

4.1. Dataset

We obtained two types of datasets from a production single-AS CDN: the netflow
datasets from its ingress PEs and Web access logs from its cache servers. The access
logs were collected for a weekday in July 2007. Each log entry has detailed informa-
tion about an HTTP request and response such as client IP, cache server IP, request
size, response size, and the time of arrival. Depending on the logging software, some
servers provide service response time for each request in the log, while others do not.
In our experiments, we first obtain sample distributions for different response size
groups based on the actual data. For log entries without response time, we choose
an appropriate sample distribution (based on the response size) and use a randomly
generated value following the distribution.

We use concurrent requests being processed by a server as the load metric that we
control in our experiments. In addition, we also evaluate data serving rate as server
load indication. To determine the number of concurrent requests rj coming through
an ingress PE j, we look at the client and server IP pair for each log entry and use
netflow data to determine where the request has entered the system. We then use
the request time from the log and the service response time (actual or computed as
previously described) to determine whether a request is currently being served.

One of our objectives is to maximize network proximity in processing client requests.
In particular, because we focus on reducing the costs of the CDN’s network provider,
our immediate goal is to maximize network proximity and network delays inside the
CDN’s autonomous system. Since the internal response path is always degenerate in-
dependently of our remapping (it uses hot-potato routing to leave the AS as quickly
as possible), the network proximity between the client’s ingress PE and server is de-
termined by the request path.4 Thus, we use the request path as our cost metric

4The proximity of the request’s external path (from the client to an entry point into the CDN’s AS) is further
provided by IP anycast. At the same time, our focus on internal proximity may result in a suboptimal

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:12 H. A. Alzoubi et al.

reflecting the proximity of request processing. Specifically, we obtained from the CDN
the distance matrix dij between every server i and every ingress PE j in terms of air
miles and used it as the cost of processing a request. While we did not have access
to the full topological routing distances, the latter are known to be highly correlated
with air-miles within an autonomous system since routing anomalies within an AS are
avoided. Thus, using air miles would not have any significant effect on the results and
at the same time make the results independent of a particular topology and routing
algorithms. Topological routing distances, if available, could be equally used in our
design.

Then, for ST-algorithm, we use the product rj dij as the cost cij of serving requests
from PE j at server i.

Another input required by ST-algorithm is the capacity Si of each server i. To assign
server capacity, we first analyze the log to determine the maximum aggregate num-
ber of concurrent requests across all servers during the entire time period in the log.
Then, we assign each server the capacity equal to the maximum aggregate concurrent
requests divided by the number of servers. This leads to a high-load scenario for peak
time, where we have sufficient aggregate server capacity to handle all the requests but
only assuming ideal load distribution. Note that server capacity is simply a parame-
ter of the load balancing algorithm, and in practice would be specified to be below the
servers’ actual processing limit. We refer to the latter as the server’s physical capacity.
In most of the experiments we assume the physical capacity to be 1.6 times the server
capacity parameter used by the algorithms.

The CDN under study classifies content into content groups and assigns each con-
tent group to a certain set of CDN nodes. We use two such content groups for our
analysis: one containing Small Web Objects, assigned to 11 CDN nodes, and the other
Large File Downloads, processed by 8 CDN nodes.

4.2. Simulation Environment

We used CSIM5 to perform our trace driven simulation. CSIM creates process-
oriented, discrete-event simulation models. We implemented our CDN servers as a
set of facilities that provide services to requests from ingress PEs, which are imple-
mented as CSIM processes. For each request that arrives we determine the ingress
PE j, the response time t, and the response size l. We assume that the server responds
to a client at a constant rate calculated as the response size divided by the response
time for that request. In other words, each request causes a server to serve data at
the constant rate of l/t for t seconds. Multiple requests from the same PE j can be ac-
tive simultaneously on server i. Furthermore, multiple PEs can be served by the same
facility at the same time.

To allow flexibility in processing arbitrary load scenarios, we configured the CSIM
facilities that model servers to have infinite capacity and very large bandwidth. We
then impose capacity limits at the application level in each scenario. Excessive load
is handled differently in different systems. Some systems impose access control so
that servers simply return an error response to excess requests to prevent them from

external response path since we choose the closest CDN node to the ingress PE and the reserve path could
be asymmetric. In principle, the route controller could take into account the proximity of the various CDN
nodes to the clients from the perspective of the overall response path. The complication, however, is that
our current architecture assumes repinning is done at the granularity of the entire ingress PEs. Thus, any
server selection decision would apply to all clients that enter the network at a given PE. Whether these
clients are clustered enough in the Internet to exhibit similar proximity when reached from different CDN
nodes is an interesting question for future work.
5http://www.mesquite.com

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:13

affecting the remaining workload. In other systems, the excessive requests are admit-
ted and may cause overall performance degradation. Our simulation can handle both
these setups. In the setup with access control, at each request arrival, it will be passed
to the simulation or dropped depending on the current load of the destination server
of this connection. In the setup without access control, we admit all the requests and
simply count the number of over-capacity requests. An over-capacity request is a re-
quest that at the time of its arrival finds the number of existing concurrent requests
on the server to already equal or exceed the server’s physical capacity limit.

