
Home is Where the Hijacking is: Understanding DNS
Interception by Residential Routers

Audrey Randall

UC San Diego

aurandal@eng.ucsd.edu

Enze Liu

UC San Diego

e7liu@eng.ucsd.edu

Ramakrishna

Padmanabhan

CAIDA/UC San Diego

ramapad@caida.org

Gautam Akiwate

UC San Diego

gakiwate@cs.ucsd.edu

Geoffrey M. Voelker

UC San Diego

voelker@cs.ucsd.edu

Stefan Savage

UC San Diego

savage@cs.ucsd.edu

Aaron Schulman

UC San Diego

schulman@cs.ucsd.edu

ABSTRACT
DNS interception — when a user’s DNS queries to a target resolver

are intercepted en route and forwarded to a different resolver — is

a phenomenon of concern to both researchers and Internet users

because of its implications for security and privacy. While the

prevalence of DNS interception has received some attention, less

is known about where in the network interception takes place.

We introduce methods to identify where DNS interception occurs

and who the interceptors may be. We identify when interception

is performed before the query exits the ISP, and even when it is

performed by the Customer Premises Equipment (CPE) in the user’s

own home. We believe that these techniques are vital in the light

of the ongoing debate concerning the value of privacy-enhancing

DNS transport.

CCS CONCEPTS
• Networks → Home networks; Network measurement.

ACM Reference Format:
Audrey Randall, Enze Liu, Ramakrishna Padmanabhan, Gautam Akiwate,

Geoffrey M. Voelker, Stefan Savage, and Aaron Schulman. 2021. Home is

Where the Hijacking is: Understanding DNS Interception by Residential

Routers. In ACM Internet Measurement Conference (IMC ’21), November
2–4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3487552.3487817

1 INTRODUCTION
In principle, devices are free to direct their DNS queries to the re-

cursive resolver of their choosing. Indeed, it is this freedom that

has enabled the growth of public resolvers such as those offered

by Google, Cloudflare, and others. However, a key underlying as-

sumption is that DNS queries are faithfully forwarded as they are

addressed. Unfortunately, this is not always so.

DNS queries sent by a user’s device can be intercepted en route

to a target resolver and forwarded to an alternate resolver. Further-
more, this interception can be transparent, where the interceptor

IMC ’21, November 2–4, 2021, Virtual Event, USA 
© 2021 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9129-0/21/11.
https://doi.org/10.1145/3487552.3487817

Host’s ISP
Target DNS 

Resolver
Host

Original query
Intercepted query
(Spoofed) response

CPE
ISP

middlebox
Non-ISP

middlebox

Alternate 
DNS Resolver

Figure 1: Locations where interception can occur.

spoofs responses so they appear to have been sent by the intended

resolver. Transparent interception is difficult to detect because the

alternate resolver does not have to modify the response. Even if the

reason for the interception is benign — such as to prevent malware

from evading DNS filtering — the interception of requests and mis-

representation of responses raise serious ethical concerns [14, 45]

and can also interfere with the correct operation of protocols such

as DNSSEC [14, 31].

While prior work has identified the broad prevalence of trans-

parent interception [24, 31, 49], there are no established techniques

for establishing where the interception is implemented. Indeed,

there are a range of different points in the network where such

interception might take place.

DNS redirection, another form of DNS manipulation, has also

been found to occur in several parts of the network. DNS redirec-

tion occurs when a DNS resolver returns an altered response for

specific queries and may occur with or without DNS interception.

DNS redirection has been discovered in Customer Premises Equip-
ment (CPE) to block resolution of specific domain names [17], in
ISPs to replace NXDOMAIN responses with advertisements [30, 48]

or enhance security and performance [44], and outside of ISPs to
implement country-level censorship [4, 5, 16, 27]. Transparent in-

terception has been far less extensively studied, although we are

aware of anecdotal reports suggesting that, in some cases, the DNS

forwarder in CPE [20] may be implicated [11, 13, 19].

In this paper, we develop a technique that can isolate where in
the network transparent interception is occurring. In particular, we

make the following contributions:

• Identifying Where Transparent Interception Occurs. We

demonstrate how targeted use of standard DNS debugging
queries—such as id.server and version.bind [51]—can iden-

tify not only the presence of transparent interception but to

systematically infer if the source of that interception is the CPE

390

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/


IMC ’21, November 2–4, 2021, Virtual Event, USA Randall, Liu, Padmanabhan, Akiwate, Voelker, Savage, and Schulman

Are debugging responses from 
public resolvers formatted 

incorrectly?

Are queries to bogon 
addresses answered?

Do debugging responses 
from the CPE’s address share 
the same incorrect format?

Is probe intercepted? Interceptor is within ISP?Interceptor is the CPE?

Yes No No

Not Intercepted Intercepted by CPE
Intercepted 
within ISP

Intercepted 
at unknown 

location
1 2 3

No Yes Yes

Figure 2: Three-part technique to determine if and where a DNS query is being intercepted.

or middle-boxes in the ISP (Figure 1). Our technique can be im-

plemented on any device that can make DNS queries, without

requiring root access or external measurement tools such as an

authoritative nameserver.

• Pilot Study of Transparent Interception on RIPE Atlas.
We demonstrate our technique on RIPE Atlas infrastructure as

a pilot study. We identify over 200 occurrences of such trans-

parent interception. Of these, we further show that CPE-based

transparent interception constitutes a significant fraction.

