Rubik’s Cube robot

• https://www.youtube.com/watch?v=iBE46R-fD6M
Search

- We have some actions that can change the state of the world
 - Change induced by an action is perfectly predictable
- Try to come up with a sequence of actions that will lead us to a goal state
 - May want to minimize number of actions
 - More generally, may want to minimize total cost of actions
- Do not need to execute actions in real life while searching for solution!
 - Everything perfectly predictable anyway
A simple example: traveling on a graph.
Searching for a solution

start state

C

B

D

F
goal state

A

2

3

3

2

2

9
Search tree

search tree nodes and states are not the same thing!
Full search tree

- **state = A**, cost = 0
 - **state = B**, cost = 3
 - **state = C**, cost = 5
 - **state = A**, cost = 7
 - **state = D**, cost = 3
 - **state = F**, cost = 12
 - **state = E**, cost = 7
 - **state = F**, cost = 11
 - **goal state!**
 - **goal state!**
 - **state = B**, cost = 10
 - **state = D**, cost = 10
Changing the goal: want to visit all vertices on the graph

need a different definition of a state
“currently at A, also visited B, C already”

large number of states: $n*2^{n-1}$

could turn these into a graph, but…
What would happen if the goal were to visit every location twice?
Key concepts in search

- **Set of states** that we can be in
 - Including an **initial state**...
 - ... and **goal states** (equivalently, a **goal test**)

- For every state, a set of **actions** that we can take
 - Each action results in a new state
 - Typically defined by **successor function**
 - Given a state, produces all states that can be reached from it

- **Cost function** that determines the cost of each action (or **path** = sequence of actions)

- **Solution**: path from initial state to a goal state
 - **Optimal solution**: solution with minimal cost
8-puzzle

game state

goal state
Generic search algorithm

• Fringe = set of nodes generated but not expanded

• fringe := \{node with initial state\}

• loop:
 – if fringe empty, declare failure
 – choose and remove a node \(v \) from fringe
 – check if \(v \)'s state \(s \) is a goal state; if so, declare success
 – if not, expand \(v \), insert resulting nodes into fringe

• Key question in search: Which of the generated nodes do we expand next?
Uninformed search

- Given a state, we only know whether it is a goal state or not
- Cannot say one nongoal state looks better than another nongoal state
- Can only traverse state space blindly in hope of somehow hitting a goal state at some point
 - Also called blind search
 - Blind does not imply unsystematic!
Breadth-first search
Properties of breadth-first search

• Nodes are expanded in the same order in which they are generated
 – Fringe can be maintained as a First-In-First-Out (FIFO) queue

• BFS is complete: if a solution exists, one will be found

• BFS finds a shallowest solution
 – Not necessarily an optimal solution

• If every node has b successors (the branching factor), first solution is at depth d, then fringe size will be at least b^d at some point
 – This much space (and time) required 😞
Depth-first search
Implementing depth-first search

- Fringe can be maintained as a Last-In-First-Out (LIFO) queue (aka. a stack)
- Also easy to implement recursively:
 - DFS(node)
 - If goal(node) return solution(node);
 - For each successor of node
 - Return DFS(successor) unless it is failure;
 - Return failure;
Properties of depth-first search

- Not complete (might cycle through nongoal states)
- If solution found, generally not optimal/shallowest
- If every node has b successors (the branching factor), and we search to at most depth m, fringe is at most b^m
 - Much better space requirement 😊
 - Actually, generally don’t even need to store all of fringe
- Time: still need to look at every node
 - $b^m + b^{m-1} + \ldots + 1$ (for $b>1$, $O(b^m)$)
 - Inevitable for uninformed search methods…
Combining good properties of BFS and DFS

- **Limited depth DFS**: just like DFS, except never go deeper than some depth d

- **Iterative deepening DFS**:
 - Call limited depth DFS with depth 0;
 - If unsuccessful, call with depth 1;
 - If unsuccessful, call with depth 2;
 - Etc.

