TD-Gammon

CompSci 590.11
Ron Parr
Duke University

Some game background

• Backgammon is two player, alternating move, zero-sum game
• For now:
 • This class of problems is very similar to MDPs
 • Assume other player makes best move for them (worst move for us)
 • MDP-like algorithms will converge to \textit{minimax optimal} strategy
 • Maximizes worst case outcome for us

• AI history: Before RL existed as a term in AI, Arthur Samuel (also from IBM) made a checkers player that learned from experience – used ideas similar to what we call RL today
How most (computer) game players work

• Construct a **game tree** of possible moves
• Most interesting games cannot be searched to the end of the game (unless we are already very close to the end)
• Reason: Exponential growth in size of tree
• Players construct a partial game tree
• Use evaluation function to estimate result of searching to game end

• Evaluation function ~ value function
• Reward for winning and/or cost for losing
• Tune this with RL

Some Backgammon background

• Backgammon has dice, so has randomness

• Large state space: 10^{20}

• High branching factor: several hundred (much higher than chess)

• Deep search is impractical – can only do very shallow searches
Previous approaches

• Neuro-gammon viewed backgammon as supervised learning
• Trained NN on database of expert games
• Achieved “strong intermediate” level of play

• Limitations:
 • Experts may not be optimal
 • Experts may be contradictory
 • Nothing to enforce consistency
 • Expert games may see only a fraction of the state space

A note about \(\lambda \)

• When we introduced TD, we considered evaluating entire trajectories before updating vs. updating after each transition
• What if wanted to interpolate between these in some way?
• TD(\(\lambda \)) is an approach that does updates based upon multiple steps
 • TD(1) = Monte Carlo evaluation based on entire trajectories
 • TD(0) = standard TD algorithm
 • TD(\(\lambda \)) – (0<\(\lambda \)<1) combines both, with lower values closer to standard TD, and higher values closer to Monte Carlo
• Picking good \(\lambda \) = more data efficiency, but doesn’t change the fixed point
• RP:
 • Not always clear how to tweak \(\lambda \).
 • Would rather focus on better features/better algorithm than tweak \(\lambda \).
Training in TD-Gammon

• Initial feature representation was a raw encoding of board positions
• NN was simple by today’s standards – 40 hidden nodes
• Main training paradigm was “self play”
• TD-Gammon played both sides

• Achieved “strong intermediate” play after 200K games
• Parity with neuro-gammon, but neuro-gammon had carefully engineered features (Tesauro is a good backgammon player)

TD-Gammon 2.X

• Added 2-ply search

• Expert features from neuro-gammon

• 1.5M games of self play

• Played at master level!
Building on TD-Gammon

• Quite difficult to replicate this success in other domains
• For other games, NN diverged or just didn’t play well (e.g. chess, go)

• What’s special about backgammon?
 • Tesauro’s expert features
 • Possible to do well with linear, suggesting an “on ramp” for the NN
 • Smoothness introduced by randomness
 • Maybe people aren’t very good at backgammon?