In describing our experiments we will specify which of the setups various experi-
ments follow. In general, the number of over-capacity requests in the setup without
access control will exceed the number of dropped requests in the case with access con-
trol because, as previously explained, a dropped request imposes no load on the server
while the over-capacity connection contributes to server load until it is processed. How-
ever, the ultimate goal in dimensioning the system is to make the number of excess
requests negligible in either setup, in which case both setups will have the same be-
havior.

The scale of our experiments required us to perform simulation at the time granu-
larity of one second. To ensure that each request has a non-zero duration, we round
the beginning time of a request down and the ending time up to whole seconds.

4.3. Schemes and Metrics for Comparison

We experiment with the following schemes and compare the performance.

— Trace Playback (PB). In this scheme we replayed all requests in the trace without
any modification of server mappings. In other words, (PB) reflects the current CDN
routing configuration.

— Simple Anycast (SAC). This is “native” Anycast, which represents an idealized prox-
imity routing scheme, where each request is served at the geographically closest
server.

— Simple Load Balancing (SLB). This scheme employs anycast to minimize the differ-
ence in load among all servers without considering the cost.

— Advanced Load Balancing, Always (ALB-A). This scheme always attempts to find a
minimum cost mapping as described in Section 3.2.

— ALB, On-overload (ALB-O). This scheme aims to minimize connection disruptions
as described in Section 3.3. Specifically, it normally only reassigns PEs currently
mapped to overloaded servers and performs full remapping only if the cost reduction
from full remapping would exceed 70%.

In SAC, each PE is statically mapped to a server, and there is no change in the map-
pings across the entire experiment run. SLB and ALB-A recalculate the mappings every
� seconds (the remapping interval). The initial � value that we used to evaluate the
different algorithms is 120 seconds. Later, in Section 5.5, we examine various values
of �.

We utilize the following metrics for performance comparison.

— Server load. We use the number of concurrent requests and service data rate at each
server as measures of server load. A desirable scheme should keep the number
below the capacity limit all the time.

— Request air-miles. We examine the average miles a request traverses within the
CDN provider network before reaching a server as a proximity metric of content
delivery within the CDN’s ISP. A small value for this metric denotes small network
link usage in practice.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:14 H. A. Alzoubi et al.

— Disrupted Connections and Over-Capacity Requests. Another metric of redirection
scheme quality is the number of disrupted connections due to remapping. Disruption
occurs when a PE is remapped from server A to server B; the ongoing connections
arriving from the PE may be disconnected because B may not have the connection
information. Finally, we use the number of over-capacity requests as a metric to
compare the ability of different schemes to prevent server overloading. A request is
counted as over-capacity if it arrives at a server with existing concurrent requests
already at or over the physical capacity limit.

With our redirection scheme, a request may use a server different from the one used
in the trace, and its response time may change, for example, depending on the server
load or capacity. In our experiments, we assume that the response time of each request
is the same as the one in the trace no matter which server processes it as a result of
our algorithms.

5. EXPERIMENTAL RESULTS

In this section, we present our simulation results. We first consider the server load,
the number of miles for request traffic and the number of disrupted and over-capacity
requests that resulted for each of the redirection schemes. In all these experiments,
presented in Sections 5.1–5.3, we assume all server capacities to be the same and
equal in aggregate the 100% of the maximum total number of concurrent requests in
the trace (as described in Section 4.1). Specifically, this translates to 1900 concurrent
requests per server for the large-file group and 312 concurrent requests for the small-
object group. The remapping interval in these experiments is fixed at 120 seconds,
and we assume there is no access control in the system (i.e., excess requests are not
dropped and only counted as over-capacity requests). Section 5.5 investigates different
remapping interval values.

5.1. Server Load Distribution

We first present the number of concurrent requests at each server for the large files
group. For the clarity of presentation, we use the points sampled every 60 seconds.

In Figure 3, we plot the number of concurrent requests at each server over time.
Figure 3(a) shows the current behavior of the CDN nodes (Trace Playback (PB)). It is
clear that some servers (e.g., server 4) process a disproportionate share of load – 4 to 5
times the load of other servers. This indicates current over-provisioning of the system
and an opportunity for significant optimization.

Turning to anycast-based redirection schemes, since SAC does not take load into
account but always maps PEs to a closest server, we observe from Figure 3(b) that the
load at only a few servers grows significantly, while other servers get very few requests.
For example, at 8 am, server 6 serves more than 55% of total requests (5845 out of
10599), while server 4 only receives fewer than 10. Unless server 6 is provisioned with
enough capacity to serve significant share of total load, it will end up dropping many
requests. Thus, while reducing the peak load of the most-loaded server compared to the
playback, SAC still exhibits large load misbalances. As another extreme, Figure 3(c)
shows that SLB evenly distributes the load across servers. However, SLB does not take
cost into account and can potentially lead to high connection cost.

In Figures 3(d) and Figure 3(e), we present the performance of ALB-A and ALB-O
- the two schemes that attempt to take both cost and load balancing into account in
remapping decisions. According to the figures, these algorithms do not balance the
load among servers as well as SLB. This is expected because their main objective is
to find a mapping that minimizes the cost as long as the resulting mapping does not
violate the server capacity constraint. Considering ALB-A (Figure 3(d)), in the morning

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:15

Fig. 3. Number of concurrent requests for each scheme (Large files group).

