
9/28/21

1

TD-Gammon
CompSci 590.11

Ron Parr
Duke University

Some game background

• Backgammon is two player, alternating move, zero-sum game
• For now:
• This class of problems is very similar to MDPs
• Assume other player makes best move for them (worst move for us)
• MDP-like algorithms will converge to minimax optimal strategy
• Maximizes worst case outcome for us

• AI history: Before RL existed as a term in AI, Arthur Samuel (also from
IBM) made a checkers player that learned from experience – used
ideas similar to what we call RL today

9/28/21

2

How most (computer) game players work

• Construct a game tree of possible moves
• Most interesting games cannot be searched to the end of the game (unless

we are already very close to the end)
• Reason: Exponential growth in size of tree
• Players construct a partial game tree
• Use evaluation function to estimate result of searching to game end

• Evaluation function ~ value function
• Reward for winning and/or cost for losing
• Tune this with RL

Some Backgammon background

• Backgammon has dice, so has randomness

• Large state space: 1020

• High branching factor: several hundred (much higher than chess)

• Deep search is impractical – can only do very shallow searches

9/28/21

3

Previous approaches

• Neuro-gammon viewed backgammon as supervised learning
• Trained NN on database of expert games
• Achieved “strong intermediate” level of play

• Limitations:
• Experts may not be optimal
• Experts may be contradictory
• Nothing to enforce consistency
• Expert games may see only a fraction of the state space

A note about l

• When we introduced TD, we considered evaluating entire trajectories
before updating vs. updating after each transition
• What if wanted to interpolate between these in some way?
• TD(l) is an approach that does updates based upon multiple steps

• TD(1) = Monte Carlo evaluation based on entire trajectories
• TD(0) = standard TD algorithm
• TD(l) – (0<l<1) combines both, with lower values closer to standard TD, and higher

values closer to Monte Carlo
• Picking good l = more data efficiency, but doesn’t change the fixed point
• RP:

• Not always clear how to tweak l
• Would rather focus on better features/better algorithm than tweak l

9/28/21

4

Training in TD-Gammon

• Initial feature representation was a raw encoding of board positions
• NN was simple by today’s standards – 40 hidden nodes
• Main training paradigm was “self play”
• TD-Gammon played both sides

• Achieved “strong intermediate” play after 200K games
• Parity with neuro-gammon, but neuro-gammon had carefully

engineered features (Tesauro is a good backgammon player)

TD-Gammon 2.X

• Added 2-ply search

• Expert features from neuro-gammon

• 1.5M games of self play

• Played at master level!

9/28/21

5

Building on TD-Gammon

• Quite difficult to replicate this success in other domains
• For other games, NN diverged or just didn’t play well (e.g. chess, go)

• What’s special about backgammon?
• Tesauro’s expert features
• Possible to do well with linear, suggesting an “on ramp” for the NN
• Smoothness introduced by randomness
• Maybe people aren’t very good at backgammon?

