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ABSTRACT
DNS interception — when a user’s DNS queries to a target resolver

are intercepted en route and forwarded to a different resolver — is

a phenomenon of concern to both researchers and Internet users

because of its implications for security and privacy. While the

prevalence of DNS interception has received some attention, less

is known about where in the network interception takes place.

We introduce methods to identify where DNS interception occurs

and who the interceptors may be. We identify when interception

is performed before the query exits the ISP, and even when it is

performed by the Customer Premises Equipment (CPE) in the user’s

own home. We believe that these techniques are vital in the light

of the ongoing debate concerning the value of privacy-enhancing

DNS transport.

CCS CONCEPTS
• Networks → Home networks; Network measurement.
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1 INTRODUCTION
In principle, devices are free to direct their DNS queries to the re-

cursive resolver of their choosing. Indeed, it is this freedom that

has enabled the growth of public resolvers such as those offered

by Google, Cloudflare, and others. However, a key underlying as-

sumption is that DNS queries are faithfully forwarded as they are

addressed. Unfortunately, this is not always so.

DNS queries sent by a user’s device can be intercepted en route

to a target resolver and forwarded to an alternate resolver. Further-
more, this interception can be transparent, where the interceptor
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Figure 1: Locations where interception can occur.

spoofs responses so they appear to have been sent by the intended

resolver. Transparent interception is difficult to detect because the

alternate resolver does not have to modify the response. Even if the

reason for the interception is benign — such as to prevent malware

from evading DNS filtering — the interception of requests and mis-

representation of responses raise serious ethical concerns [14, 45]

and can also interfere with the correct operation of protocols such

as DNSSEC [14, 31].

While prior work has identified the broad prevalence of trans-

parent interception [24, 31, 49], there are no established techniques

for establishing where the interception is implemented. Indeed,

there are a range of different points in the network where such

interception might take place.

DNS redirection, another form of DNS manipulation, has also

been found to occur in several parts of the network. DNS redirec-

tion occurs when a DNS resolver returns an altered response for

specific queries and may occur with or without DNS interception.

DNS redirection has been discovered in Customer Premises Equip-
ment (CPE) to block resolution of specific domain names [17], in
ISPs to replace NXDOMAIN responses with advertisements [30, 48]

or enhance security and performance [44], and outside of ISPs to
implement country-level censorship [4, 5, 16, 27]. Transparent in-

terception has been far less extensively studied, although we are

aware of anecdotal reports suggesting that, in some cases, the DNS

forwarder in CPE [20] may be implicated [11, 13, 19].

In this paper, we develop a technique that can isolate where in
the network transparent interception is occurring. In particular, we

make the following contributions:

• Identifying Where Transparent Interception Occurs. We

demonstrate how targeted use of standard DNS debugging
queries—such as id.server and version.bind [51]—can iden-

tify not only the presence of transparent interception but to

systematically infer if the source of that interception is the CPE
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Figure 2: Three-part technique to determine if and where a DNS query is being intercepted.

or middle-boxes in the ISP (Figure 1). Our technique can be im-

plemented on any device that can make DNS queries, without

requiring root access or external measurement tools such as an

authoritative nameserver.

• Pilot Study of Transparent Interception on RIPE Atlas.
We demonstrate our technique on RIPE Atlas infrastructure as

a pilot study. We identify over 200 occurrences of such trans-

parent interception. Of these, we further show that CPE-based

transparent interception constitutes a significant fraction.

• Case Study: CPE-based Transparent Interception. We

highlight a particular case that more precisely explains the

nature of the DNS interception mechanism. Specifically, we il-

lustrate how the common XB6/XB7 home router (used by many

ISPs) use Destination Network Address Translation (DNAT) to

transparently intercept queries and forward them to the ISP’s

resolver.

We believe that techniques such as these, that discover how and

where DNS manipulation takes place, are especially important in

light of the ongoing public controversy concerning the value and

implementation of privacy-enhancing DNS transport [22, 23].