(around 7 am), a few servers receive only relatively few requests, while other better
located servers run close to their capacity. As the traffic load increases (e.g., at 3 pm),
the load on each server becomes similar in order to serve the requests without violating
the capacity constraint. ALB-O initially shows a similar pattern to ALB-A (Figure 3(e)),
while the change in request count is in general more graceful. However, the difference
becomes clear after the traffic peak is over (at around 4 pm). This is because ALB-O
attempts to reassign the mapping only when there is an overloaded server. As a result,
even when the peak is over and we can find a lower-cost mapping, all PEs stay with
their servers that were assigned based on the peak load (e.g., at around 3 pm). This
property of ALB-O leads to less traffic disruption at the expense of increased overall
cost (as we will see later in Section 5.2).

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:16 H. A. Alzoubi et al.

Overall, from the load perspectives, we see that both ALB-A and ALB-O manage to
keep maximum server load within roughly 2000 concurrent requests, very close to the
1900 connections capacity used as a parameter for these algorithms. Within these load
limits, the algorithms attempt to reduce the cost of traffic delivery.

In Figure 4, we present the same set of results using the logs for small object down-
loads. We observe a similar trend for each scheme, although the server load changes
more frequently. This is because their response size is small, and the average service
time for this content group is much shorter than that of the previous group. We also
present the serviced data rate of each server in Figure 5 for the large file server group
and Figure 6 for small object server group. We observe that there is strong correlation
between the number of requests (Figures 3 and 4) and data rates (Figures 5 and 6).
In particular, the data rate load metric confirms the observations we made using the
concurrent requests metric.

5.2. Disrupted and Over-Capacity Requests

Remapping of PEs to new servers can disrupt active connections. In this section, we
investigate the impact of each remapping scheme on connection disruption. We also
study the number of over-capacity requests assuming the physical capacity limit of
servers to be equal to 1.6 times the capacity parameter used in the remapping algo-
rithms. Specifically, the server physical capacity is assumed to be 2500 concurrent
requests in the large file group and 500 concurrent requests in the small file group.

The results are shown in Figure 7. Since SAC only considers PE-to-server proxim-
ity in its mappings and the proximity does not change, SAC mappings never change
and thus connection disruption does not occur. However, by not considering load, this
scheme exhibits many over-capacity requests – over 18% in the large-file group. In
contrast, SLB always remaps to achieve as balanced load distribution as possible. As a
result, it has no over-capacity requests but a noticeable number of connection disrup-
tions. The overall number of negatively affected requests is much smaller than for SAC
but as we will see in the next section, this comes at the cost of increasing the request
air-miles.

Figure 7 shows significant improvement of both ALB-A and ALB-O over SAC and SLB
in the number of affected connections. Furthermore, by remapping PEs judiciously,
ALB-O reduces the disruptions by an order of magnitude over ALB-A without affecting
the number of overcapacity requests. Overall, ALB-O reduces the number of negatively
affected connections by two orders of magnitude over SAC, by an order of magnitude
over SLB in the small files group, and by a factor of 5 over SLB in the large file group.

Finally, Figure 7 shows that large file downloads are more susceptible to disruption
in all the schemes performing dynamic remapping. This is because the longer service
response of a large download increases its chance of being remapped during its life-
time (e.g., in the extreme, if an algorithm remapped all active connections every time,
every connection lasting over 120 seconds would be disrupted). This confirms our ar-
chitectural assumption concerning the need for application level redirect for long-lived
sessions.

In summary, the disruption we observed in our experiments is negligible: at most
0.04% for the ALB-O algorithm (which we ultimately advocate), and even less –
0.015% – for small objects download. Further, disruption happens in the ALB-O algo-
rithm when the platform is already overloaded, when the quality of service is already
compromised. In fact, by pinning a client to a fixed server at the beginning of the
download, DNS-based CDNs may lead to poor performance in long-running downloads
(during which conditions can change). On the other hand, with a simple extension to
browsers, as we show in a separate work [Al-Qudah et al. 2009], an anycast-based CDN

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:17

Fig. 4. Number of concurrent requests for each scheme (Small objects group).

could trigger these disruptions intentionally to switch the user to a different server on
the fly.

5.3. Request Air Miles

This section considers the cost of each redirection scheme, measured as the average
number of air miles a request must travel within the CDN’s ISP. Figures 8(a) and 8(b)
show the ratio of schemes average cost over the PB average cost calculated every 120
seconds. In SAC, a PE is always mapped to the closest server, and the average mileage
for a request is always the smallest (at the cost of high drop ratio as previously shown).
This can be viewed as the optimal cost one could achieve and thus it always has the
lowest ratio in Figure 8. SLB balances the load among servers without taking cost into
account and leads to the highest cost. We observe in Figure 8(a) that ALB-A is nearly

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:18 H. A. Alzoubi et al.

Fig. 5. Service data rate for each scheme (Large files group).

optimal in cost when the load is low (e.g., at 8 am) because in this case each PE can be
assigned to the closest server. As the traffic load increases, however, not all PEs can be
served at their closest servers without violating the capacity constraint. Then, the cost
goes higher as some PEs are remapped to different (farther) servers. ALB-O also finds
an optimal-cost mapping in the beginning when the load is low. As the load increases,
ALB-O behaves differently from ALB-A because ALB-O attempts to maintain the cur-
rent PE-server assignment as much as possible, while ALB-A attempts to minimize
the cost even when the resulting mapping may disrupt many connections (Figure 7).
This restricts the solution space for ALB-O compared to ALB-A, which subsequently
increases the cost of ALB-O solution.

