Byzantine broadcast in n parties, to corrupt/malicious/Byzantine.

Agreement: No two honest generals take different actions.

Termination: Every honest general eventually either attacks or retreats.

Validity: If commander is honest, then output commander's order.
Dolev-Strong Protocol: (1983)

Intuition:
- If some honest party receives a value, share it with all honest parties.
- Eventually, one honest party learns x
 \[\downarrow\]
 all honest parties learn x.

Round 1: Commander (sender) sends value v to all parties.

Round 2: If I receive a value from the commander, then I send it to all parties.

Commit: If I receive exactly one value v, then output v.

output \top.

Round 1:

\[\begin{array}{c}
\text{K} \\
\text{V} \\
\text{V}'
\end{array}\]
Round 2:
\[v, v' \]
\[_ _ \]
\[_ _ \]
\[_ _ \]

Attack 2:

Round 1:
\[_ \]
\[_ \]
\[_ \]
\[_ \]

Solution:
Round 2: Do not consider commander's value.

If \(\leq 1 \) Byzantine:

\[M \geq 2 \] Byzantine parties.

Round 1:
\[_ \]
\[_ \]
\[_ \]
\[_ \]

No messages.
Round 2: {R, S, T} nothing.

We can tolerate Byzantine faults.