2 BACKGROUND AND TERMINOLOGY
During normal DNS resolution, a user device sends DNS request(s)

to a target resolver (the user’s ISP’s resolver, a public resolver such
as Google, Cloudflare, etc.). The target resolver recursively resolves

the request and returns the response to the user device. Adopting

terminology from Liu et al. [31], we refer to instances where DNS

queries to a target resolver are intercepted and forwarded to an

alternate resolver as DNS interception. DNS responses arriving

at the user device from these alternate resolvers arrive with the

source address spoofed to be that of the target resolver [31]; if

not, the response would be rejected by the user device. When DNS

responses are spoofed in this manner, the interception is transparent
to the user device, and is difficult to detect. We refer to transparent

interception as simply “interception” in the rest of the paper.

DNS redirection is a related but different form of DNS manipula-

tion, where DNS responses — often NXDOMAIN responses [12, 30]

— are altered, resulting in users getting redirected towards a dif-

ferent resource from the one in the unaltered response. It is often

performed by the target resolver, rather than by forwarding a query

to an alternate resolver. The insight that the response received by

the user is different from the correct response during DNS redirec-

tion has been used to study this phenomenon in detail [30, 44, 48].

DNS interception, in contrast, has received less attention, and is

the focus of our paper. In 2018, Liu et al. measured the prevalence

of DNS interception [31], but did not measure where in the network

their queries were intercepted. We present a technique that can

both determine whether a DNS query is intercepted, as well as if it

was intercepted by the client’s own CPE or ISP.

3 METHODOLOGY
In this section, we present our methodology for detecting where

DNS interception occurs. Figure 2 illustrates the three steps of the

technique and the information used to make determinations at

each step. We next describe each step in more detail, and present a

concrete example of the technique in practice.

3.1 Identifying Query Interception
We show that it is sufficient to use a few select location queries
— for which it is difficult to spoof the correct response — to de-

tect query interception. Public anycast resolvers implement these

queries to aid debugging, by revealing the location of the specific

server that answers the query [18]. Our technique issues location

queries to four public resolvers (on both primary and secondary

IP addresses) and tests for “non-standard” responses to discover

query interception. This technique is similar to the one used by

Jones et al. to detect DNS root manipulation using hostname.bind
queries [24]. Moreover, since each public resolver has both IPv4

and IPv6 addresses, we can detect interception in both protocols.

Each of the four public resolvers that we study implements its

own version of a location query. Table 1 lists the queries and an

example expected response. Each resolver uses a different format

for its responses, and these formats are consistent around the world.

We determined “standard” responses for each resolver by making

requests from a network that we knew did not experience intercep-

tion, and later confirmed that these responses were the expected

ones in conversations with public resolver operators. When testing

for interception, we compare responses to location queries issued

from the device under study against these standard responses; when

a response does not match the standard response, we conclude that

the query has been intercepted.

We note that if a query is dropped entirely, it will appear to

the client as a timeout. While timeouts can potentially reveal in-

teresting behavior, such as censorship, for the purposes of our

study we conservatively assume that timeouts are not due to trans-

parent interception. We also note that prior work has observed

query replication, where two responses are sent to the client: one

from the intended recipient, and one from the interceptor’s chosen

resolver [31]. However, the interceptor’s response nearly always
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Public Resolver Type Location Query Example Responses

Cloudflare DNS CHAOS TXT id.server IAD
Google DNS TXT o-o.myaddr.l.google.com 172.253.226.35
Quad9 CHAOS TXT id.server res100.iad.rrdns.pch.net

OpenDNS TXT debug.opendns.com server m84.iad

Table 1: Location queries and examples of expected responses from each resolver.

arrives first and is accepted by the client, so interception and repli-

cation are indistinguishable for our purposes.

3.2 Identifying Query Interception by the CPE
After we determine that interception is occurring using location

queries, we then find where the query is first diverted away from

its intended destination. We begin by using a novel technique to

determine if the client’s CPE is responsible for the interception.

First, we issue a version.bind query to the CPE’s own public IP

address. By usual IP routing rules, this query cannot travel beyond

the CPE because the CPE is its destination. However, if the CPE is

the interceptor, it will switch roles at this point: rather than acting

as a packet forwarder following IP rules, the CPE will take on the

role of a DNS forwarder instead. This role switch occurs because

the most common method of implementing interception is DNAT.

