Dfinity Consensus
Dfinity Overview
Dfinity Overview

- **Proposed in 2018**
 - Original Paper - Timo Hanke, Mahnush Movahedi and Dominic Williams
 - goal: “block times of a few seconds and transaction finality of only 2 confirmation”

- **Dfinity Consensus**
 - Analysis Paper - Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren
Protocol
Dfinity Latency and Communication Complexity
Latency and Communication Complexity

- Types of adversaries
Latency and Communication Complexity

- Types of adversaries
 - Adaptive
 - Mildly / delayed adaptive
 - Static
Latency and Communication Complexity

- Types of adversaries
 - Adaptive
 - strongly adaptive, rushing/non-rushing, etc.
 - Mildly / delayed adaptive
 - must wait Δ time to corrupt party
 - Static
 - picks parties to corrupt before protocol starts
Latency and Communication Complexity

- We consider 2 types
 - Adaptive
 - Static
Latency and Communication Complexity

- We consider 2 types
 - Adaptive
 - can pick up to f parties to corrupt at any point
 - Static
 - picks up to f parties to corrupt before protocol starts
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case (think of adaptive adversary)
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case (think of adaptive adversary): $O(f \Delta)$
Latency and Communication Complexity

● Types of adversaries - adaptive / static
● Latency
 ○ Worst case: $O(f \Delta)$
 ○ Expected latency for block to be committed
 ■ optimistic case (actual communication delay is $\ll \Delta$)
 ■ pessimist case (actual communication delay is $= \Delta$)
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (actual communication delay $c << \Delta$)
 - only broadcast (step 1) must wait for 2Δ
 - all other communication happens at “network speed” ($<< \Delta$)
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f\Delta)$
 - Expected latency for block to be committed
 - optimistic case (actual communication delay $c << \Delta$)
 - only broadcast (step 1) must wait for 2Δ
 - all other communication happens at “network speed” ($<< \Delta$)
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iterations after honest leader will commit that leader’s proposed block
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f\Delta)$
 - Expected latency for block to be committed
 - optimistic case (actual communication delay $c << \Delta$)
 - only broadcast (step 1) must wait for 2Δ
 - all other communication happens at "network speed" ($<< \Delta$)
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iterations after honest leader will commit that leader’s proposed block
 - 3 iterations * $(2\Delta) + 2\Delta = 8\Delta$
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c \ll \Delta$): 8Δ
 - pessimistic case (communication delay $c = \Delta$)
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f\Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c \ll \Delta$): 8Δ
 - pessimistic case (communication delay $c = \Delta$)
 - assume f lowest-rank parties are Byzantine, certificate formed in $(f+1)\Delta$
 - expected time for certificate to be formed is 2Δ
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f \Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c \ll \Delta$): 8Δ
 - pessimistic case (communication delay $c = \Delta$)
 - assume f lowest-rank parties are Byzantine, certificate formed in $(f+1)\Delta$
 - expected time for certificate to be formed is 2Δ
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iteration after honest leader will commit that leader’s proposed block
Latency and Communication Complexity

- Types of adversaries - adaptive / static

- Latency
 - Worst case: $O(f \Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c \ll \Delta$): 8Δ
 - pessimistic case (communication delay $c = \Delta$)
 - assume f lowest-rank parties are Byzantine, certificate formed in $(f+1)\Delta$
 - expected time for certificate to be formed is 2Δ
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iteration after honest leader will commit that leader’s proposed block
 - 3 iterations * $(2\Delta + 2\Delta) + 2\Delta = 14\Delta$
Latency and Communication Complexity

● Types of adversaries - adaptive / static

● Latency
 ○ Worst case: \(O(f*\Delta) \)
 ○ Expected latency for block to be committed
 ■ optimistic case (c \(<<\) \(\Delta\)): \(8\Delta\)
 ■ pessimistic case (c = \(\Delta\)): \(14\Delta\)
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f \Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c << \Delta$): 8Δ
 - pessimistic case ($c = \Delta$): 14Δ
- Communication complexity
 - Originally
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f\Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c << \Delta$): 8Δ
 - pessimistic case ($c = \Delta$): 14Δ
- Communication complexity
 - Originally, unbounded
Latency and Communication Complexity

- Types of adversaries - adaptive / static
- Latency
 - Worst case: $O(f \Delta)$
 - Expected latency for block to be committed
 - Optimistic case ($c << \Delta$): 8Δ
 - Pessimistic case ($c = \Delta$): 14Δ
- Communication complexity
 - Originally, unbounded
 - Fix: add equivocation check
Latency and Communication Complexity

- **Types of adversaries** - adaptive / static

- **Latency**
 - Worst case: $O(f \Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c \ll \Delta$): 8Δ
 - pessimistic case ($c = \Delta$): 14Δ

- **Communication complexity**
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication complexity
 - honest leader expected every 2 rounds
 - all honest parties send blocks to one another: $O(n^2)$
Latency and Communication Complexity

- **Types of adversaries** - adaptive / static

- **Latency**
 - Worst case: $O(f\Delta)$
 - Expected latency for block to be committed
 - Optimistic case ($c << \Delta$): 8Δ
 - Pessimistic case ($c = \Delta$): 14Δ

- **Communication complexity**
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication: $O(n^2)$
 - Worst case: adaptive adversary
Latency and Communication Complexity