With our focus on optimizing the costs for the ISP, our optimization formulation
does not restrict the distance for any individual request. Thus, a pertinent question is,

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:19

Fig. 6. Service data rate for each scheme (Small objects group).

to which extent individual requests might be penalized by our schemes. Consequently,
Figure 9 plots the ratio of the cost of the 99-percentile requests in each scheme. Specif-
ically, in every 120-second interval, we find the request whose cost is higher than 99%
of all requests in a given anycast scheme and the request with cost higher than 99% of
all requests in the playback, and we plot the ratio of the cost of these requests. Note
that because the possible costs for individual requests can only take discrete values,
the curves are less “noisy” than for the average costs. We can see that both adaptive
anycast algorithms do not penalize individual requests excessively. The ALB-A algo-
rithm actually reduces the cost for a 99-percentile request compared to the playback,
and the ALB-O’s penalty is at most 12.5% for the Large File Downloads group and
37.5% for the Small Web Object group.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:20 H. A. Alzoubi et al.

Fig. 7. Disrupted and over-capacity requests for each scheme (Y-axis in log scale).

Fig. 8. Average miles for requests calculated every 120 seconds.

Fig. 9. 99th percentile of request miles calculated every 120 seconds.

5.4. Computational Cost of Remapping

We now consider the question of the execution time of the remapping algorithms
themselves, concentrating on ALB-A and ALB-O as they are the most computationally
intensive and also shown above to exhibit the best overall performance among the
algorithms we considered. We first time the algorithms on the trace environment and

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:21

Fig. 10. Execution time of the ALB-A and ALB-O algorithms in the trace environment.

then consider how they scale with a potential growth of the platform size. All the
experiments were conducted on a single-core Intel PC with Pentium 4 3.2GHz CPU
and 1G RAM, running Linux 2.6.31.12 kernel.

Figure 10 plots the measured execution time of both remapping algorithms in our
trace-driven simulation. Each data point reflects the actual measured time of each
execution after each 120-second remapping interval. The figure shows that for both
small and large groups, both algorithms never exceed 0.5s to execute, and in most
cases take much less time: the 95th percentile is 0.26s for ALB-A and 0.14s for ALB-O in
the small objects group, and 0.23s and 0.17s in the large files group. This is negligible
time compared with expected frequencies of remapping decisions. We also observe that
ALB-O is more efficient than ALB-A. This is because ALB-O only performs remapping
only for overloaded servers, in effect reducing the size of the solution search space and
in fact often not solving the LP problem at all (which is reflected in seemingly zero
execution time in the figure).

We now turn to the question of how our algorithms will scale with the platform
size. To this end, we time the algorithms in a synthetic environment with a synthetic
randomly generated workload. We consider a platform with 1000 PEs and up to 100
data centers (compared to the trace environment of around 550 PEs and 8-11 data
centers). Each data center (represented as a single aggregate server) has maximum
capacity of 1000 concurrent connections. To generate the synthetic workload, we start
with a given fraction of aggregate platform capacity as total offered load, and distribute
this offered load randomly among the PEs in the following three steps.

— We iterate through the PEs, and for each PE, we assign it a random load between 0
and maximum server capacity (1000). This step results in random load assignment,
but the aggregate offered load can significantly deviate from the target level. We
make it close (within 10%) to the target level in the next two steps.

— While the total load assigned to all the PEs is below 0.9 of the target:
— Pick a random PE P and a random load value L between 0 and 250 (one-forth of

the server capacity);
— If current load(P) + L is less than server capacity, add L to P’s offered load.

— While the total load assigned to all the PEs is above 1.1 of the target:
— Pick a random PE P and a random load value L between 0 and 250 (one-forth of

the server capacity);
— If current load(P) − L > 0, subtract L from P’s offered load.

We perform this random load assignment every two minutes and then time our
algorithms as they remap the PEs to servers. Further, to see how the running time

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:22 H. A. Alzoubi et al.

Fig. 11. Total offered load pattern (synthetic environment).

Fig. 12. Scalability of the ALB-A and ALB-O algorithms in a synthetic environment.

depends on the overall load (one can expect that the higher the total load relative to
total capacity, the harder the algorithm has to work to find a solution), we increase the
load target every hour. The resulting pattern of the total offered load relative to the
total capacity is shown in Figure 11. Again, within each period of stable total load, its
distribution among the PEs changes randomly every two minutes.

Figure 12 shows the execution time of the ALB-A and ALB-O algorithms for different
platform sizes. Understandably, larger platform sizes translate to greater execution
time. However, even for 100 data centers, as long as the total load is within 75%,
ALB-O generally completes remapping under 5s, and ALB-A within 10s. The more
efficient execution of ALB-O is again due to the fact that it performs only incremental
remapping each time,6 and as we see, in as the platform grows in size, the difference
can be significant. This again (in addition to the reduction in the number of disrupted
connections) argues in favor ALB-O.

Overall, we conclude that even using our very modest machine for remapping, the
execution time of our remapping algorithms, especially ALB-O, is acceptable for a plat-
form of a significant scale as long as the total load does not approach too closely the
total platform capacity. The fact that our algorithm slows down significantly under ex-
treme load conditions suggests a strategy where the remapping algorithm first checks
the total load and if it is found close to (e.g., over 75% of) the platform capacity, switches
to a “survival mode” whereby it no longer solves the cost optimization problem but
merely redistributes excess load from overloaded to underloaded servers.

