Due Date: September 30, 11:59pm

In all problems, prove the correctness of your algorithm and analyze its running time.

Problem 1: [10pts] Let $S = \{[s_i, f_i] : 1 \le i \le n\}$ be a set of *n* intervals. Each interval $[s_i, f_i]$ has a weight w_i . A subset $R \subseteq S$ is called *feasible* if no two intervals in *R* overlap, i.e. if $[s_i, f_i], [s_j, f_j] \in R$ then $[s_i, f_i] \cap [s_i, f_i] = \emptyset$. Describe an algorithm to find a feasible subset of *S* of maximum weight.

Problem 2: Let $T_1 = \langle p_1, ..., p_r \rangle$ and $T_2 = \langle q_1, ..., q_s \rangle$ be two sequences of points in \mathbb{R}^2 . A *correspondence* is an ordered pair of the form (p_i, q_j) . A set *C* of correspondences is *monotone* if for any two correspondences (p_i, q_j) and $(p_{i'}, q_{j'})$ in *C* with i < i', we have j < j'. Furthermore, *C* is called an *assignment* if every point p_i $(1 \le i \le r)$ and q_j $(1 \le j \le s)$ appears in at least one pair in *C*. The *dynamic time warping* (DTW) cost of a monotone assignment *C* is

$$dtw(T_1, T_2, C) = \sum_{(p,q) \in C} \|p - q\|^2$$

where ||p - q|| is the Euclidean distance between p and q. Define dtw $(T_1, T_2) = \arg \min_C dtw(T_1, T_2, C)$, where the minimum is taken over all monotone assignments.

- (a) [10pts] Describe an O(rs)-time algorithm to compute dtw (T_1, T_2) .
- (b) [10pts] Suppose that *s* is much larger than *r*, and we want to find a contiguous subsequence R_2 of T_2 such that dtw (T_1, R_2) is minimized among all contiguous subsequences of T_2 . How would you adapt the algorithm in (a) to compute dtw (T_1, R_2) such that the asymptotic running time stays the same?