- **Complete**, finds shallowest solution

- **Space requirements of DFS**

- **May seem wasteful timewise because replicating effort**
 - Really not that wasteful because *almost all effort at deepest level*
 - $db + (d-1)b^2 + (d-2)b^3 + \ldots + 1b^d$ is $O(b^d)$ for $b > 1$
Let’s start thinking about cost

- BFS finds shallowest solution because always works on shallowest nodes first
- Similar idea: always work on the lowest-cost node first (uniform-cost search)
- Will find optimal solution (assuming costs increase by at least constant amount along path)
- Will often pursue lots of short steps first
- If optimal cost is C, and cost increases by at least L each step, we can go to depth C/L
- Similar memory problems as BFS
 - Iterative lengthening DFS does DFS up to increasing costs
Searching backwards from the goal

• Sometimes can search backwards from the goal
 – Maze puzzles
 – Eights puzzle
 – Reaching location F
 – What about the goal of “having visited all locations”?

• Need to be able to compute *predecessors* instead of successors

• What’s the point?
Predecessor branching factor can be smaller than successor branching factor

- Stacking blocks:
 - only action is to add something to the stack

In hand: A, B, C
Start state

In hand: nothing
Goal state

We’ll see more of this...
Bidirectional search

• Even better: search from both the start and the goal, in parallel!

• If the shallowest solution has depth d and branching factor is b on both sides, requires only $O(b^{d/2})$ nodes to be explored!
Making bidirectional search work

• Need to be able to figure out whether the fringes intersect
 – Need to keep at least one fringe in memory…

• Other than that, can do various kinds of search on either tree, and get the corresponding optimality etc. guarantees

• Not possible (feasible) if backwards search not possible (feasible)
 – Hard to compute predecessors
 – High predecessor branching factor
 – Too many goal states
Repeated states can cause incompleteness or enormous runtimes.

Can maintain list of previously visited states to avoid this:
- If new path to the same state has greater cost, don’t pursue it further.
- Leads to time/space tradeoff.

“Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]
Informed search

- So far, have assumed that no nongoal state looks better than another

- Unrealistic
 - Even without knowing the road structure, some locations seem closer to the goal than others
 - Some states of the 8s puzzle seem closer to the goal than others

- Makes sense to expand closer-seeming nodes first
Heuristics

- Key notion: heuristic function $h(n)$ gives an estimate of the distance from n to the goal
 - $h(n) = 0$ for goal nodes

- E.g. straight-line distance for traveling problem

 ![Graph](image)

 - Say: $h(A) = 9, h(B) = 8, h(C) = 9, h(D) = 6, h(E) = 3, h(F) = 0$

- We’re adding something new to the problem!
- Can use heuristic to decide which nodes to expand first
Greedy best-first search

- Greedy best-first search: expand nodes with lowest h values first
- Rapidly finds the optimal solution!
- Does it always?
A bad example for greedy

- Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$
- Problem: greedy evaluates the promise of a node only by how far is left to go, does not take cost occurred already into account
A*

- Let $g(n)$ be cost incurred already on path to n
- Expand nodes with lowest $g(n) + h(n)$ first

Start state

- Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$

- Note: if $h=0$ everywhere, then just uniform cost search
Admissibility

• A heuristic is **admissible** if it never overestimates the distance to the goal
 – If \(n \) is the optimal solution reachable from \(n' \), then \(g(n) \geq g(n') + h(n') \)

• Straight-line distance is admissible: can’t hope for anything better than a straight road to the goal

• Admissible heuristic means that A* is always optimistic
Optimality of A*

• If the heuristic is admissible, A* is optimal (in the sense that it will never return a suboptimal solution)

• Proof:
 – Suppose a suboptimal solution node \(n \) with solution value \(C > C^* \) is about to be expanded (where \(C^* \) is optimal)
 – Let \(n^* \) be an optimal solution node (perhaps not yet discovered)
 – There must be some node \(n' \) that is currently in the fringe and on the path to \(n^* \)
 – We have \(g(n) = C > C^* = g(n^*) \geq g(n') + h(n') \)
 – But then, \(n' \) should be expanded first (contradiction)
A* is not complete (in contrived examples)