• Case Study: CPE-based Transparent Interception. We

highlight a particular case that more precisely explains the

nature of the DNS interception mechanism. Specifically, we il-

lustrate how the common XB6/XB7 home router (used by many

ISPs) use Destination Network Address Translation (DNAT) to

transparently intercept queries and forward them to the ISP’s

resolver.

We believe that techniques such as these, that discover how and

where DNS manipulation takes place, are especially important in

light of the ongoing public controversy concerning the value and

implementation of privacy-enhancing DNS transport [22, 23].

2 BACKGROUND AND TERMINOLOGY
During normal DNS resolution, a user device sends DNS request(s)

to a target resolver (the user’s ISP’s resolver, a public resolver such
as Google, Cloudflare, etc.). The target resolver recursively resolves

the request and returns the response to the user device. Adopting

terminology from Liu et al. [31], we refer to instances where DNS

queries to a target resolver are intercepted and forwarded to an

alternate resolver as DNS interception. DNS responses arriving

at the user device from these alternate resolvers arrive with the

source address spoofed to be that of the target resolver [31]; if

not, the response would be rejected by the user device. When DNS

responses are spoofed in this manner, the interception is transparent
to the user device, and is difficult to detect. We refer to transparent

interception as simply “interception” in the rest of the paper.

DNS redirection is a related but different form of DNS manipula-

tion, where DNS responses — often NXDOMAIN responses [12, 30]

— are altered, resulting in users getting redirected towards a dif-

ferent resource from the one in the unaltered response. It is often

performed by the target resolver, rather than by forwarding a query

to an alternate resolver. The insight that the response received by

the user is different from the correct response during DNS redirec-

tion has been used to study this phenomenon in detail [30, 44, 48].

DNS interception, in contrast, has received less attention, and is

the focus of our paper. In 2018, Liu et al. measured the prevalence

of DNS interception [31], but did not measure where in the network

their queries were intercepted. We present a technique that can

both determine whether a DNS query is intercepted, as well as if it

was intercepted by the client’s own CPE or ISP.

3 METHODOLOGY
In this section, we present our methodology for detecting where

DNS interception occurs. Figure 2 illustrates the three steps of the

technique and the information used to make determinations at

each step. We next describe each step in more detail, and present a

concrete example of the technique in practice.

3.1 Identifying Query Interception
We show that it is sufficient to use a few select location queries
— for which it is difficult to spoof the correct response — to de-

tect query interception. Public anycast resolvers implement these

queries to aid debugging, by revealing the location of the specific

server that answers the query [18]. Our technique issues location

queries to four public resolvers (on both primary and secondary

IP addresses) and tests for “non-standard” responses to discover

query interception. This technique is similar to the one used by

Jones et al. to detect DNS root manipulation using hostname.bind
queries [24]. Moreover, since each public resolver has both IPv4

and IPv6 addresses, we can detect interception in both protocols.

Each of the four public resolvers that we study implements its

own version of a location query. Table 1 lists the queries and an

example expected response. Each resolver uses a different format

for its responses, and these formats are consistent around the world.

We determined “standard” responses for each resolver by making

requests from a network that we knew did not experience intercep-

tion, and later confirmed that these responses were the expected

ones in conversations with public resolver operators. When testing

for interception, we compare responses to location queries issued

from the device under study against these standard responses; when

a response does not match the standard response, we conclude that

the query has been intercepted.

We note that if a query is dropped entirely, it will appear to

the client as a timeout. While timeouts can potentially reveal in-

teresting behavior, such as censorship, for the purposes of our

study we conservatively assume that timeouts are not due to trans-

parent interception. We also note that prior work has observed

query replication, where two responses are sent to the client: one

from the intended recipient, and one from the interceptor’s chosen

resolver [31]. However, the interceptor’s response nearly always

391



Home is Where the Hijacking is IMC ’21, November 2–4, 2021, Virtual Event, USA

Public Resolver Type Location Query Example Responses

Cloudflare DNS CHAOS TXT id.server IAD
Google DNS TXT o-o.myaddr.l.google.com 172.253.226.35
Quad9 CHAOS TXT id.server res100.iad.rrdns.pch.net

OpenDNS TXT debug.opendns.com server m84.iad

Table 1: Location queries and examples of expected responses from each resolver.

arrives first and is accepted by the client, so interception and repli-

cation are indistinguishable for our purposes.

3.2 Identifying Query Interception by the CPE
After we determine that interception is occurring using location

queries, we then find where the query is first diverted away from

its intended destination. We begin by using a novel technique to

determine if the client’s CPE is responsible for the interception.

First, we issue a version.bind query to the CPE’s own public IP

address. By usual IP routing rules, this query cannot travel beyond

the CPE because the CPE is its destination. However, if the CPE is

the interceptor, it will switch roles at this point: rather than acting

as a packet forwarder following IP rules, the CPE will take on the

role of a DNS forwarder instead. This role switch occurs because

the most common method of implementing interception is DNAT.

DNAT rewrites all query destinations to be the CPE’s own private

IP address, so that the CPE’s DNS forwarder (e.g., Dnsmasq) can

send them to its own pre-configured resolver. If the CPE’s DNS

forwarder supports the version.bind request, it will not forward

the query any further, and will directly return a response.

However, this result alone is insufficient to demonstrate that the

CPE is the interceptor, because there is another circumstance that

could allow the CPE to forward the query: if the CPE’s port 53 is

open, it will act as a DNS forwarder even if it is not an interceptor.