6Observe that its initial remapping takes the same time as in the ALB-A case.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:23

Fig. 13. The effect of remapping interval on disrupted connections.

5.5. The Effect of Remapping Interval

In this section, we consider the issue of selecting the remapping interval �. Specif-
ically, we consider how different values of the remapping interval affect our main
performance metrics: the number of disrupted connections, the cost of operation
(measured as the air miles that the request must travel within the AS), and the
number of connections dropped due to server overload. Since we already showed
that the ALB-A and ALB-O algorithms exhibited the best performance among the
algorithms we considered, we concentrate on these two algorithms here.

We ran our simulations with the default server capacity (1900 and 312 concurrent
requests for the large and small file groups respectively) which we refer to as 100%
capacity scenario, and with a lower capacity equal to 75% of the default. Lowering
server capacity for the same load (which is given by the trace) allows us to investigate
the behavior of the system under high load conditions. To consider the effect of differ-
ent assumptions, we assume that overcapacity requests are dropped by the admission
control mechanism at their arrival; hence they do not consume any server resources.

In the experiments of this subsection, we run our simulations for the entire trace
but collect the results only for the last 6-hour trace period. This allows every scenario
to experience at least one remapping (not counting the initial remapping at the end
of the first second) before the results are collected. For instance, for � = 6 hours, the
first remapping occurs on the first second of the trace and is affected by the initially
idle servers, the second remapping occurs at 6 hours, and the results are collected in
the remaining 6 hours of the trace. For smaller deltas, the results are collected for the
same trace period to make the results the comparable across different deltas. Note
that this is different from previous experiments where the remapping interval was
fixed at 120s, which is negligible relative to the trace duration, allowing us to report
the results for the entire trace.

5.5.1. Disruption Count. Figures 13(a) and 13(b) show the affect of the remapping
interval on the disrupted connections. As expected, the number of disrupted con-
nections decreases with the increase of the remapping interval in both schemes.
However, the figures confirms the superiority of ALB-O in this metric: ALB-O exhibits
a smaller number of disrupted connections for all � values. This is a consequence
of the design of ALB-O, which only performs remapping to relieve overloaded servers
when there is a significant potential for cost reduction. ALB-A on the other hand,
performs remapping any time it can reduce the costs. Interestingly, the high-load
scenario (corresponding to 75% curves) does not significantly affect the disruptions.
We speculate that this is due to the fact that the trace period reported by these figures

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:24 H. A. Alzoubi et al.

Fig. 14. The effect of remapping interval on cost (common 6-hour trace period).

corresponds to the highest load in the trace, and even the 100% capacity scenario
triggers similar number of remappings.

5.5.2. Request Air Miles. We now turn to the effect of remapping interval on the cost
(in terms of average request air miles) of content delivery. Figures 14(a) and 14(b)
show the results. An immediate and seemingly counter-intuitive observation is that
costs generally decrease for larger remapping intervals. A closer inspection, however,
reveals that this is due to the fact that less frequent remappings miss overload condi-
tions and do not rebalance the load by using suboptimal (e.g., more distance but less
loaded) servers. Indeed, the last 6-hour trace period reported in these graphs corre-
spond to the period of the highest load; as the load increases, higher values of � retain
a proximity-driven mapping from a less-loaded condition longer. This has especially
pronounced effect for extremely large deltas, such as � = 6 hours, when no remapping
occurs after the load increase. Note also that these graphs reflect the costs for suc-
cessful requests only. We will see how longer remapping intervals affect over-capacity
requests that follow.

The comparison of different scenarios in Figures 14(a) and 14(b) reveals no fur-
ther surprises. ALB-A has lower cost than ALB-O for a given server capacity, and a
lower-capacity scenario has higher cost than the same scheme with higher-capacity.
This is natural, since ALB-A optimizes cost at every remapping interval while ALB-O
only when there is a compelling reason to do so. Also, the lower the capacity of servers,
the more often the system must change mappings to relieve overloaded servers at the
expense of increased costs.

5.5.3. Over-Capacity Requests. Finally, we consider the effect of remapping interval
on over-capacity requests. Intuitively, larger remapping intervals must lead to more
over-capacity requests as the scheme would miss overload conditions between remap-
pings. The results are shown in Figures 15(a) and 15(b). They confirm the above intu-
ition; however, for the 100% capacity scenario, they show that no schemes exhibit any
dropped requests until the remapping interval reaches 6 hour. Coupled with the pre-
vious results, this might suggest that very large values of delta, in the order of hours,
should be used as it decreases connection disruption without increasing the costs and
dropped requests.

However, in setting the physical capacity limit to be 1.6 times the server capacity
used by the algorithms, we provisioned a significant slack between the load level where
algorithms attempts to rebalance load and the level when a request is dropped. Con-
sequently, Figures 16(a) and 16(b) show the behavior of the ALB-O algorithm when the

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:25

Fig. 15. The effect of remapping interval on dropped requests (common 6-hour trace period).

Fig. 16. The effect of over-provisioning on over-capacity requests (common 6-hour trace period).

servers are provisioned with a smaller capacity slack. In these experiments, we use
100% server capacity and do not drop over-capacity requests.

