
CompSci 201, L12:
Debugging and Testing

10/5/22 Compsci 201, Fall 2022, Debugging 1

Logistics, Coming up

10/5/22 Compsci 201, Fall 2022, Debugging 2

• Project 3: DNA (Linked List) available, due 10/17

• Wednesday, 10/5 (today)
• APT 5 Due

• Friday, 10/7
• Discussion, linked list

• Monday 10/10 – Tuesday 10/11
• Fall break, no class meeting, no helper/office hours

• Wednesday 10/12
• APT6 (linked list) due

Today’s agenda

1. Wrapping up linked list problems
• WOTO2 from 10/3
• Reverse in-place

2. Testing

3. Debugging

10/5/22 Compsci 201, Fall 2022, Debugging 3

Reviewing WOTO 2 from last time

duke.is/zsttj

Don’t need to complete
again, just reviewing answers.

10/5/22 Compsci 201, Fall 2022, Debugging 4

https://duke.is/zsttj

Canonical Linked List Problem

• How do we reverse nodes in a linked list (without
creating a new list)?
• Go from A->B->C to C->B->A
• Typical interview style question
• https://leetcode.com/problems/reverse-linked-

list/
• https://www.hackerrank.com/challenges/revers

e-a-linked-list

10/5/22 Compsci 201, Fall 2022, Debugging 5

https://leetcode.com/problems/reverse-linked-list/
https://www.hackerrank.com/challenges/reverse-a-linked-list

Methodical Development

• Turn list = ['A', 'B', 'C'] into
• rev = ['C', 'B', 'A']

• Move one node at a time, no new nodes!
• Iterative/loop solution with invariant

10/5/22 Compsci 201, Fall 2022, Debugging 6

BA Clistrev

Invariant to help reason about
code

• An invariant is something that is true each loop
guard check (top of the loop)
• May become false part way through loop
• Always re-established before guard check

• rev points to list reversed so far
• before loop iterates at all? rev = null
• Then at the end we just return rev

10/5/22 Compsci 201, Fall 2022, Debugging 7

one node at a time, assume
invariant!

• After one iteration: rev is list reversed so far
• list has moved to represent [B,C]
• So rev represents [A]

• How to move B to front?
• Why temp needed?
• Don't lose C-node!

10/5/22 Compsci 201, Fall 2022, Debugging 8

B Clist

Arev

temp

rev = [A], list = [B,C], change:
[B,A], [C]

• Pictures and code
1.temp = list.next (so we don't lose ['C'])
2.list.next = rev (add to front point to ['A'])
3.rev = list (reestablish invariant)
4.list = temp (list updated)

10/5/22 Compsci 201, Fall 2022, Debugging 9

ClistArev

temp
1

2

3

4
B

Working code, check invariant

• Initialization, rev?
• Update
• Check loop

10/5/22 Compsci 201, Fall 2022, Debugging 10

public ListNode reverse(ListNode front){
ListNode rev = null;
ListNode list = front;
while (list != null) {

ListNode temp = list.next;
list.next = rev;
rev = list;
list = temp;

}
return rev; // like front = rev

}

B Clist

Arev

Testing and Debugging

10/5/22 Compsci 201, Fall 2022, Debugging 11

An Algorithmic Problem-Solving
Process: UPIC

10/5/22 Compsci 201, Fall 2022, Debugging 12

Correctness
Test and debug to verify and fix the code.

Implement
Translate the algorithm into code.

Plan
Generalize insights, develop an algorithm.

Understand
Understand the problem you're trying to solve. Read carefully, do examples.

Only doing a lot of
actual programming in

this step!

Not really a linear process

Understand

Plan

Implement

Correctness

10/5/22 Compsci 201, Fall 2022, Debugging 13

So, something is not correct.
Could be…
1. My plan (algorithm) did

not match my
understanding.

2. My implementation does
not do what I wanted my
algorithm to do.

3. I did not fully understand
the problem.

First approach to correctness

• Natural temptation
to rely on reading
source code to
verify correctness.
• Like editing an essay

for a class, read and
check that it makes
sense, look for
typos.
• But…

10/5/22 Compsci 201, Fall 2022, Debugging 14

Code is complex and interrelated

Miss something in your
essay? The rest of the
essay may still make
sense?

One thing wrong in the
code? Could prevent the
whole program from
functioning. And code
gets complicated!

10/5/22 Compsci 201, Fall 2022, Debugging 15

Working C code from
1998 contest, see

wikipedia

https://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest

A tale of two programmers…

Too confident
“I’m amazing at
programming, I don’t
need to test my code
because I know it’s
correct.”

Low confidence
“My code doesn’t work,
that must be because I’m
personally bad at this.
There is no way I could
figure this out myself.”

10/5/22 Compsci 201, Fall 2022, Debugging 16

The beginning of a
security vulnerability,

broken app, …
Mistaken expectations,

Feeling helpless, not sure
what to do

What is testing?

Verifying that an implementation functions as expected.
• What is functionality is expected?
• Given an input, what output is expected?

Can test at multiple levels: single method (unit), class
(integration), whole project (integration/functionality), …

Black box testing (can run program, can’t see source
code) and white box testing (access to source code).