DNAT rewrites all query destinations to be the CPE’s own private

IP address, so that the CPE’s DNS forwarder (e.g., Dnsmasq) can

send them to its own pre-configured resolver. If the CPE’s DNS

forwarder supports the version.bind request, it will not forward

the query any further, and will directly return a response.

However, this result alone is insufficient to demonstrate that the

CPE is the interceptor, because there is another circumstance that

could allow the CPE to forward the query: if the CPE’s port 53 is

open, it will act as a DNS forwarder even if it is not an interceptor.

To distinguish between these cases, we next issue version.bind

queries to each of the public resolvers we study. While only one

resolver (Quad9) answers version.bind, it is immaterial — if the

CPE is the interceptor, it will answer the query instead, and produce

the same response as the query sent to the CPE’s public IP address.

We then compare the response strings from the query to the CPE

with the responses from the queries to the public resolvers. If they

are identical, we may conclude that the CPE is using DNAT to

intercept queries to that resolver. (For more details on why we use

version.bind for this technique, please see Appendix A.)

3.3 Query Interception by the ISP
If the interception is not being performed by the CPE, we next check

whether it is occurring within the ISP. We can identify interception

within the ISP by using another novel technique: making DNS

requests to bogon IP addresses (“bogon queries”). Bogon IPs are

unroutable, so bogon queries should not be able to leave the AS

in which they originated. We chose one IPv4 and one IPv6 bogon

address, confirmed that queries to these IPs were not routable,

and directed queries for a generic domain we control to both IP

addresses. If we received a response, we concluded that the request

must have been intercepted before it could leave the AS. If we did

not receive a response, two possibilities exist: either the interceptor

ProbeID Cloudflare DNS Google DNS

1053 SFO 172.253.211.15

11992 NOTIMP 62.183.62.69

21823 routing.v2.pw 185.194.112.32

Table 2: Example responses to IPv4 location queries.

ProbeID Cloudflare DNS Google DNS CPE Public IP

1053 - - -

11992 NOTIMP NOTIMP NXDOMAIN
21823 unbound 1.9.0 unbound 1.9.0 unbound 1.9.0

Table 3: Example responses to IPv4 version.bind queries.

was outside the AS, or the interceptor discards queries to unroutable

addresses. Thus, if we received no response, we cannot determine

where the interceptor was located. We found that most interception

in most countries occurs before the query exits the AS (Figure 4).

3.4 Technique in Practice: Example
Tables 2 and 3 illustrate the technique using three RIPE Atlas probes

and their responses. The first step tests if any of the probes are being

intercepted. Table 2 shows the location queries to the IPv4 addresses

of Cloudflare DNS andGoogle DNS. Probe 1053 receives an expected

response, hence the queries are not intercepted: Cloudflare returns

a three letter IATA airport code, and the Google responses map to

Google IP addresses. On the other hand, probes 11992 and 21823

have non-standard responses, so their queries were intercepted.

Next, we issue version.bind queries for the two probes that

were intercepted. Table 3 shows the responses. For probe 21823

the responses from Cloudflare DNS, Google DNS, and the CPE’s

public IP address are all the same, which indicates that the CPE is

the interceptor (Section 3.2). For probe 11992 the responses are a

mix of NOTIMP and NXDOMAIN responses, so the CPE was not the

interceptor in this case.

Finally, we determine if probe 11992 was intercepted within the

ISP by issuing a query to a bogon IP address. Because bogon IP

addresses are not routable, the ISP should drop the queries. However,

if the responses are valid and match the responses purportedly

from the public resolvers in Table 3, then we can conclude that

the interception happened within the ISP. If not, we cannot draw

a conclusion about where the interceptor is located within the

network. In the case of 11992, we received a NOTIMP response to

the bogon query, and thus concluded that 11992’s interceptor was

within its ISP.
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Resolver IPv4 Resolver IPv6
Intercepted Total Intercepted Total

Cloudflare DNS 165 9619 11 3730

Google DNS 160 9655 15 3726

Quad9 156 9616 11 3732

OpenDNS 156 9666 11 3727

All Intercepted 108 9537 0 3691

Table 4: Number of intercepted probes per public resolver.