For the small files group, we still do not see over-capacity requests until the slack is
reduced to 1.2. At 1.2 over-provisioning, the over-capacity requests appear only when
remapping interval reaches 30 minutes. With over-provisioning factor of 1.1, over-
capacity requests appear at 1-minute remapping interval and grow rapidly for larger
intervals.

In the large files group, reducing over-provisioning from the factor of 1.6 to 1.1
increases the over-capacity requests more smoothly. At x1.3 over-provisioning, over-
capacity requests appear at remapping intervals of 5 minutes and higher. Less slack
leads to over-capacity requests at deltas as small as 30 seconds. Again, once appear,
over-capacity requests increase for longer the remapping intervals (with one exception
in Figure 16(b), which we consider an aberration).

Overall, these results show the intricacies in tuning the system. Clearly, provision-
ing a larger capacity slack allows one to reduce frequency of remappings: indeed, the
proximity factor in remapping decisions does not change, and the load factor becomes
less significant with the increased slack. This also results in lower deliver cost, as
the system rarely sends traffic to nonproximal servers because of overload. Less slack
requires more frequent remappings and can result in higher delivery cost. A proper
choice of the remapping interval in this case requires careful analysis of the workload
similar to the one performed in this article.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:26 H. A. Alzoubi et al.

6. RELATED WORK

Our architecture uses IP anycast to route HTTP requests to edge servers, with a sub-
sequent HTTP redirection of requests for particularly large downloads. Our parallel
work addresses the increased penalty of disrupted connections in CDNs that deliver
streaming content and very large objects [Al-Qudah et al. 2009]. That work proposes
to induce connection disruption as a way to reassign a client to a different edge server
if load conditions change during the long-running download. That work is compli-
mentary to our present approach: the latter can use this technique instead of HTTP
redirects to deal with long-running downloads.

IP anycast has been used in some components of content delivery. In particular,
Limelight CDN [Limelight 2010] utilizes anycast to route DNS queries to their DNS
servers: each data center has its own DNS server, with all DNS servers sharing the
same address. Whenever a DNS query arrives to a given DNS server, the server re-
solves it to an edge server co-located in the same data center. Thus, even though edge
servers use unicast addresses, Limelight sidesteps the need to determine the nearest
data center for a client, leveraging the underlying BGP routing fabric for data center
selection. However, similar to the DNS-based CDNs, clients are still directed to the
data center that is nearest to client’s DNS server and not the client itself.

CacheFly [CacheFly] is to our knowledge the first CDN utilizing the anycast tech-
nology for content download itself. Our approach targets a different CDN environment:
while CacheFly follows the co-location approach with edge servers obtaining connec-
tivity from multiple ISPs, we assume a single-AS CDN where the operator has control
over intra-platform routing. No information on which (if any) load reassignment mech-
anisms CacheFly uses is available.

Utilizing IPv6 for anycast request routing in CDNs has been independently pro-
posed in Szymaniak et al. [2007] and Acharya and Shaikh [2002]. Our work shows
that anycast can be used for CDN content delivery even in current IPv4 networks.

We formulate our load balancing problem as generalized assignment problem (GAP).
One related problem is the multiple knapsack problem (MKP), where we are given a
set of items with different size and profit, and the objective is to find a subset of items
that allows a feasible packing in the bins without violating bin capacity and maximize
the total profit. Chekuri and Khanna [2000] present a polynomial time approximation
scheme (PTAS) for this problem. MKP is a special case where the profit for an item is
the same for all bins, which cannot handle our setting since a cost of serving a request
in a CDN varies depending on the server. Aggarwal et al. [2003] consider the problem
of load rebalancing. Given the current assignment of request-server pairs, they focus
on minimizing the completion time of queued requests by moving up to k requests to
different servers and present a linear-time 1.5 approximation algorithm to this NP-
hard problem. While the limited amount of rebalancing is relevant to our case to
reduce ongoing session disruptions, our work has a different objective of maintaining
server load under capacity.

Another related problem is the facility location problem, where the goal is to select a
subset of potential sites to open facilities and minimize the sum of request service cost
and opening costs of the facilities [Shmoys et al. 1997]. This problem is more relevant
in the provisioning time scale, when we can determine where to place CDN servers for
a content group. In our setting, we are given a set of CDN servers and load-balance
between them without violating the capacity constraint.

Current CDNs predominantly use DNS-based load balancing, and a number of load-
balancing algorithms for this environment have been proposed in research [Biliris
et al. 2001; Cardellini et al. 2003; Colajanni et al. 1998; Kwan et al. 1995; Rabinovich
et al. 2003] and made available in commercial products [3-DNS Controller 2005; Cisco

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:27

2009; ServerIron 2008]. Since load-balancing is done at the application layer, these
algorithms are able to make load balancing decisions at the granularity of individual
DNS requests. For example, Biliris et al. [2001] uses a simple algorithm of resolv-
ing each request to the nearest non-overloaded server, while Colajanni et al. [1998]
proposes intricate variations in DNS response TTL to control the amount of load di-
rected to the server. These algorithms are not applicable in our environment where
load-balancing decisions are at the drastically coarser granularity of the entire PEs.

