Compsci 101

Simple Sorting, Transform, Sets

Susan Rodger
Oct 18, 2022

Margot Shetterly

- Writer, Author of Hidden Figures

- Black Women NASA Scientists
- Gave a talk at Duke in 2016

M is for ...

- Machine Learning
- Math, Stats, Compsci: learning at scale
- Microsoft, Mozilla, Macintosh
- Software that changed the world?
- Memory
- Storage space in the computer
- From 64 Kilobytes to 16 Gigobytes!
- Mouse, Mouse pad
- Easier to navigate

Announcements

- APT-4 is out and due Thursday October 27
- Assignment 3 due Thursday, Oct 20
- Sakai quiz due today
- Lab 6 Friday, there is a prelab available now!
- Do not discuss APT Quiz 1 until grades posted!
- All Assign, APT, APT quiz 2 dates now on calendar!
- Last chance for regrades for Exam 1 is tonight 11pm

Prof Rodger no office hours today

- I will be at the majors fair in Penn Pavillion
- from 1-4pm if you want to ask questions about CompSci major
- Thursday office hours will be online only as I am traveling after class

Let's sort lists with sorted() function

- Want list elements in sorted order
- Example: have list [17, 7, 13, 3]
- Want list [3, 7, 13, 17], in order
- Built-in function: sorted(sequence)
- Returns new list of sequence in sorted order
- Sequence could be list, tuple, string

PFTD

- Simple Sorting
- Solving an APT
- Sets

Example

Ist $=[6,2,9,4,3] \quad$ Ist is $[6,2,9,4,3]$
Ista $=\operatorname{sorted}($ Ist)
b = ['ko', 'et', 'at', 'if’]
$\mathrm{c}=\operatorname{sorted}(\mathrm{b})$
b.remove('et')
b.append(6)
b.insert(1,5)
$\mathrm{c}=\operatorname{sorted}(\mathrm{b})$

Example

```
Ist \(=(7,4,1,8,3,2) \quad\) Ist is \(\quad(7,4,1,8,3,2)\)
Ista \(=\) sorted(Ist)
b = ('ko', 'et', 'at', 'if')
\(\mathrm{c}=\operatorname{sorted}(\mathrm{b})\)
d = "word"
e= sorted(d)
f = 'go far'
\(\mathrm{g}=\operatorname{sorted}(\mathrm{f})\)
f = 'go far'
h = sorted(f.split())
10/18/22

Compare sorted() with .sort()
```

Ista = [6, 2, 9, 4, 3]
Ista is [6, 2, 9, 4, 3]
|stb = sorted(Ista)
Ista.sort()
a=[7, 2, 9, 1]
b = a.sort()
c= (5, 6, 2, 1)
c.sort()
d = "word"
d.sort()

Now, sort lists with .sort() list method

- Want to "change" list elements to sorted order
- Ist is [17, 7, 13, 3]
- Ist.sort()
- Now same list lst is [3, 7, 13, 17], in order
- List method: list.sort()
- List is modified, now in sorted order
- There is NO return value
- Only works with lists, can’t modify strings, tuples

APT - TxMsg

Problem Statement

Strange abbreviations are often used to write text messages on uncomfortable mobile devices. One particular strategy for encoding texts composed of following: alphabetic characters. consonants.
alphabetic characters and spaces is the

- Spaces are maintained, and each word is encoded individually. A word is a consecutive string of
- If the word is composed only of vowels, it is written exactly as in the original message
- If the word has at least one consonant, write only the consonants that do not have another consonant immediately before them. Do not write any vowels.
- The letters considered vowels in these rules are ' a ', ' e^{\prime}, ' i ', ' o ' and ' u '. All other letters are considered

For instance, "ps i love u " would be abbreviated as "p i lv u" while "please please me" would be abbreviated as "ps ps m". You will be given the original message in the string parameter original. Return a string with the message/abbreviated using the described strategy.

```
Specification
filename: TxMsg.py
def getMessage(original):
    return String that is 'textized' version
    of String parameter original
    # you write code here
```


WOTO-2 - TxMsg
 http://bit.ly/101f22-1018-2

Examples

Examples

1. "text message"

Returns "tx msg"
5. "aeiou bcdfghjklmnpqrstvwxyz"

Returns: "aeiou b"

Write helper function transform

- How?
- Use seven steps
- Work an example by hand

Why use helper function 'transform'?