4 PILOT STUDY ON RIPE ATLAS
We use the RIPE Atlas platform to perform a pilot study that con-

firms our technique works in the wild. With RIPE Atlas we can

launch DNS measurements from roughly 10,000 probes around the

world [35]. However, RIPE Atlas is not representative of the Internet

as a whole: it has significantly more probes in Europe and North

America than anywhere else, and also has a “geek bias” due to its

volunteer-driven deployment. These biases should be taken into

account before generalizing our findings on DNS interception to

ISPs around the world. However, we emphasize that our technique

is broadly transferable. With a handful of DNS queries, we can

determine not only if queries are being intercepted, but also where

the interception is occurring. We therefore believe our technique

can be easily deployed on other measurement platforms as well.

4.1 Which probes experience interception?
As described in Section 3.1, the first step of our technique identifies

which probes experience interception. We do so by sending location
queries from every RIPE Atlas probe worldwide that would respond

to our measurement requests. Over 9,600 probes responded to at

least one experiment (Table 4). We identified 220 RIPE Atlas probes

that experience the type of interception we were looking for, which

we now break down by their location and behavior.

4.1.1 Which public resolvers were subject to interception? We test

interception with four public resolvers: Google DNS, Cloudflare

DNS, Quad9, and OpenDNS. Table 4 shows that the majority of

intercepted nodes experienced interception for all four public re-

solvers. If fewer than four resolvers experienced interception, the

most common pattern was either that only one resolver was in-

tercepted, or only one resolver was allowed. In the former case,

Google DNS and Cloudflare DNS were intercepted more often than

Quad9 and OpenDNS, perhaps because of their popularity and mar-

ket share. In the latter case, we hypothesize that the interceptor

is deliberately using a single public resolver, perhaps for malware

filtering purposes or ease of implementation.

We note that most interceptors that act on IPv4 queries for a pub-

lic resolver do not intercept queries for that resolver’s IPv6 addresses.
Table 4 shows that only a handful of probes experience both IPv4

and IPv6 interception. Because IPv6 interception is infrequent, we

consider IPv4 and IPv6 jointly for all subsequent analyses.

4.1.2 Is interception transparent? If an interceptor intends to

be transparent, we assume it will correctly resolve most DNS

queries. If it did not, it would be obvious to the client that some-

thing was wrong. To test this hypothesis, we sent a request for

0 1 2 3 4 5 6 7
Intercepted Probes by Organization

ShenZhen TVC
TTK-Svyaz

Telecom Malagasy
Telefonica (ES)

Ucom
Vodafone (NL)

Zen Internet
Andrews & Arnold

Charter
Telefonica (DE)
TransTeleCom

Orange (ES)
Vodafone (DE)
Vodafone (IT)

Comcast

Transparent
Status Modified
Both

Figure 3: Intercepted probes per top 15 organizations.

whoami.akamai.com [29] to all four public resolvers from each

intercepted probe. We do not expect this domain to be blocklisted.

The answers to this query let us confirm (a) that interception

is indeed occurring (if the returned IP address is not one of the

egress addresses of the target resolver) and (b) that the interception

is transparent (if we do not receive an error in the response).

Figure 3 categorizes the responses. The “Transparent” bar in-

dicates that queries to all intercepted resolvers were unchanged,

“Status Modified” indicates that queries to all intercepted resolvers

returned DNS error statuses, and “Both” indicates that requests

to some resolvers were transparently intercepted while requests

to others received modified status codes. The majority of queries

across countries and ISPs return a valid response, which indicates

that even intercepted queries are resolved correctly—just not by

the targeted public resolver. However, some queries return a DNS

error status for at least one resolver, such as SERVFAIL (server fail-

ure), NOTIMP (not implemented), or REFUSED. Because these status
codes are not timeouts, they have likely been sent deliberately by

the alternate resolver, and are not transient errors. We therefore

conclude that some interceptors may block certain public resolvers.

Figure 3 shows that Comcast (AS7922) has the highest number

of intercepted probes of any organization. Although RIPE Atlas has

a high proportion of probes in the U.S., and in Comcast’s AS in

particular, this finding is consistent with prior work that showed

significant DNS interception occurring in Comcast’s networks [31].