Content delivery networks can benefit from peer-to-peer content sharing, which can
be used to share cached content either among CDN servers (and thus reduce the need
to forward requests to the origin server) [Freedman et al. 2004] or among users’ lo-
cal caches directly [Iyer et al. 2002]. These approaches are complimentary to and can
be used in conjunction with our architecture. There has also been a rise in the use
of peer-to-peer content delivery as an alternative to traditional content delivery net-
works, with BitTorrent and other P2P platforms providing examples of this approach.
The general scalability of this style of content delivery is considered in Stutzbach et al.
[2005]. Our work targets traditional CDNs, which offer their subscribers content de-
livery from a dedicated commercially operated platform with tight control and usage
reporting.

7. FUTURE WORK

The approach we discuss in this article leads to a number of open questions for fu-
ture work. The focus of this article is on making the case that anycast CDNs are a
practical alternative to a DNS CDN. One obvious question, which we could not an-
swer with the data available, is the quantitative side-by-side comparison between the
two mechanisms. To answer this question, one needs to be able to evaluate the differ-
ence between the “external” proximity from the client to the end of the CDN network
given in the CDN and anycast CDN, and how it affects the performance from the client
perspective.

A consequence of our network provider perspective is that our cost metric reflects
the desire to optimize request processing within the CDN’s network. An important
question for future work is how this affects the performance from the application per-
spective. In particular, as mentioned in Section 4.1, the remapping algorithm could
take into account the overall reverse routing path to the clients, but the current ap-
proach can do so only at the granularity of the entire PEs. In principle, repinning could
be done at the individual ingress interface level of the PEs; this however requires more
complexity in the PEs, as well as significant increase of the search space for the op-
timization algorithm. A detailed study would be required to understand the potential
benefits and tradeoffs involved.

The remapping algorithm in our architecture runs periodically, and we examined
implications of various values of the remapping interval. However, our work assumes
that the interval is statically configured. An interesting question is if any benefits
could be derived from adjusting this interval dynamically, perhaps in response to the
observed instability of the demand.

Another question has to do with the limitation that our current architecture targets
CDNs that belong to a single autonomous system. In an ongoing work, we are cur-
rently extending our architecture to CDNs that spans multiple autonomous systems.
In this work, we are defining APIs between the CDN and the ISPs it utilizes; the CDN
then employs a combination of a set of anycast addresses and the APIs to control traffic
distribution between the autonomous systems. Finally, our current approach focuses
on small object downloads and file transfers. The applicability of IP anycast to other
content types, notably steaming media, is another direction for future investigation.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

17:28 H. A. Alzoubi et al.

8. CONCLUSION

New route control mechanisms, as well as a better understanding of the behavior of IP
Anycast in operational settings, allowed us to revisit IP Anycast as a CDN redirection
mechanism. We presented a load-aware IP Anycast CDN architecture and described
algorithms that allow redirection to utilize IP Anycast’s inherent proximity properties,
without suffering the negative consequences of using IP Anycast with session based
protocols. We evaluated our algorithms using trace data from an operational CDN and
showed that they perform almost as well as native IP Anycast in terms of proximity,
manage to keep server load within capacity constraints and significantly outperform
other approaches in terms of the number of session disruptions.

In the future we expect to gain experience with our approach in an operational de-
ployment. We also plan to exploit the capabilities of our architecture to avoid network
hotspots to further enhance our approach.

REFERENCES
3-DNS Controller. 2005. F5 Networks. http://support.f5.com/kb/en-us/archived\ products/3-dns/.
ACHARYA, A. AND SHAIKH, A. 2002. Using mobility support for request routing in IPv6 CDNs. In Proceed-

ings of the 7th International Web Content Caching and Distribution Workshop (WCW).
AGGARWAL, G., MOTWANI, R., AND ZHU, A. 2003. The load rebalancing problem. In Proceedings of the

15th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’03). ACM, New York,
258–265.

AL-QUDAH, Z., LEE, S., RABINOVICH, M., SPATSCHECK, O., AND VAN DER MERWE, J. E. 2009. Anycast-
aware transport for content delivery networks. In Proceedings of the International Conference on the
World-Wide Web (WWW). 301–310.

ATT ICDS 2010. Intelligent content distribution service.
http://www.business.att.com/enterprise/Service/digital-media-solutions-enterprise/
content-distribution-enterprise/content-distribution-service-enterprise/state=Ohio/.

BALLANI, H., FRANCIS, P., AND RATNASAMY, S. 2006. A measurement-based deployment proposal for IP
anycast. In Proceedings of the ACM/USENIX Internet Measurements Conference.

BARBIR, A., CAIN, B., DOUGLIS, F., GREEN, M., HOFMANN, M., NAIR, R., POTTER, D., AND SPATSCHECK,
O. 2003. Known content network (CN) request-routing mechanisms. RFC 3568.

BILIRIS, A., CRANOR, C., DOUGLIS, F., RABINOVICH, M., SIBAL, S., SPATSCHECK, O., AND STURM, W.
2001. CDN brokering. In Proceedings of the 6th International Workshop on Web Caching and Content
Distribution.

CACHEFLY. CacheFly: Besthop global traffic management. http://www.cachefly.com/video.html.
CARDELLINI, V., COLAJANNI, M., AND YU, P. S. 2003. Request redirection algorithms for distributed web

systems. IEEE Trans. Parall. Distrib. Syst. 14, 4, 355–368.
CHA, M., KWAK, H., RODRIGUEZ, P., AHN, Y.-Y., AND MOON, S. 2007. I tube, you tube, everybody tubes:

Analyzing the world’s largest user generated content video system. In Proceedings of the ACM/USENIX
Internet Measurement Conference.