To distinguish between these cases, we next issue version.bind

queries to each of the public resolvers we study. While only one

resolver (Quad9) answers version.bind, it is immaterial — if the

CPE is the interceptor, it will answer the query instead, and produce

the same response as the query sent to the CPE’s public IP address.

We then compare the response strings from the query to the CPE

with the responses from the queries to the public resolvers. If they

are identical, we may conclude that the CPE is using DNAT to

intercept queries to that resolver. (For more details on why we use

version.bind for this technique, please see Appendix A.)

3.3 Query Interception by the ISP
If the interception is not being performed by the CPE, we next check

whether it is occurring within the ISP. We can identify interception

within the ISP by using another novel technique: making DNS

requests to bogon IP addresses (“bogon queries”). Bogon IPs are

unroutable, so bogon queries should not be able to leave the AS

in which they originated. We chose one IPv4 and one IPv6 bogon

address, confirmed that queries to these IPs were not routable,

and directed queries for a generic domain we control to both IP

addresses. If we received a response, we concluded that the request

must have been intercepted before it could leave the AS. If we did

not receive a response, two possibilities exist: either the interceptor

ProbeID Cloudflare DNS Google DNS

1053 SFO 172.253.211.15

11992 NOTIMP 62.183.62.69

21823 routing.v2.pw 185.194.112.32

Table 2: Example responses to IPv4 location queries.

ProbeID Cloudflare DNS Google DNS CPE Public IP

1053 - - -

11992 NOTIMP NOTIMP NXDOMAIN
21823 unbound 1.9.0 unbound 1.9.0 unbound 1.9.0

Table 3: Example responses to IPv4 version.bind queries.

was outside the AS, or the interceptor discards queries to unroutable

addresses. Thus, if we received no response, we cannot determine

where the interceptor was located. We found that most interception

in most countries occurs before the query exits the AS (Figure 4).

3.4 Technique in Practice: Example
Tables 2 and 3 illustrate the technique using three RIPE Atlas probes

and their responses. The first step tests if any of the probes are being

intercepted. Table 2 shows the location queries to the IPv4 addresses

of Cloudflare DNS andGoogle DNS. Probe 1053 receives an expected

response, hence the queries are not intercepted: Cloudflare returns

a three letter IATA airport code, and the Google responses map to

Google IP addresses. On the other hand, probes 11992 and 21823

have non-standard responses, so their queries were intercepted.

Next, we issue version.bind queries for the two probes that

were intercepted. Table 3 shows the responses. For probe 21823

the responses from Cloudflare DNS, Google DNS, and the CPE’s

public IP address are all the same, which indicates that the CPE is

the interceptor (Section 3.2). For probe 11992 the responses are a

mix of NOTIMP and NXDOMAIN responses, so the CPE was not the

interceptor in this case.

Finally, we determine if probe 11992 was intercepted within the

ISP by issuing a query to a bogon IP address. Because bogon IP

addresses are not routable, the ISP should drop the queries. However,

if the responses are valid and match the responses purportedly

from the public resolvers in Table 3, then we can conclude that

the interception happened within the ISP. If not, we cannot draw

a conclusion about where the interceptor is located within the

network. In the case of 11992, we received a NOTIMP response to

the bogon query, and thus concluded that 11992’s interceptor was

within its ISP.

392



IMC ’21, November 2–4, 2021, Virtual Event, USA Randall, Liu, Padmanabhan, Akiwate, Voelker, Savage, and Schulman

Resolver IPv4 Resolver IPv6
Intercepted Total Intercepted Total

Cloudflare DNS 165 9619 11 3730

Google DNS 160 9655 15 3726

Quad9 156 9616 11 3732

OpenDNS 156 9666 11 3727

All Intercepted 108 9537 0 3691

Table 4: Number of intercepted probes per public resolver.

4 PILOT STUDY ON RIPE ATLAS
We use the RIPE Atlas platform to perform a pilot study that con-

firms our technique works in the wild. With RIPE Atlas we can

launch DNS measurements from roughly 10,000 probes around the

world [35]. However, RIPE Atlas is not representative of the Internet

as a whole: it has significantly more probes in Europe and North

America than anywhere else, and also has a “geek bias” due to its

volunteer-driven deployment. These biases should be taken into

account before generalizing our findings on DNS interception to

ISPs around the world. However, we emphasize that our technique

is broadly transferable. With a handful of DNS queries, we can

determine not only if queries are being intercepted, but also where

the interception is occurring. We therefore believe our technique

can be easily deployed on other measurement platforms as well.

4.1 Which probes experience interception?
As described in Section 3.1, the first step of our technique identifies

which probes experience interception. We do so by sending location
queries from every RIPE Atlas probe worldwide that would respond

to our measurement requests. Over 9,600 probes responded to at

least one experiment (Table 4). We identified 220 RIPE Atlas probes

that experience the type of interception we were looking for, which

we now break down by their location and behavior.

4.1.1 Which public resolvers were subject to interception? We test

interception with four public resolvers: Google DNS, Cloudflare

DNS, Quad9, and OpenDNS. Table 4 shows that the majority of

intercepted nodes experienced interception for all four public re-

solvers. If fewer than four resolvers experienced interception, the

most common pattern was either that only one resolver was in-

tercepted, or only one resolver was allowed. In the former case,

Google DNS and Cloudflare DNS were intercepted more often than

Quad9 and OpenDNS, perhaps because of their popularity and mar-

ket share. In the latter case, we hypothesize that the interceptor

is deliberately using a single public resolver, perhaps for malware

filtering purposes or ease of implementation.