● Types of adversaries - adaptive / static

● Latency
 ○ Worst case: $O(f*\Delta)$
 ○ Expected latency for block to be committed
 ■ optimistic case ($c << \Delta$): 8Δ
 ■ pessimistic case ($c = \Delta$): 14Δ

● Communication complexity
 ○ Originally, unbounded
 ○ Fix: add equivocation check
 ■ Expected communication: $O(n^2)$
 ■ Worst case: adaptive adversary
 ● expected $O(f)$ iterations with Byzantine leader, so complexity is $O(n^3)$
Latency and Communication Complexity

- **Types of adversaries** - adaptive / static
- **Latency**
 - Worst case: $O(f\Delta)$
 - Expected latency for block to be committed
 - optimistic case ($c \ll \Delta$): 8Δ
 - pessimistic case ($c = \Delta$): 14Δ
- **Communication complexity**
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication: $O(n^2)$
 - Worst case: $O(n^3)$
Relating Dfinity to Other Protocols
Dfinity vs O(1) Protocol

- What happens when we remove invariant II?
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive)
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3) \text{ to } O(n^2)]$
- Latency (static / adaptive)
 - O(1) protocol has expected number of “rounds” = 13 (static) / 15 (adaptive)
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? **O(1) protocol**
- Number of Byzantine parties: **same as Dfinity**
- Communication complexity: **O(n^2) vs [O(n^3) to O(n^2)]**
- Latency (static / adaptive)
 - O(1) protocol has expected number of “rounds” = 13 (static) / 15 (adaptive)
 - 1 “round” in O(1) = 2Δ in Dfinity
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3) \text{ to } O(n^2)]$
- Latency (static / adaptive)
 - O(1) protocol has expected number of “rounds” = 13 (static) / 15 (adaptive)
 - 1 “round” in O(1) = 2Δ in Dfinity
 - O(1) static latency: 26Δ
 - O(1) adaptive latency: 30Δ
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? \(O(1) \) protocol
- Number of Byzantine parties: **same as Dfinity**
- Communication complexity: **\(O(n^2) \) vs \([O(n^3)\) to \(O(n^2)]\)**
- Latency (static / adaptive)
 - \(O(1) \) protocol has expected number of “rounds” = 13 (static) / 15 (adaptive)
 - 1 “round” in \(O(1) \) = 2\(\Delta \) in Dfinity
 - \(O(1) \) static latency: **26\(\Delta \)**
 - \(O(1) \) adaptive latency: **30\(\Delta \)**
 - Dfinity: **8\(\Delta /14\Delta \)**
Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3) \text{ to } O(n^2)]$
- Latency (static / adaptive): 26Δ / 30Δ vs 8Δ / 14Δ
Dfinity vs Nakamoto Consensus

- Number of Byzantine
Dfinity vs Nakamoto Consensus

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto:
Dfinity vs Nakamoto Consensus

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto: 1
 - Dfinity:
Dfinity vs Nakamoto Consensus

- Number of Byzantine: **Same**
- Number of blocks committed per round/iteration
 - Nakamoto: 1
 - Dfinity: 0 or 1 or multiple
- Communication Complexity
Dfinity vs Nakamoto Consensus

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto: 1
 - Dfinity: 0 or 1 or multiple
- Communication Complexity: $O(n^2)$ vs $[O(n^3) \text{ to } O(n^2)]$
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- Latency (real-world)
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - With Nakamoto, $\Delta=10$ seconds gives a block mine rate of 10 minutes
 - Transactions are considered committed after 6 blocks
 - $6 \text{ blocks} \times 10 \text{ minutes} = 60 \text{ minutes to confirm a transaction}$
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - With Nakamoto, $\Delta=10$ seconds gives a block mine rate of 10 minutes
 - Transactions are considered committed after 6 blocks
 - 6 blocks $\times 10$ minutes = **60 minutes to confirm a transaction**
 - With Dfinity, $\Delta=10$ seconds and expected latency of 8Δ to 14Δ
 - $[8\times10s$ to $14\times10s]$ = **80-140 seconds to confirm a transaction**
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - With Nakamoto, $\Delta=10$ seconds gives a block mine rate of 10 minutes
 - Transactions are considered committed after 6 blocks
 - $6 \text{ blocks} \times 10 \text{ minutes} = \text{60 minutes to confirm a transaction}$
 - With Dfinity, $\Delta=10$ seconds and expected latency of 8Δ to 14Δ
 - $[8 \times 10 \text{ s to } 14 \times 10 \text{ s}] = \text{80-140 seconds to confirm a transaction}$
 - Recall Dfinity goal: “block times of a few seconds and transaction finality of only 2 confirmation”
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- **Finality**
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- **Finality**
 - Can Nakamoto consensus have Private Mining attack?
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- **Finality**
 - Can Nakamoto consensus have Private Mining attack? Yes
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- **Finality**
 - Can Nakamoto consensus have Private Mining attack? **Yes**
 - Can Dfinity have Private Mining attack?
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- Finality
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack?
 - block verification procedure
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- **Finality**
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack?
 - block verification procedure
 - requires f+1 votes to certify a block
 - synchrony
Did Dfinity achieve its goal to be quicker & safer than Bitcoin?

- **Latency (real-world)**
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction

- **Finality**
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack? No
Thinking Further

- What are some shortcomings you see with Dfinity?
- What are some possible improvements?