CHEKURI, C. AND KHANNA, S. 2000. A PTAS for the multiple knapsack problem. In Proceedings of the 11th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’00). ACM, 213–222.

CISCO. 2009. Cisco GSS 4400 series global site selector appliances.
http://www.cisco.com/en/US/products/hw/contnetw/ps4162/index.html.

COLAJANNI, M., YU, P. S., AND CARDELLINI, V. 1998. Dynamic load balancing in geographically distributed
heterogeneous web servers. In Proceedings of the IEEE International Conference on Device Circuit and
Systems (ICDCS). 295–302.

DUFFIELD, N., GOPALAN, K., HINES, M. R., SHAIKH, A., AND VAN DER MERWE, J. E. 2007. Measurement
informed route selection. In Proceedings of the Passive and Active Measurement Conference. Extended
abstract.

FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIÈRES, D. 2004. Democratizing content publication with
coral. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 239–252.

HARDIE, T. 2002. Distributing authoritative name servers via shared unicast addresses. IETF RFC 3258.

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

A Practical Architecture for an Anycast CDN 17:29

IYER, S., ROWSTRON, A., AND DRUSCHEL, P. 2002. Squirrel: A decentralized peer-to-peer web cache. In
Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC).
213–222.

JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M. 2002. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and web sites. In Proceedings of 11th World Wide Web
Conference.

KING, A. 2006. The Average web page. http://www.optimizationweek.com/reviews/average-web-page/.
KWAN, T. T., MCCRATH, R., AND REED, D. A. 1995. NCSA’s world wide web server: Design and perfor-

mance. IEEE Comput. 28, 11, 68–74.
LIMELIGHT. 2010. http://www.limelightnetworks.com/platform/cdn/.
MAO, Z., CRANOR, C., DOUGLIS, F., RABINOVICH, M., SPATSCHECK, O., AND WANG, J. 2002. A precise and

efficient evaluation of the proximity between web clients and their local DNS servers. In Proceedings of
the USENIX Annual Technical Conference.

PANG, J., AKELLA, A., SHAIKH, A., KRISHNAMURTHY, B., AND SESHAN, S. 2004. On the Responsiveness
of DNS-based network control. In Proceedings of the Internet Measurement Conference (IMC).

RABINOVICH, M., XIAO, Z., AND AGGARWAL, A. 2003. Computing on the edge: A platform for replicating
Internet applications. In Proceedings of the 8th International Workshop on Web Content Caching and
Distribution.

REIBMAN, A., SEN, S., AND VAN DER MERWE, J. 2004. Network monitoring for video quality over IP. In
Proceedings of the Picture Coding Symposium.

SERVERIRON. 2008. ServerIron DNSProxy. Fountry networks. http://www.brocade.com/products/all/
switches/index.page.

SHAIKH, A., TEWARI, R., AND AGRAWAL, M. 2001. On the effectiveness of DNS-based server selection. In
Proceedings of the IEEE Annual Conference on Computer Communications (INFOCOM). 1801–1810.

SHMOYS, D. AND TARDOS, E. 1993. An approximation algorithm for the generalized assignment problem.
Math. Prog. 62, 461–474.

SHMOYS, D. B., TARDOS, E., AND AARDAL, K. 1997. Approximation algorithms for facility location prob-
lems (extended abstract). In Proceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC’97). ACM, New York.

STUTZBACH, D., ZAPPALA, D., AND REJAIE, R. 2005. The scalability of swarming peer-to-peer content
delivery. In Proceedings of Networking. 15–26.

SZYMANIAK, M., PIERRE, G., SIMONS-NIKOLOVA, M., AND VAN STEEN, M. 2007. Enabling service adapt-
ability with versatile anycast. Concurr. Computat. Practice Exp. 19, 13, 1837–1863.

VAN DER MERWE, J., SEN, S., AND KALMANEK, C. 2002. Streaming video traffic: Characterization and
network impact. In Proceedings of the 7th International Workshop on Web Content Caching and Distri-
bution (WCW).

VAN DER MERWE, J., GAUSMAN, P., CRANOR, C., AND AKHMAROV, R. 2003. Design, implementation and
operation of a large enterprise content distribution network. In Proceedings of the 8th International
Workshop on Web Content Caching and Distribution.

VAN DER MERWE, J., CEPLEANU, A., D’SOUZA, K., FREEMAN, B., GREENBERG, A., KNIGHT, D.,
MCMILLAN, R., MOLONEY, D., MULLIGAN, J., NGUYEN, H., NGUYEN, M., RAMARAJAN, A., SAAD,
S., SATTERLEE, M., SPENCER, T., TOLL, D., AND ZELINGHER, S. 2006. Dynamic connectivity man-
agement with an intelligent route service control point. In Proceedings of the SIGCOMM Workshop on
Internet Network Management (INM’06). ACM, New York, 29–34.

VERKAIK, P., PEI, D., SCHOLL, T., SHAIKH, A., SNOEREN, A., AND VAN DER MERWE, J. 2007. Wresting
control from BGP: Scalable fine-grained route control. In Proceedings of the USENIX Annual Technical
Conference.

Received October 2009; revised April 2010; accepted September 2010

ACM Transactions on the Web, Vol. 5, No. 4, Article 17, Publication date: October 2011.