We note that most interceptors that act on IPv4 queries for a pub-

lic resolver do not intercept queries for that resolver’s IPv6 addresses.
Table 4 shows that only a handful of probes experience both IPv4

and IPv6 interception. Because IPv6 interception is infrequent, we

consider IPv4 and IPv6 jointly for all subsequent analyses.

4.1.2 Is interception transparent? If an interceptor intends to

be transparent, we assume it will correctly resolve most DNS

queries. If it did not, it would be obvious to the client that some-

thing was wrong. To test this hypothesis, we sent a request for

0 1 2 3 4 5 6 7
Intercepted Probes by Organization

ShenZhen TVC
TTK-Svyaz

Telecom Malagasy
Telefonica (ES)

Ucom
Vodafone (NL)

Zen Internet
Andrews & Arnold

Charter
Telefonica (DE)
TransTeleCom

Orange (ES)
Vodafone (DE)
Vodafone (IT)

Comcast

Transparent
Status Modified
Both

Figure 3: Intercepted probes per top 15 organizations.

whoami.akamai.com [29] to all four public resolvers from each

intercepted probe. We do not expect this domain to be blocklisted.

The answers to this query let us confirm (a) that interception

is indeed occurring (if the returned IP address is not one of the

egress addresses of the target resolver) and (b) that the interception

is transparent (if we do not receive an error in the response).

Figure 3 categorizes the responses. The “Transparent” bar in-

dicates that queries to all intercepted resolvers were unchanged,

“Status Modified” indicates that queries to all intercepted resolvers

returned DNS error statuses, and “Both” indicates that requests

to some resolvers were transparently intercepted while requests

to others received modified status codes. The majority of queries

across countries and ISPs return a valid response, which indicates

that even intercepted queries are resolved correctly—just not by

the targeted public resolver. However, some queries return a DNS

error status for at least one resolver, such as SERVFAIL (server fail-

ure), NOTIMP (not implemented), or REFUSED. Because these status
codes are not timeouts, they have likely been sent deliberately by

the alternate resolver, and are not transient errors. We therefore

conclude that some interceptors may block certain public resolvers.

Figure 3 shows that Comcast (AS7922) has the highest number

of intercepted probes of any organization. Although RIPE Atlas has

a high proportion of probes in the U.S., and in Comcast’s AS in

particular, this finding is consistent with prior work that showed

significant DNS interception occurring in Comcast’s networks [31].

Not all probes in Comcast’s AS (or anyAS) are intercepted: we found

that this is because specific models of CPE perform the interception.

For details in Comcast’s case, see Section 5.

4.2 Is the interception performed by the CPE?
As we described in Section 3.2, once we identify intercepted probes,

we use version.bind queries to determine whether the interceptor

was the probe’s CPE. Figure 4 shows the number of probes that

were intercepted by their CPE per country and organization. To

our surprise, a sizable fraction of the interception we observed was

attributable to CPE: the CPE was the interceptor for 49 out of the

393



Home is Where the Hijacking is IMC ’21, November 2–4, 2021, Virtual Event, USA

0 5 10 15 20 25 30
Intercepted Probes per Country

CN
SE
SK
FR
ID
IN
PL
GB
CZ
UA
IT

DE
ES
RU
US

Unknown
Redirected within ISP
Redirected by CPE

0 1 2 3 4 5 6 7
Intercepted Probes per Organization

ShenZhen TVC
TTK-Svyaz

Telecom Malagasy
Telefonica (ES)

Ucom
Vodafone (NL)

Zen Internet
Andrews & Arnold

Charter
Telefonica (DE)
TransTeleCom

Orange (ES)
Vodafone (DE)
Vodafone (IT)

Comcast

Unknown
Redirected within ISP
Redirected by CPE

Figure 4: Interception location for the 15 countries and organizations with the most intercepted probes.

version.bind Response # Probes

dnsmasq-* 23

dnsmasq-pi-hole-* 8

unbound* 6

*-RedHat 2

PowerDNS Recursor*, Q9-*, 9.16.15, 1 each

*-Debian, Windows NS, Microsoft,

new, unknown, none, huuh ? ... ,

* indicates version number

Table 5: Strings sent in response to version.bind.

220 intercepted probes. Furthermore, we found such probes in coun-

tries around the world: these results are not due to an individual

network’s behavior.

We grouped the version.bind responses from these 49 CPE-

intercepted probes by the strings they returned, as shown in Table 5.

The majority were various versions of Dnsmasq, software that is

explicitly designed to run on CPE [15]. We consider Dnsmasq’s

presence to be confirmation that the interceptor answering the

version.bind query is the CPE. We also saw Dnsmasq strings on

eight probes that indicated the device was a PiHole, suggesting

that the owner deliberately intercepted DNS (presumably to avoid

advertisements).

4.3 Is the interception within the client’s ISP?
If we are unable to confirm that the probe’s CPE is the interceptor,

we then check whether the interceptor is within the probe’s ISP

using bogon queries (Section 3.3). Figure 4 shows the number of

probes that are intercepted by their CPE, intercepted within their

ISP, and the probes whose interception location is (potentially)

beyond the ISP. For the RIPE Atlas nodes at least, this technique

finds that when DNS queries are intercepted, they are intercepted

close to the client (at the CPE or ISP) in amajority of cases.Moreover,

in many of the countries, interception more often than not happens

within the ISP, matching prior work’s findings [24, 31] that DNS

interception is often a result of ISP policy.

