Byzantine broadcast

no parties, \(t \) corrupt/malicious/Byzantine

Commander

(attack)

Agreement: No two honest generals take different actions.

Termination: Every honest general eventually either attacks or retreats.

Validity: If commander is honest, then output commander's order.

Intuition:
- If some honest party receives a value, share it with all honest parties.
- Eventually, one honest party learns \(\star \)

\[\Downarrow \]
all honest parties learn \(\star \).

\[
\text{Round 1: Commander (sender) sends value } v \text{ to all parties.}
\]

\[
\text{Round 2: If I receive a value from the commander, then I send it to all parties.}
\]

\[
\text{Commit: If I receive exactly one value } v, \text{ then output } v.\]

\[
\text{output } 1.
\]

\[
\text{Round 1:}
\]

\[
\begin{array}{c}
\text{K} \\
\end{array}
\]

\[
\text{v, v'}
\]

\[
\text{c}
\]
Round 2:

\[v, v' \]
\[v' \]
\[v, v' \]
\[v \]
\[v' \]
\[v' \]

Attack 2:

Round 1:

\[K \]

Round 2:

Solution:

Round 2: Do not consider commander's value.

If \(\leq 1 \) Byzantine:

\[\geq 2 \] Byzantine parties.

Round 1:

\[k \]
\[\text{No messages.} \]
Round 2: nothing.

We can tolerate Byzantine faults.

Signature chains: \(p_1, p_2, \ldots, p_n \)

\[\langle \langle \langle \langle V, \frac{1}{p_i}, \frac{2}{s}, \frac{3}{s}, \ldots \rangle \rangle \rangle \langle m \rangle \]

What is a valid signature chain:
- in round \(i \), the signature chain received should be length \(i \).
- the signers in this chain should be distinct.
- signature should be valid.

Distinct signature chains: "value" should be distinct

Protocol:
\[\sum_{i=1}^{\infty} \langle \langle \langle \langle V, 1 \rangle \rangle \rangle \langle 0 \rangle \rangle \]
\[\text{tends } \langle \langle V, 1 \rangle \rangle \text{ to all} \]
Round n: server i sends s_i, other parties.

Rounds 2, ..., $t+1$: If a party receives a valid signature chain in round $(i-1)$ and it has not broadcasted 22 signature chains, then it appends to the chain & broadcasts.

Commit: if a party receives exactly 1 valid signature chain with value v, output v.

Agreement:

Termination: easy.

Validity:

Proof:
Agreement: If an honest party receives value v, all honest parties receive it.
Rounds 1, ..., t: h' will send it to everyone.
$t+1$: the chain has length $t+1$.
If some honest party h' in this chain, h' would have sent it to everyone.
\(n, t \) Byzantine \(t \leq n-2 \)

Latency: \(t+1 \) rounds \(k \) rounds \(O(n^{2-k}) \)

Communication complexity:
- \(\frac{2n^2}{2n^2 + t} \)
- \(n^2 \) all-to-all
- \(\leq t \) message size

1. Are \(O(t) \) rounds necessary?
2. Is \(O(n^2 t) \) communication necessary?

Dolev-Reischuk: \(O(t^2) \) lower bound\(^\dagger\)

\[^\dagger\text{(deterministic)}\]

Any BB protocol needs at least \(\frac{t^2}{4} \) messages.

To prove: \(\leq \frac{(t/2)^2}{4} \)

If a protocol fewer messages, 3 out honest party who does not receive any message.

If \(\leq \frac{(t/2)^2}{4} \) messages are sent, consider any set \(V \) of size \(t \) parties. If each party in \(V \)
receives $\geq \frac{t}{2}$ msgs, then $\geq \left(\frac{t}{2}\right)^2$ msgs.

If at least one party in V that receives
$\leq \frac{t}{2}$ msgs.

$\leq \frac{t}{2}$ different parties.

\[\text{World 1: Designed sender is honest:} \]
\[\text{Sender sends 0;} \]

Byzantine parties in V behave honestly except:
(i) they ignore the first $\frac{t}{2}$ messages sent to them.
(ii) they do not send any messages to each other.

Honest parties should output 0.