Dfinity Consensus

Adam Carriker Jannis Stoeter

Dfinity Overview

Dfinity Overview

- Proposed in 2018
 - Original Paper Timo Hanke, Mahnush Movahedi and Dominic Williams
 - o goal: "block times of a few seconds and transaction finality of only 2 confirmation"
- Dfinity Consensus
 - Analysis Paper Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren

Protocol

Dfinity Latency and Communication Complexity

• Types of adversaries

• Types of adversaries

- Adaptive
- Mildly / delayed adaptive
- Static

• Types of adversaries

- Adaptive
 - strongly adaptive, rushing/non-rushing, etc.
- Mildly / delayed adaptive
 - must wait ∆ time to corrupt party
- Static
 - picks parties to corrupt before protocol starts

- We consider 2 types
 - Adaptive
 - Static

- We consider 2 types
 - Adaptive
 - can pick up to f parties to corrupt at any point
 - Static
 - picks up to f parties to corrupt before protocol starts

- Types of adversaries adaptive / static
- Latency
 - Worst case (think of adaptive adversary)

- Types of adversaries adaptive / static
- Latency
 - Worst case (think of adaptive adversary): $O(f^*\Delta)$

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (actual communication delay is $<< \Delta$)
 - pessimist case (actual communication delay is = Δ)

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (actual communication delay $c \ll \Delta$)
 - only broadcast (step 1) must wait for 2Δ
 - all other communication happens at "network speed" (<< Δ)

- Types of adversaries adaptive / static
- Latency
 - Worst case: O(f^{*}∆)
 - Expected latency for block to be committed
 - optimistic case (actual communication delay $c \ll \Delta$)
 - only broadcast (step 1) must wait for 2Δ
 - all other communication happens at "network speed" (<< Δ)
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iterations after honest leader will commit that leader's proposed block

- Types of adversaries adaptive / static
- Latency
 - Worst case: O(f^{*}∆)
 - Expected latency for block to be committed
 - optimistic case (actual communication delay $c \ll \Delta$)
 - only broadcast (step 1) must wait for 2Δ
 - all other communication happens at "network speed" (<< Δ)
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iterations after honest leader will commit that leader's proposed block
 - 3 iterations * $(2\Delta) + 2\Delta = 8\Delta$

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c $<< \Delta$): 8Δ
 - pessimistic case (communication delay $c = \Delta$)

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (communication delay $c = \Delta$)
 - assume f lowest-rank parties are Byzantine, certificate formed in $(f+1)\Delta$
 - \circ ~ expected time for certificate to be formed is 2 Δ

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (communication delay $c = \Delta$)
 - assume f lowest-rank parties are Byzantine, certificate formed in $(f+1)\Delta$
 - \circ ~ expected time for certificate to be formed is 2 Δ
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iteration after honest leader will commit that leader's proposed block

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (communication delay $c = \Delta$)
 - assume f lowest-rank parties are Byzantine, certificate formed in $(f+1)\Delta$
 - \circ ~ expected time for certificate to be formed is 2 Δ
 - expected iterations until honest leader: 2
 - Invariant I + Invariant III: 2 iteration after honest leader will commit that leader's proposed block
 - 3 iterations * $(2\Delta + 2\Delta) + 2\Delta = 14\Delta$

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally, unbounded

- Types of adversaries adaptive / static
- Latency
 - Worst case: $O(f^*\Delta)$
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally, unbounded
 - Fix: add equivocation check

- Types of adversaries adaptive / static
- Latency
 - Worst case: O(f^{*}∆)
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication complexity
 - honest leader expected every 2 rounds
 - all honest parties send blocks to one another: O(n²)

- Types of adversaries adaptive / static
- Latency
 - Worst case: O(f^{*}∆)
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication: O(n²)
 - Worst case: adaptive adversary

- Types of adversaries adaptive / static
- Latency
 - Worst case: O(f^{*}∆)
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication: O(n²)
 - Worst case: adaptive adversary
 - expected O(f) iterations with Byzantine leader, so complexity is O(n³)

- Types of adversaries adaptive / static
- Latency
 - Worst case: O(f^{*}∆)
 - Expected latency for block to be committed
 - optimistic case (c << ∆): 8∆
 - pessimistic case (c = Δ): 14 Δ
- Communication complexity
 - Originally, unbounded
 - Fix: add equivocation check
 - Expected communication: O(n²)
 - Worst case: O(n³)

Relating Dfinity to Other Protocols

• What happens when we remove invariant II?