5 CASE STUDY: XB6 ROUTER
We first started to investigate CPE-based interception when it began

interfering with our previous DNS experiments. We first experi-

enced interception when we discovered that one author could not

contact public resolvers from her residence. Upon investigation, we

were able to identify the router model that performed the intercep-

tion: the Arris/Technicolor XB6 [43].

The XB6 is manufactured by both Arris and Technicolor, but its

hardware was designed by Comcast [6]. It uses a firmware package

called RDK-B (Reference Design Kit), which is in use by more than

80 million devices around the world [8]. Other ISPs also license

RDK-B and rent XB6 routers to their customers, including Shaw

Communications, Vodafone, Liberty Global, and many others [8].

Notably, RDK-B includes a DNS resolver called XDNS, which

stands for Xfinity DNS [7]. XDNS can redirect DNS queries us-

ing DNAT, which Comcast uses to implement malware filtering

services [9]. XDNS also implements a response to version.bind.
The XDNS filtering service is intended to be opt-in. However, it

appears that a bug in some XB6 routers is causing them to direct all

queries to the ISP’s resolver, without giving users any indication

that their choice has been curtailed. This problem is not limited to

Comcast: we have observed very similar behavior in other networks

where the XB6 is deployed, including Shaw Communications and

Vodafone. However, the bug appears to be uncommon.

We have reached out to ISPs about these discoveries. Their re-

sponses have been supportive and we are working to identify the

source of the bug.

6 LIMITATIONS AND FUTUREWORK
This section describes our work’s limitations and identifies direc-

tions for future work.

Ourmethod is designed tomeasure the systematic interception of

all DNS queries sent to a target resolver.We looked for systematic in-

terception since we had observed DNAT-based transport/network-

layer interception in the wild (Section 5). However, if only some

queries are intercepted and others (such as our location queries)

are not, our method will not determine interception.

394



IMC ’21, November 2–4, 2021, Virtual Event, USA Randall, Liu, Padmanabhan, Akiwate, Voelker, Savage, and Schulman

Another limitation of our approach is that it relies upon the

CPE answering version.bind queries. We do not expect this re-

quirement to be a major limitation, however, since the BIND-like

interface is now supported by many resolvers—even ones that do

not use BIND.

Our approach also assumes that the DNS infrastructure of the

client’s ISP is located within the client’s AS. If the ISP’s resolver

is located outside the client’s AS, our approach will classify the

interception’s location as “unknown” instead of “within the ISP.”

Additionally, our methodology may misclassify a non-

intercepting CPE as an interceptor in a specific case: when the

CPE has port 53 open, the CPE is a DNS forwarder, and the CPE

does not respond to version.bind but instead forwards the query

to a resolver.

We also note that RIPE Atlas is not a representative measure-

ment platform and we therefore do not expect our results on the

prevalence of DNS interception to generalize; we refer interested

readers instead to recent work by Liu et al., who investigated the

prevalence of DNS interception [31]. Our goal in using RIPE Atlas

is primarily to conduct a pilot study to show that our technique

can detect interception and identify where it occurs.

While our approach should theoretically detect DNS intercep-

tion in DNS over TLS (DoT) [23], we did not evaluate it on RIPE

Atlas. DNS over HTTP (DoH) [22] and some configurations of DoT

will prevent interception from occurring altogether, but the “oppor-

tunistic privacy profile” of DoT disables client certificate validation,

so this configuration could allow interception. We leave evaluation

of our method for detecting DoT interception for future work.

Techniques based on increasing the TTL of the IP header have

the potential to identify which hop intercepted a query. The RIPE

Atlas platform does not currently offer the ability to adjust the

TTL of DNS requests, but we briefly explored using the VPNGate

measurement platform [46] for this purpose. Unfortunately, we

found that their VPN rewrites IP TTLs, rendering this experiment

impossible. However, changing non-ICMP packet TTLs requires

root or SUID root on most systems, whereas our approach only

requires the ability to send DNS queries.

7 RELATEDWORK
Due to the vital role of recursive DNS resolvers in Internet in-

teractions, many of their properties have been studied, including

their proximity to clients [1, 2, 10, 32, 36], their caching behav-

ior [25, 26, 28, 34], and home gateway behavior [20]. Prior work

has also studied vulnerabilities affecting DNS resolvers [21, 41, 42]

and DNS cache snooping side channels that can reveal the popu-

larity of web domains [33, 38–40, 50]. We focus our discussion on

work that has studied DNS interception and DNS redirection.

Most prior work has studied DNS redirection, where (some) DNS

responses received by user devices are altered (Section 2). DNS

redirection is often employed to implement country-level or ISP-

level policies. Researchers have reported that DNS requests sent

from within China to third-party resolvers outside the country face

DNS injection [4] (likely to implement censorship measures), and

that even DNS requests that originate outside China but transit the

country can be redirected due to collateral damage [3]. In a similar

vein, studies have leveraged open recursive resolvers to investigate

DNS manipulation whose likely purpose is to restrict user access to

content [27, 37]. Chung et al. reported onNXDOMAINwildcarding—

the practice of rewriting NXDOMAIN errors with A records that

point to a web server—and show that this form of DNS redirection

may be occurring at the ISP’s DNS server, public DNS servers,

and ISP middleboxes [12]. Using data from Netalyzr, Kreibich et
al. showed that NXDOMAIN wildcarding practices were prevalent

among several ISPs [30, 47, 48]. Complementing these findings, our

study shows that some instances of DNS interception occur due to

potentially misconfigured CPE infrastructure; replacing these CPE

devices sometimes suffices to prevent DNS interception. Our study

also differs from previous work on NXDOMAIN wildcarding in that

we study transparent interception rather than interception that is

detectable by the client.