- No optimal search algorithm can succeed on this example (have to keep looking down the path in hope of suddenly finding a solution)
Consistency

- A heuristic is **consistent** if the following holds: if one step takes us from \(n \) to \(n' \), then \(h(n) \leq h(n') + \text{cost of step from } n \text{ to } n' \)
 - Similar to triangle inequality
 - Equivalently, \(g(n) + h(n) \leq g(n') + h(n') \)

- Implies admissibility

- It’s strange for an admissible heuristic not to be consistent!
 - Suppose \(g(n) + h(n) > g(n') + h(n') \). Then at \(n' \), we know the remaining cost is at least \(h(n) - (g(n') - g(n)) \), otherwise the heuristic wouldn’t have been admissible at \(n \). But then we can safely increase \(h(n') \) to this value.
A* is optimally efficient

• A* is **optimally efficient** in the sense that any other optimal algorithm must expand at least the nodes A* expands, if the heuristic is consistent.

• Proof:

 – Besides solution, A* expands exactly the nodes with $g(n) + h(n) < C^*$ (due to consistency)

 • Assuming it does not expand non-solution nodes with $g(n) + h(n) = C^*$

 – Any other optimal algorithm must expand at least these nodes (since there may be a better solution there)

• Note: This argument assumes that the other algorithm uses the same heuristic h
A* and repeated states

• Suppose we try to avoid repeated states

• Ideally, the second (or third, …) time that we reach a state the cost is at least as high as the first time
 – Otherwise, have to update everything that came after

• This is guaranteed if the heuristic is consistent
Proof

• Suppose n and n’ correspond to same state, n’ is cheaper to reach, but n is expanded first

• n’ cannot have been in the fringe when n was expanded because \(g(n’) < g(n) \), so
 \[
g(n’) + h(n’) < g(n) + h(n)
 \]

• So n’ is generated (eventually) from some other node n” currently in the fringe, after n is expanded
 \[
g(n) + h(n) \leq g(n’’) + h(n’’)
 \]

• Combining these, we get
 \[
g(n’) + h(n’) < g(n’’) + h(n’’), \text{ or equivalently} \]
 \[
h(n’’) > h(n’) + \text{cost of steps from n’’ to n’}
 \]

• Violates consistency
Iterative Deepening A*

- One big drawback of A* is the space requirement: similar problems as uniform cost search, BFS
- **Limited-cost depth-first A***: some cost cutoff c, any node with $g(n)+h(n) > c$ is not expanded, otherwise DFS
- **IDA*** gradually increases the cutoff of this
- Can require lots of iterations
 - Trading off space and time…
 - **RBFS** algorithm reduces wasted effort of IDA*, still linear space requirement
 - **SMA*** proceeds as A* until memory is full, then starts doing other things
More about heuristics

- One heuristic: number of misplaced tiles
- Another heuristic: sum of Manhattan distances of tiles to their goal location
 - Manhattan distance = number of moves required if no other tiles are in the way
- Admissible? Which is better?
- Admissible heuristic h_1 dominates admissible heuristic h_2 if $h_1(n) \geq h_2(n)$ for all n
 - Will result in fewer node expansions
- “Best” heuristic of all: solve the remainder of the problem optimally with search
 - Need to worry about computation time of heuristics…
Designing heuristics

• One strategy for designing heuristics: relax the problem (make it easier)

• “Number of misplaced tiles” heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there

• “Sum of Manhattan distances” corresponds to relaxed problem where multiple tiles can occupy the same spot

• Another relaxed problem: only move 1,2,3,4 into correct locations

• The ideal relaxed problem is
 – easy to solve,
 – not much cheaper to solve than original problem

• Some programs can successfully automatically create heuristics
Macro-operators

• Perhaps a more human way of thinking about search in the eights puzzle:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

sequence of operations = macro-operation

• We swapped two adjacent tiles, and rotated everything

• Can get all tiles in the right order this way
 – Order might still be rotated in one of eight different ways; could solve these separately

• Optimality?

• Can AI think about the problem this way? Should it?