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive)

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive)
 - O(1) protocol has expected number of "rounds" = 13 (static) / 15 (adaptive)

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive)
 - O(1) protocol has expected number of "rounds" = 13 (static) / 15 (adaptive)
 - 1 "round" in $O(1) = 2\Delta$ in Dfinity

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive)
 - O(1) protocol has expected number of "rounds" = 13 (static) / 15 (adaptive)
 - 1 "round" in $O(1) = 2\Delta$ in Dfinity
 - \circ O(1) static latency: 26 Δ
 - \circ O(1) adaptive latency: 30 Δ

Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive)
 - O(1) protocol has expected number of "rounds" = 13 (static) / 15 (adaptive)
 - 1 "round" in $O(1) = 2\Delta$ in Dfinity
 - \circ O(1) static latency: 26 Δ
 - \circ O(1) adaptive latency: 30 Δ
 - Dfinity: $8\Delta/14\Delta$

Dfinity vs O(1) Protocol

- What happens when we remove invariant II? O(1) protocol
- Number of Byzantine parties: same as Dfinity
- Communication complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$
- Latency (static / adaptive): $26\Delta / 30\Delta vs 8\Delta / 14\Delta$

• Number of Byzantine

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto:

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto: 1
 - Dfinity:

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto: 1
 - Dfinity: 0 or 1 or multiple
- Communication Complexity

- Number of Byzantine: Same
- Number of blocks committed per round/iteration
 - Nakamoto: 1
 - Dfinity: 0 or 1 or multiple
- Communication Complexity: $O(n^2)$ vs $[O(n^3)$ to $O(n^2)]$

• Latency (real-world)

- Latency (real-world)
 - With Nakamoto, Δ =10 seconds gives a block mine rate of 10 minutes
 - Transactions are considered committed after 6 blocks
 - 6 blocks * 10 minutes = 60 minutes to confirm a transaction

- Latency (real-world)
 - With Nakamoto, Δ =10 seconds gives a block mine rate of 10 minutes
 - Transactions are considered committed after 6 blocks
 - 6 blocks * 10 minutes = 60 minutes to confirm a transaction
 - \circ With Dfinity, $\Delta = 10$ seconds and expected latency of 8 Δ to 14 Δ
 - [8*10s to 14*10s] = 80-140 seconds to confirm a transaction

- Latency (real-world)
 - With Nakamoto, Δ =10 seconds gives a block mine rate of 10 minutes
 - Transactions are considered committed after 6 blocks
 - 6 blocks * 10 minutes = 60 minutes to confirm a transaction
 - \circ With Dfinity, $\Delta = 10$ seconds and expected latency of 8 Δ to 14 Δ
 - [8*10s to 14*10s] = 80-140 seconds to confirm a transaction
 - Recall Dfinity goal: "block times of a few seconds and transaction finality of only 2 confirmation"

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality
 - Can Nakamoto consensus have Private Mining attack?

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality
 - Can Nakamoto consensus have Private Mining attack? Yes

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack?

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack?
 - block verification procedure

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack?
 - block verification procedure
 - requires f+1 votes to certify a block
 - synchrony

- Latency (real-world)
 - Nakamoto: 60 minutes to confirm transaction
 - Dfinity: 80-140 seconds to confirm transaction
- Finality
 - Can Nakamoto consensus have Private Mining attack? Yes
 - Can Dfinity have Private Mining attack? No

Thinking Further

- What are some shortcomings you see with Dfinity?
- What are some possible improvements?