Also using RIPE Atlas probes, Jones et al. and Wei et al. measure

how frequently DNS debugging queries (specifically hostname.bind)

towards root servers are redirected [24, 49]. Their discovery of DNS

redirection in existing RIPE Atlas datasets encouraged us to use

the platform for our pilot study on DNS interception, although our

work found version.bind to be better suited for our purposes.

Vallina-Rodriguez et al. measure the prevalence of DNS proxies

in cellular networks by sending queries to their own authoritative

nameserver [44]. Our work differs since we focus on where in the

network interception is happening instead of its prevalence.

Liu et al.measured the prevalence of DNS interception in a recent

study [31]. They performed DNS requests over both a commercial

proxy network and from several Chinese mobile networks to es-

timate how common DNS interception is, but did not investigate

where in the network interception takes place.

To the best of our knowledge, we are the first to investigate DNS

interception over IPv6. Our results on RIPE Atlas suggest that DNS

interception occurs far less frequently in IPv6 than in IPv4.

8 CONCLUSION
Our work provides a methodology for identifying the location of a

DNS interceptor, whether the interceptor is the host’s CPE device,

a device in the host’s AS, or elsewhere. Being able to empirically

determine such information — that would otherwise be invisible

to the user — is particularly relevant now when concerns about

privacy and integrity have led to multiple proposed standards for

embedding DNS traffic within encrypted tunnels: DNS over HTTPS

and DNS over TLS. While the complex and many-sided nature of

the debate around the deployment of such protocols is beyond the

scope of this short paper, it is motivated by precisely the kinds of

DNS interception that we observe and that can be more closely

monitored by using our work.

9 ACKNOWLEDGEMENTS
We thank our shepherd Matt Calder and the anonymous review-

ers for their insightful and constructive suggestions and feedback.

We also thank Cindy Moore for her support of the software and

hardware infrastructure necessary for this project. Funding for this

work was provided in part by National Science Foundation grants

CNS-1629973 and CNS-1705050, the Irwin Mark and Joan Klein

Jacobs Chair in Information and Computer Science, and generous

support from Google.

395



Home is Where the Hijacking is IMC ’21, November 2–4, 2021, Virtual Event, USA

REFERENCES
[1] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig.

2010. Comparing DNS Resolvers in the Wild. In Proc. ACM Internet Measurement
Conference (IMC). Melbourne, Australia, 15–21.

[2] Rami Al-Dalky and Kyle Schomp. 2018. Characterization of Collaborative Res-

olution in Recursive DNS Resolvers. In Proc. Passive and Active Measurement
Conference (PAM). Berlin, Germany, 146–157.

[3] Anonymous. 2012. The Collateral Damage of Internet Censorship by DNS Injec-

tion. In Proc. ACM SIGCOMM. Helsinki, Finland, 21–27.

[4] Anonymous. 2014. Towards a Comprehensive Picture of the Great Firewall’s

DNS Censorship. In Proc. USENIX Workshop on Free and Open Communications
on the Internet (FOCI). San Diego, CA, USA.

[5] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. 2013. Internet Censorship

in Iran: A First Look. In Proc. USENIXWorkshop on Free and Open Communications
on the Internet (FOCI). Washington, D.C., USA.

[6] Jeff Baumgartner. 2021. Comcast Taps Arris, Technicolor for ’XB6’ Gateways:

Sources. https://www.nexttv.com/news/comcast-taps-arris-technicolor-xb6-

gateways-sources-409944.

[7] RDK Central. 2021. CcspXDNS. https://wiki.rdkcentral.com/display/RDK/

CcspXDNS

[8] RDK Central. 2021. RDK Surpasses 80 Million Device Deployments Across

Leading Video and Broadband Service Providers. https://rdkcentral.com/rdk-

surpasses-80-million-device-deployments-across- leading-video-and-broadband-

service-providers/.

[9] RDK Central. 2021. Source code for RDK-B. https://code.rdkcentral.

com/r/plugins/gitiles/rdkb/components/opensource/ccsp/Utopia/+/

7afe5aba7c8e9b89a182cdcffe16159c3b431b16/source/firewall/firewall.c

[10] Fangfei Chen, Ramesh K. Sitaraman, andMarcelo Torres. 2015. End-UserMapping:

Next Generation Request Routing for Content Delivery. In Proc. ACM SIGCOMM.

London, United Kingdom.

[11] Chuck. 2011. “listen on 5353 too?”. https://groups.google.com/g/public-dns-

discuss/c/MfpyYHcqzjI

[12] Taejoong Chung, David Choffnes, and Alan Mislove. 2016. Tunneling for Trans-

parency: A Large-Scale Analysis of End-to-End Violations in the Internet. In

Proc. ACM Internet Measurement Conference (IMC). Santa Monica California USA,

199–213.

[13] Hacker Codex. 2012. How to Stop Your ISP from Hijacking Your DNS Servers.

https://hackercodex.com/guide/how-to-stop-isp-dns-server-hijacking/

[14] Tom Creighton, Chris Griffiths, Jason Livingood, and Ralf Weber. 2010. DNS

Redirect Use by Service Providers. Internet Draft: draft-livingood-dns-redirect-

03.