Not all probes in Comcast’s AS (or anyAS) are intercepted: we found

that this is because specific models of CPE perform the interception.

For details in Comcast’s case, see Section 5.

4.2 Is the interception performed by the CPE?
As we described in Section 3.2, once we identify intercepted probes,

we use version.bind queries to determine whether the interceptor

was the probe’s CPE. Figure 4 shows the number of probes that

were intercepted by their CPE per country and organization. To

our surprise, a sizable fraction of the interception we observed was

attributable to CPE: the CPE was the interceptor for 49 out of the
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Figure 4: Interception location for the 15 countries and organizations with the most intercepted probes.

version.bind Response # Probes

dnsmasq-* 23

dnsmasq-pi-hole-* 8

unbound* 6

*-RedHat 2

PowerDNS Recursor*, Q9-*, 9.16.15, 1 each

*-Debian, Windows NS, Microsoft,

new, unknown, none, huuh ? ... ,

* indicates version number

Table 5: Strings sent in response to version.bind.

220 intercepted probes. Furthermore, we found such probes in coun-

tries around the world: these results are not due to an individual

network’s behavior.

We grouped the version.bind responses from these 49 CPE-

intercepted probes by the strings they returned, as shown in Table 5.

The majority were various versions of Dnsmasq, software that is

explicitly designed to run on CPE [15]. We consider Dnsmasq’s

presence to be confirmation that the interceptor answering the

version.bind query is the CPE. We also saw Dnsmasq strings on

eight probes that indicated the device was a PiHole, suggesting

that the owner deliberately intercepted DNS (presumably to avoid

advertisements).

4.3 Is the interception within the client’s ISP?
If we are unable to confirm that the probe’s CPE is the interceptor,

we then check whether the interceptor is within the probe’s ISP

using bogon queries (Section 3.3). Figure 4 shows the number of

probes that are intercepted by their CPE, intercepted within their

ISP, and the probes whose interception location is (potentially)

beyond the ISP. For the RIPE Atlas nodes at least, this technique

finds that when DNS queries are intercepted, they are intercepted

close to the client (at the CPE or ISP) in amajority of cases.Moreover,

in many of the countries, interception more often than not happens

within the ISP, matching prior work’s findings [24, 31] that DNS

interception is often a result of ISP policy.

5 CASE STUDY: XB6 ROUTER
We first started to investigate CPE-based interception when it began

interfering with our previous DNS experiments. We first experi-

enced interception when we discovered that one author could not

contact public resolvers from her residence. Upon investigation, we

were able to identify the router model that performed the intercep-

tion: the Arris/Technicolor XB6 [43].

The XB6 is manufactured by both Arris and Technicolor, but its

hardware was designed by Comcast [6]. It uses a firmware package

called RDK-B (Reference Design Kit), which is in use by more than

80 million devices around the world [8]. Other ISPs also license

RDK-B and rent XB6 routers to their customers, including Shaw

Communications, Vodafone, Liberty Global, and many others [8].

Notably, RDK-B includes a DNS resolver called XDNS, which

stands for Xfinity DNS [7]. XDNS can redirect DNS queries us-

ing DNAT, which Comcast uses to implement malware filtering

services [9]. XDNS also implements a response to version.bind.
The XDNS filtering service is intended to be opt-in. However, it

appears that a bug in some XB6 routers is causing them to direct all

queries to the ISP’s resolver, without giving users any indication

that their choice has been curtailed. This problem is not limited to

Comcast: we have observed very similar behavior in other networks

where the XB6 is deployed, including Shaw Communications and

Vodafone. However, the bug appears to be uncommon.

We have reached out to ISPs about these discoveries. Their re-

sponses have been supportive and we are working to identify the

source of the bug.

6 LIMITATIONS AND FUTUREWORK
This section describes our work’s limitations and identifies direc-

tions for future work.

Ourmethod is designed tomeasure the systematic interception of

all DNS queries sent to a target resolver.We looked for systematic in-

terception since we had observed DNAT-based transport/network-

layer interception in the wild (Section 5). However, if only some

queries are intercepted and others (such as our location queries)

are not, our method will not determine interception.
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Another limitation of our approach is that it relies upon the

CPE answering version.bind queries. We do not expect this re-

quirement to be a major limitation, however, since the BIND-like

interface is now supported by many resolvers—even ones that do

not use BIND.