10/5/22 Compsci 201, Fall 2022, Debugging 17

SandwichBar APT Example

10/5/22 Compsci 201, Fall 2022, Debugging 18

Given:
• String[] available, a list of ingredients the

sandwich bar can use, and
• String[] orders, the types of sandwiches I like,

in order of preference (most preferred first)
return the 0-based index of the sandwich I will buy. If
the bar can make no sandwiches I like, return -1.
Example:
• available: { "ham", "cheese", "mustard" }
• orders: { "ham cheese" }
• Should return: 0

The first test: the compiler

• Compiler performs static analysis; check for errors
detectable in the source code before running.
• Often type errors (e.g., trying to assign a String to an int,

trying to treat an Array as a list, …)

10/5/22 Compsci 201, Fall 2022, Debugging 19

Manual test

• Given an input, what is the expected output?
• Run program with expected input. What do you

get?

10/5/22 Compsci 201, Fall 2022, Debugging 20

I expect the code to return 0,
example from before. And it

does! My solution must work!

How many tests are enough?

10/5/22 Compsci 201, Fall 2022, Debugging 21

That’s not right, I can’t make a ham
and cheese sandwich without ham…

• Can never have enough tests to guarantee
correctness, but…
• More and more diverse tests can help increase

confidence.

Automated testing?

For when you want to run many tests without
doing it manually one at a time…automate it!

You mostly use automated testing in 201 rather
than building it yourself:
• JUnit tests
• Gradescope autograder
• APT server

10/5/22 Compsci 201, Fall 2022, Debugging 22

Could learn this if you want, JUnit is a
general-purpose Java testing library, not

just 201. Examples in projects.

Test early, test small, test often

• Unit testing: Term for tests conducted on the smallest
units of code that take inputs and produce outputs.
• In Java, typically methods, preferably short ones

(10-20 lines). Test as soon as you write, don’t wait!
• Method getting too complex? Helper method!

10/5/22 Compsci 201, Fall 2022, Debugging 23

Expected output What your size() method returns

Debugging

10/5/22 Compsci 201, Fall 2022, Debugging 24

Understand

Plan

Implement

Correctness

Debugging loop

Debugging loop:
1. Detect unexpected

behavior through
testing.

2. Isolate cause of
unexpected behavior.

3. Change
implementation.

4. Test again.

How to isolate the cause of
unexpected behavior

• Want to identify the first point of divergence from
expected behavior.
• May have started long before your test result!

• Try to answer the question:
• What is the first line of code in which method of which

class that first did something different than I expected?
• Never fixate on line 30 if you’re not sure lines 1-29 are

working.

10/5/22 Compsci 201, Fall 2022, Debugging 25

Debugging Methods

• Three common methods:
• Examine code and small examples by hand
• Add print statements to code
• Use a debugger tool

• Today we will look at the basic debugger tool built
into an extension on your visual studio code.

10/5/22 Compsci 201, Fall 2022, Debugging 26

Good start, might
get complicated

Allows you to see the state of the
program while running. Tip: Can
add print statements for APTs,

will show up on server!To step through
execution line by line

Debugger tool

• Instead of run? Choose debug!
• Walk through execution of program line by line.
• See current state of all variables line by line.

10/5/22 Compsci 201, Fall 2022, Debugging 27

Set a breakpoint

• Start by setting a breakpoint in your code.
• Says “run the program until the first time this line

executes, then pause to step line by line.”
• If you want to go line by line from the beginning?

Set to first line in main.

10/5/22 Compsci 201, Fall 2022, Debugging 28

Debug options

Will see a menu like this:
• Continue: Go to next breakpoint
• Step over: Execute line, go to next. Run whole

methods.
• Step into: Same as over unless method call. Steps

into methods, jumping to first line of method code.
• Step out: Break out of method back to where called
• Restart: Start over again at first breakpoint
• Stop: Stop debugging session

10/5/22 Compsci 201, Fall 2022, Debugging 29

State of program

10/5/22 Compsci 201, Fall 2022, Debugging 30

Can see all values of
all local variables
while executing at
highlighted line.

Can step through to
determine first time
values diverge from
expectations.

Testing & Debugging SandwichBar

10/5/22 Compsci 201, Fall 2022, Debugging 31

Live coding

Debugging linked list?
• Appears as a nested “list”

of object references.

• Expand one node at a
time.

10/5/22 Compsci 201, Fall 2022, Debugging 32

Want something more visual?

pythontutor.com/java.html

Can use if you need to visualize stepping through
some pointer code.

10/5/22 Compsci 201, Fall 2022, Debugging 33

https://pythontutor.com/java.html

Debugging reflection

10/5/22 Compsci 201, Fall 2022, Debugging 34

Goal is to become a more active and
empowered tester and debugger.
• Build evidence the code as you develop.
• Take active steps to isolate the problem
• Test, use the debugger, gather data, reason

about it
• Less time staring at the code, feeling

frustrated
• Gain confidence, gain independence

Person in CS: Barbara Liskov

• Turing Award Winner in 2008 for
contributions to practical and theoretical
foundations of programming language and
system design, especially related to data
abstraction, fault tolerance, and distributed
computing.
• “The advice I give people in general is that

you should figure out what you like to do,
and what you can do well—and the two
are not all that dissimilar, because you
don’t typically like doing something if you
don’t do it well. ... So you should instead
watch—be aware of what you’re doing,
and what the opportunities are, and step
into what seems right, and see where it
takes you.”

10/5/22 Compsci 201, Fall 2022, Debugging 35