[15] Dnsmasq. 2021. Dnsmasq - network services for small networks. https://

thekelleys.org.uk/dnsmasq/doc.html

[16] Haixin Duan, Nicholas Weaver, Zongxu Zhao, Meng Hu, Jinjin Liang, Jian Jiang,

Kang Li, and Vern Paxson. 2012. Hold-On: Protecting Against On-Path DNS

Poisoning. In Proc. Workshop on Securing and Trusting Internet Names (SATIN).
London, United Kingdom.

[17] The Economist. 2013. France v Google. https://www.economist.com/business/

2013/01/12/france-v-google

[18] Xun Fan, John Heidemann, and Ramesh Govindan. 2013. Evaluating Anycast in

the Domain Name System. In Proc. IEEE Conference on Computer Communications
(INFOCOM).

[19] Xfinity Community Forum. 2019. Changing the DNS on my machine didn’t

work... https://forums.xfinity.com/t5/Your-Home-Network/Changing-the-DNS-

on-my-machine-didn-t-work/m-p/3268054#M309013

[20] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen Strowes, Pasi Sarolahti, and

Markku Kojo. 2010. An Experimental Study of Home Gateway Characteristics.

In Proc. ACM Internet Measurement Conference (IMC).
[21] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous,

or: one-domain-to-rule-them-all.org. In IEEE Conference on Communications and
Network Security (CNS).

[22] Paul Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH). RFC
9494. https://tools.ietf.org/html/rfc8484

[23] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul

Hoffman. 2016. Specification for DNS over Transport Layer Security (TLS). RFC
7858. https://tools.ietf.org/html/rfc7858

[24] Ben Jones, Nick Feamster, Vern Paxson, Nicholas Weaver, and Mark Allman.

2016. Detecting DNS Root Manipulation. In Proc. Passive and Active Measurement
Conference (PAM).

[25] Jaeyeon Jung, Arthur W. Berger, and Hari Balakrishnan. 2003. Modelling TTL-

based Internet Caches. In Proc. IEEE Conference on Computer Communications
(INFOCOM).

[26] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2002. DNS Per-

formance and the Effectiveness of Caching. In Proc. IEEE/ACM Transactions on
Networking.

[27] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten

Holz. 2015. Going Wild: Large-Scale Classification of Open DNS Resolvers. In

Proc. ACM Internet Measurement Conference (IMC).
[28] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Counting in the Dark:

DNS Caches Discovery and Enumeration in the Internet. In Proc. IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN).

[29] Mario Korf and Barb Strom. 2018. Introducing a New whoami Tool for DNS Re-

solver Information. https://developer.akamai.com/blog/2018/05/10/introducing-

new-whoami-tool-dns-resolver-information

[30] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. 2010.

Netalyzr: Illuminating the Edge Network. In Proc. ACM Internet Measurement
Conference (IMC).

[31] Liu, Baojun and Lu, Chaoyi and Duan, Haixin and Liu, Ying and Li, Zhou and Hao,

Shuang and Yang, Min. 2018. Who is Answering My Queries: Understanding

and Characterizing Interception of the DNS Resolution Path. In Proc. USENIX
Security. Baltimore, MD, USA, 1113–1128.

[32] Zhuoqing Morley Mao, Charles D. Cranor, Fred Douglis, Michael Rabinovich,

Oliver Spatscheck, and Jia Wang. 2002. A Precise and Efficient Evaluation of the

Proximity Between Web Clients and Their Local DNS Servers. In Proc. USENIX
Annual Technical Conference. Monterey, CA, USA.

[33] Andrew McGregor, Phillipa Gill, and Nicholas Weaver. 2021. Cache Me Outside:

A New Look at DNS Cache Probing. In Proc. Passive and Active Measurement
Conference (PAM). Virtual, 427–443.

[34] Giovane C.M.Moura, JohnHeidemann, Ricardo de O. Schmidt, andWes Hardaker.

2019. Cache Me If You Can: Effects of DNS Time-to-Live. In Proc. ACM Internet
Measurement Conference (IMC). Amsterdam, Netherlands, 101–115.

[35] RIPE NCC. 2015. Ripe Atlas: A Global Internet Measurement Network. Internet
Protocol Journal (2015).

[36] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E. Bustamante. 2012.

Content Delivery and the Natural Evolution of DNS: Remote DNS Trends, Per-

formance Issues and Alternative Solutions. In Proc. ACM Internet Measurement
Conference (IMC). Boston, MA, USA, 523–536.

[37] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and

Vern Paxson. 2017. Global Measurement of DNS Manipulation. In Proc. USENIX
Security. Vancouver, BC, Canada.

[38] Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, and Niels Provos. 2008.

Peeking Through the Cloud: DNS-Based Estimation and Its Applications. In Proc.
Applied Cryptography and Network Security Conference (ACNS). New York, NY,

USA.

[39] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. 2007. My

Botnet Is Bigger Than Yours (Maybe, Better Than Yours): Why Size Estimates

Remain Challenging. In Proc. USENIX Workshop on Hot Topics in Understanding
Botnets. Cambridge, MA, USA.

[40] Audrey Randall, Enze Liu, Gautam Akiwate, Ramakrishna Padmanabhan, Geof-

frey M. Voelker, Stefan Savage, and Aaron Schulman. 2020. Trufflehunter: Cache

Snooping Rare Domains at Large Public DNS Resolvers. In Proc. ACM Internet
Measurement Conference (IMC). Virtual, 50–64.