- Structure of code is easier to reason about
- Harder to develop this way at the beginning
- Similar to accumulate loop, build on what we know
- We can debug pieces independently
- What if transform returns "" for every string?
- Can we test transform independently of getMessage?

10/18/22

List vs Set

- List
- Ordered, $3^{\text {rd }}$ item, can have duplicates
- Example: $x=[4,6,2,4,5,2,4]$
- Set
- No duplicates, no ordering
- Example: y $=\operatorname{set}(x)$
- Both

- Add, remove elements
- Iterate over all elements

Python Sets

- Set - unordered collection of distinct items
- Unordered - can look at them one at a time, but cannot count on any order
- Distinct - one copy of each

$$
\begin{aligned}
& x=[5,3,4,3,5,1] \quad x \text { is }[5,3,4,3,5,1] \\
& y=\operatorname{set}(x) \\
& y . \operatorname{add}(6) \\
& y . \operatorname{add}(4)
\end{aligned}
$$

Python Sets

- Can convert list to set, set to list
- Great to get rid of duplicates in a list

$$
\begin{aligned}
& a=[2,3,6,3,2,7] \quad \text { a is }[2,3,6,3,2,7] \\
& b=\operatorname{set}(a) \\
& c=\operatorname{list}(b)
\end{aligned}
$$

Python Sets

- Operations on sets:
- Modify:
- add a.add(7)
- clear a.clear()
- remove a.remove(5)
- Create a new set: $a=\operatorname{set}([])$
- difference(-), intersection(\&), union (|), symmetric_difference(^)
- Boolean: issubset <=, issuperset >=

List and Set, Similarities/Differences

	Function for List	Function for Set
Adding element	x.append (elt)	x.add (elt)
Size of collection	len (x)	len (x)
Combine collections	$\mathbf{x}+\mathrm{y}$	
Iterate over	for elt in x :	for elt in x :
Element membership	elt in x	elt in x
Index of an element	x.index (elt)	CANNOT DO THIS

- Lists are ordered and indexed, e.g., has a first or last
- Sets are not ordered, very fast, e.g., if elt in \mathbf{x}

Python Set Operators

- Using sets and set operations often useful
- A | B, set union
- Everything

- A \& B, set intersection
- Only in both
- B - A, set difference
- In B and not A
- $A^{\wedge} B$, symmetric diff
- Only in A or only in B

10/18/22

Creating and changing a set

```
colorList = ['red', 'blue', 'red', 'red', 'green']
colorSet = set(colorList)
smallList = list(colorSet)
colorSet.clear()
colorSet.add("yellow")
colorSet.add("red")
colorSet.add("blue")
colorSet.add("yellow")
colorSet.add("purple")
colorSet.remove("yellow")
smallList is
```

Set Operations - Union and Intersection
UScolors = set(['red', 'white', 'blue']) dukeColors = set(['blue', 'white', 'black'])
print(dukeColors | UScolors)
print(dukeColors \& UScolors)

Set Operations - Difference

```
UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print(dukeColors - UScolors)
print(UScolors - dukeColors)
```


10/18/22

Set Operations - Symmetric Difference
UScolors = set(['red', 'white', 'blue']) dukeColors = set(['blue', 'white', 'black'])
print(dukeColors ^ UScolors)
print(UScolors ^ dukeColors)

Let's sort lists with sorted() function

- Built-in function: sorted(sequence)
- Returns new list of sequence in sorted order
- Sequence could be list, tuple, string
- Sequence could be set!
$a=\operatorname{set}([3,5,2,1,7,2,5)]$
b = sorted (a)

WOTO-3 Sets

http://bit.ly/101f22-1018-3