Our approach also assumes that the DNS infrastructure of the

client’s ISP is located within the client’s AS. If the ISP’s resolver

is located outside the client’s AS, our approach will classify the

interception’s location as “unknown” instead of “within the ISP.”

Additionally, our methodology may misclassify a non-

intercepting CPE as an interceptor in a specific case: when the

CPE has port 53 open, the CPE is a DNS forwarder, and the CPE

does not respond to version.bind but instead forwards the query

to a resolver.

We also note that RIPE Atlas is not a representative measure-

ment platform and we therefore do not expect our results on the

prevalence of DNS interception to generalize; we refer interested

readers instead to recent work by Liu et al., who investigated the

prevalence of DNS interception [31]. Our goal in using RIPE Atlas

is primarily to conduct a pilot study to show that our technique

can detect interception and identify where it occurs.

While our approach should theoretically detect DNS intercep-

tion in DNS over TLS (DoT) [23], we did not evaluate it on RIPE

Atlas. DNS over HTTP (DoH) [22] and some configurations of DoT

will prevent interception from occurring altogether, but the “oppor-

tunistic privacy profile” of DoT disables client certificate validation,

so this configuration could allow interception. We leave evaluation

of our method for detecting DoT interception for future work.

Techniques based on increasing the TTL of the IP header have

the potential to identify which hop intercepted a query. The RIPE

Atlas platform does not currently offer the ability to adjust the

TTL of DNS requests, but we briefly explored using the VPNGate

measurement platform [46] for this purpose. Unfortunately, we

found that their VPN rewrites IP TTLs, rendering this experiment

impossible. However, changing non-ICMP packet TTLs requires

root or SUID root on most systems, whereas our approach only

requires the ability to send DNS queries.

7 RELATEDWORK
Due to the vital role of recursive DNS resolvers in Internet in-

teractions, many of their properties have been studied, including

their proximity to clients [1, 2, 10, 32, 36], their caching behav-

ior [25, 26, 28, 34], and home gateway behavior [20]. Prior work

has also studied vulnerabilities affecting DNS resolvers [21, 41, 42]

and DNS cache snooping side channels that can reveal the popu-

larity of web domains [33, 38–40, 50]. We focus our discussion on

work that has studied DNS interception and DNS redirection.

Most prior work has studied DNS redirection, where (some) DNS

responses received by user devices are altered (Section 2). DNS

redirection is often employed to implement country-level or ISP-

level policies. Researchers have reported that DNS requests sent

from within China to third-party resolvers outside the country face

DNS injection [4] (likely to implement censorship measures), and

that even DNS requests that originate outside China but transit the

country can be redirected due to collateral damage [3]. In a similar

vein, studies have leveraged open recursive resolvers to investigate

DNS manipulation whose likely purpose is to restrict user access to

content [27, 37]. Chung et al. reported onNXDOMAINwildcarding—

the practice of rewriting NXDOMAIN errors with A records that

point to a web server—and show that this form of DNS redirection

may be occurring at the ISP’s DNS server, public DNS servers,

and ISP middleboxes [12]. Using data from Netalyzr, Kreibich et
al. showed that NXDOMAIN wildcarding practices were prevalent

among several ISPs [30, 47, 48]. Complementing these findings, our

study shows that some instances of DNS interception occur due to

potentially misconfigured CPE infrastructure; replacing these CPE

devices sometimes suffices to prevent DNS interception. Our study

also differs from previous work on NXDOMAIN wildcarding in that

we study transparent interception rather than interception that is

detectable by the client.

Also using RIPE Atlas probes, Jones et al. and Wei et al. measure

how frequently DNS debugging queries (specifically hostname.bind)

towards root servers are redirected [24, 49]. Their discovery of DNS

redirection in existing RIPE Atlas datasets encouraged us to use

the platform for our pilot study on DNS interception, although our

work found version.bind to be better suited for our purposes.