[41] Kyle Schomp, Tom Callahan, Michael Rabinovich, andMark Allman. 2014. Assess-

ing DNSVulnerability to Record Injection. In Proc. Passive and ActiveMeasurement
Conference (PAM). Los Angeles, CA, USA, 214–223.

[42] Sooel Son and Vitaly Shmatikov. 2010. The Hitchhiker’s Guide to DNS Cache Poi-

soning. In Proc. International Conference on Security and Privacy in Communication
Systems (SECURECOMM). Singapore, 466–483.

[43] Xfinity Help & Support. 2020. Overview of Xfinity Gateways. https://www.

xfinity.com/support/articles/broadband-gateways-userguides

[44] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian Kreibich, Nicholas

Weaver, and Vern Paxson. 2015. Beyond the Radio: Illuminating the Higher Layers

of Mobile Networks. In Proc. ACM Conference on Mobile Systems, Applications,
and Services (MobiSys). Florence, Italy, 375–387.

[45] Paul Vixie. 2009. What DNS is not. Commun. ACM 52, 12 (2009), 43–47.

[46] SoftEther VPN. 2021. VPNGate: Public VPN Relay Servers. https://vpngate.net

[47] Nicholas Weaver, Christian Kreibich, Boris Nechaev, and Vern Paxson. 2011.

Implications of Netalyzr’s DNS Measurements. In Proc. Workshop on Securing
and Trusting Internet Names (SATIN). Teddington, United Kingdom.

[48] Nicholas Weaver, Christian Kreibich, and Vern Paxson. 2011. Redirecting DNS

for Ads and Profit. In Proc. USENIX Workshop on Free and Open Communications
on the Internet (FOCI). San Francisco, CA, USA.

[49] Lan Wei and John S. Heidemann. 2020. Whac-A-Mole: Six Years of DNS Spoofing.

arXiv (2020). https://arxiv.org/abs/2011.12978

[50] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. 2003. Inferring Relative

Popularity of Internet Applications by Actively Querying DNS Caches. In Proc.
ACM Internet Measurement Conference (IMC). Miami, Florida, USA, 78–90.

[51] SuzanneWoolf and David Conrad. 2007. Requirements for aMechanism Identifying
a Name Server Instance. RFC 4892. https://tools.ietf.org/html/rfc4892

396



IMC ’21, November 2–4, 2021, Virtual Event, USA Randall, Liu, Padmanabhan, Akiwate, Voelker, Savage, and Schulman

A WHY VERSION.BIND IS NECESSARY TO
DETECT CPE INTERCEPTION

We identify cases where the CPE is the interceptor by sending a spe-

cific CHAOS TXT query for version.bind to the public address of
the CPE. Under ordinary routing rules, the CPE should not forward

this packet to any other destinations, so if we receive a response to

this query, we know the CPE has not obeyed usual routing rules

and might be the interceptor. A reader might ask why it is necessary

to send version.bind, which some resolvers are not configured

to answer, rather than any DNS request for an ordinary A record:

if we receive an answer for an ordinary A record request, does this

indicate that the CPE is the interceptor?

Our reasoning is that it does not, and our logic is as follows.

When a DNS request for an A record is sent to the CPE’s public IP

address, if the CPE’s port 53 is open, even a non-intercepting CPE

will return a response. This behavior is even true for version.bind
queries. Therefore, the result of a single query to the CPE’s public

IP address is not sufficient to determine if the CPE is the interceptor.

Our method relies on comparing the version.bind query sent to

the CPE’s public IP address with the version.bind query sent to

the public resolver. The answer to a version.bind query is a string
that is much more unique than an ordinary DNS response, and this

property is necessary for determining if the CPE is the interceptor.

Consider the following scenario if an ordinary DNS query were

used to determine the interceptor, leading to an incorrect conclusion.

Let us assume the CPE is not the interceptor, but it does have port

53 open. If we were to send a query for example.com to the CPE’s

public IP address, the CPE would forward that query to its DNS

resolver (for example, Comcast DNS) because its port 53 is open. We

would receive the IP address of example.com, for example, “1.2.3.4.”

Next, we send a query for example.com to a public DNS resolver
like Google DNS. The CPE is not the interceptor, so it sends the

query towards Google DNS as intended. The query is intercepted

further along the path, but no matter which resolver eventually

answers it, the response is “1.2.3.4.”

Now consider the case where the CPE is the interceptor. Both
queries for example.comwould be forwarded to the CPE’s resolver,
and both answers would come back as “1.2.3.4.” We cannot tell

whether the CPE was the interceptor because all answers to our

queries are identical. The advantage of using version.bind is that
it returns a more unique string. If the CPE is not the interceptor, but

does have port 53 open, the query to the CPE’s public IP address

will return its own answer to version.bind (e.g., “Dnsmasq 2.7.”).

The query to a public resolver such as Google DNS will arrive at

some non-CPE resolver further along the path, and will return that

resolver’s answer to version.bind (e.g., “PowerDNS”). The CPE’s

response to a version.bind query is unlikely to be identical to the
intercepting resolver’s response. But if the CPE is the interceptor,

both version.bind queries will be handled by the CPE’s resolver,

and they will return identical answers. We can therefore determine

with high confidence when the CPE is the interceptor.

B ETHICAL CONSIDERATIONS
Our work does not raise ethical concerns as we issue standard DNS

queries towards major public DNS resolvers from a platform with

volunteer-consent for such measurements.

397