Vallina-Rodriguez et al. measure the prevalence of DNS proxies

in cellular networks by sending queries to their own authoritative

nameserver [44]. Our work differs since we focus on where in the

network interception is happening instead of its prevalence.

Liu et al.measured the prevalence of DNS interception in a recent

study [31]. They performed DNS requests over both a commercial

proxy network and from several Chinese mobile networks to es-

timate how common DNS interception is, but did not investigate

where in the network interception takes place.

To the best of our knowledge, we are the first to investigate DNS

interception over IPv6. Our results on RIPE Atlas suggest that DNS

interception occurs far less frequently in IPv6 than in IPv4.

8 CONCLUSION
Our work provides a methodology for identifying the location of a

DNS interceptor, whether the interceptor is the host’s CPE device,

a device in the host’s AS, or elsewhere. Being able to empirically

determine such information — that would otherwise be invisible

to the user — is particularly relevant now when concerns about

privacy and integrity have led to multiple proposed standards for

embedding DNS traffic within encrypted tunnels: DNS over HTTPS

and DNS over TLS. While the complex and many-sided nature of

the debate around the deployment of such protocols is beyond the

scope of this short paper, it is motivated by precisely the kinds of

DNS interception that we observe and that can be more closely

monitored by using our work.
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A WHY VERSION.BIND IS NECESSARY TO
DETECT CPE INTERCEPTION

We identify cases where the CPE is the interceptor by sending a spe-

cific CHAOS TXT query for version.bind to the public address of
the CPE. Under ordinary routing rules, the CPE should not forward

this packet to any other destinations, so if we receive a response to

this query, we know the CPE has not obeyed usual routing rules

and might be the interceptor. A reader might ask why it is necessary

to send version.bind, which some resolvers are not configured

to answer, rather than any DNS request for an ordinary A record:

if we receive an answer for an ordinary A record request, does this

indicate that the CPE is the interceptor?

Our reasoning is that it does not, and our logic is as follows.

When a DNS request for an A record is sent to the CPE’s public IP

address, if the CPE’s port 53 is open, even a non-intercepting CPE

will return a response. This behavior is even true for version.bind
queries. Therefore, the result of a single query to the CPE’s public

IP address is not sufficient to determine if the CPE is the interceptor.

Our method relies on comparing the version.bind query sent to

the CPE’s public IP address with the version.bind query sent to

the public resolver. The answer to a version.bind query is a string
that is much more unique than an ordinary DNS response, and this

property is necessary for determining if the CPE is the interceptor.

Consider the following scenario if an ordinary DNS query were

used to determine the interceptor, leading to an incorrect conclusion.

Let us assume the CPE is not the interceptor, but it does have port

53 open. If we were to send a query for example.com to the CPE’s

public IP address, the CPE would forward that query to its DNS

resolver (for example, Comcast DNS) because its port 53 is open. We

would receive the IP address of example.com, for example, “1.2.3.4.”

Next, we send a query for example.com to a public DNS resolver
like Google DNS. The CPE is not the interceptor, so it sends the

query towards Google DNS as intended. The query is intercepted

further along the path, but no matter which resolver eventually

answers it, the response is “1.2.3.4.”

Now consider the case where the CPE is the interceptor. Both
queries for example.comwould be forwarded to the CPE’s resolver,
and both answers would come back as “1.2.3.4.” We cannot tell

whether the CPE was the interceptor because all answers to our

queries are identical. The advantage of using version.bind is that
it returns a more unique string. If the CPE is not the interceptor, but

does have port 53 open, the query to the CPE’s public IP address

will return its own answer to version.bind (e.g., “Dnsmasq 2.7.”).

The query to a public resolver such as Google DNS will arrive at

some non-CPE resolver further along the path, and will return that

resolver’s answer to version.bind (e.g., “PowerDNS”). The CPE’s

response to a version.bind query is unlikely to be identical to the
intercepting resolver’s response. But if the CPE is the interceptor,

both version.bind queries will be handled by the CPE’s resolver,

and they will return identical answers. We can therefore determine

with high confidence when the CPE is the interceptor.

B ETHICAL CONSIDERATIONS
Our work does not raise ethical concerns as we issue standard DNS

queries towards major public DNS resolvers from a platform with

volunteer-consent for such measurements.
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