CompSci 201, L13:
Recursion

Logistics, Coming up
* APT 6 due tomorrow, Thursday 10/13

* Project 3: DNA due next Monday, 10/17

* APT Quiz 1 due next Wednesday, 10/19

* Will release over the weekend
* No regular APTs next week, just the quiz

What is an APT Quiz?

* Set of 3 APT problems, 2 hours to complete.

* Will be available starting this weekend (sakai
announcement to release)

* Must complete by 11:59 pm Wednesday 10/19 (so start
before 10)

* Start the quiz on Sakai assessments tool, begins
your timer and shows you the link to the problems
and submission page.

* Will look/work just like the regular APT page, just with
only 3 problems.

What is allowed?

Yes, allowed No, not allowed

Same as Mini exam: * Collaboration or sharing
« Zybook any code.

. Course notes e Communication about

the problems at all

APl documentation during the window.

* VS Code * Searching internet,
 JShell stackoverflow, etc. for
solutions.

Don’t do these things

1. Do not collaborate. Note that we log all code
submissions and will investigate for academic
Integrity.

2. Do not hard code the test cases (if(input == X)
returny, etc.).

We show you the test cases to help you debug. But we
search for submissions that do this and you will get a 0 on
the APT quiz if you hard code the test cases instead of
solving the problem.

How is it graded?

Not curved, adjusted. 3 problems, 10 points each.

Raw score R out | Adjusted score A | 100 point grade
of 30. out of 30. scale

27<=R<=30 A=R 90-100

Can still get in the B

24 <=R<=26 A=26 ~87 :)
range even if you can’t

21<=R<=23 A=25 ~83 solve one; don’t panic!

18 <=R<=20 A=24 80

15<=R<=17 A=23 ~77

12<=R<=14 A=22 ~73

9<=R<=11 A=21 70

6 <=R <=8 A =20 ~G7 Only going to get a O if
you collaborate or hard

3<=R<=5 A=13 ~63 code test cases. Don’t

1<=R<=2 A=18 60 do it!

10/12/22 Compsci 201, Fall 2022, Recursion 6

Toward Recursion by counting
nodes

e Standard linked list iteration

* Advance local pointer, do something at each node

public int countIter(ListNode 1list) {
int total = 0;
while (list != null) {

total += 1;

list = list.next;

e Recursion? y

e Base Case? return totatl;

}
e General case?

. : . : : ,nd bublic int size(ListNode list) A{
Define size using size: if (list == null) return 0:

return 1 + size(list.next);

10/12/22 Compsci 201, Fall 2022, Recursion 7

Key ideas in recursion

Base case: Easy answer when input small
Recursive call(s): Get answer on subset of input

Do something with the result of the recursive
call(s) and then return

 Note: Method does not call itself
e Calls identical clone, with its own state
 Methods/calls stacked, like all methods

The call stack

Call Stack Objects
* Each method call gets |
its own frame (local i r':;; ./':j ./',':; -
variables, etc.)

list

* Invoking method does ===
o list
not resume until

invoked method it
returns. size:s

list 'null

Counting Nodes

4

e

public int size(ListNode 1list) {’,/’”

) N
int size (Node list)
if (list == null) return O;
return 1 + size(list.next)

int size (Node list)
if (list

null) return O;

.
int size(Node list)

if (list null) return O;
\return 1 + size(list.next)

)

Vs

N

if (list == null) return 0;

return 1 + size(list.next); 3
} //,,
int result = size(ptr); _.-7
System.out.println(result)’;

,,’ - ’,/’ - —‘_,2"’
pt§ T T T
s A - -
> > >]>u
"~;¢: _____ 1

-

int size (Node list)
if (list null) return O;

int size (Node list)

return 0;

10/12/22

\return 1 + size(list next)

J

Compsci 201, Fall 2022, Recursion

10

Recursion can be simpler/shorter

* Making a copy of a linked list

* |terative: traverse front to back, add@back

public ListNode copy(ListNode 1list) {
° |n|t|a||ze f|rst 1f (list == null) r‘etur.‘n null; . .
ListNode first = new ListNode(list.info,null);
list = list.next;

° Ca” neW} Ilnk ListNode last = first;
while (list != null) {

° Adva nce ptrs last.next = new ListNode(list.info);

last = last.next;
list = list.next;

}

return first;

10/12/22 Compsci 201, Fall 2022, Recursion 11

Copy via recursion

* Create one node, link to copy of rest
e Base case is null, sometimes one node
e Use result of recursive call
* Note: it's assigned to a .next field, where?

public ListNode copyRec(ListNode list) {
if (list == null) return null;
return new ListNode(list.info,copyRec(list.next));

10/12/22 Compsci 201, Fall 2022, Recursion

12

Developing and veriftying recursive
code

* Always verify base case
* Always null, sometimes one node

 Check solution with small size: one or two
* Trace through, look at recursive call
e Be sure result of call is used

* Generalize from N nodes, trust N-1 nodes
e Similar to proof by induction in math

Recall the reverse problem

* How do we reverse nodes in a linked list

* Go from A->B->C to C->B->A

* Typical interview style question
 https://leetcode.com/problems/reverse-linked-
list/

* https://www.hackerrank.com/challenges/revers

e-a-linked-list
%

10/12/22 Compsci 201, Fall 2022, Recursion 14

https://leetcode.com/problems/reverse-linked-list/
https://www.hackerrank.com/challenges/reverse-a-linked-list

Recursive reverse

* list and list.next? st —| & |—{ & {—f o |
e trust recursion

public Node reverse(Node list) {
if (list == null || list.next == null) {
return list;

afterMe ——

+
// in A->B->C->D, what does A point at?
list ——| «A” [/ aftopMa s DosCoSDosniil]
Node afterMe = reverse(list.nexti;
® : P list.next.next = list;
WIthOUt 116 list.next = null;
e circular! return afterMe;

10/12/22 Compsci 201, Fall 2022, Recursion 15

Visualizing Recursive reverse

* https://pythontutor.com/java.html

Frames Objects

main: 26

list e

10/12/22

ListNode instance ListNode instance

info| "a" info

"b" info

next / next

ListNode instance

"C"

/ next

Compsci 201, Fall 2022, Recursion

null

16

https://pythontutor.com/java.html

Frames Objects

main:27 ListNode ListNode ListNode
instance instance instance
IiSt |\ H n n H n n H n n
info| "a info info| "c
test L / /
next next next | null

reverse:15

ReverseExample instance

10/12/22 Compsci 201, Fall 2022, Recursion

17

Frames Objects

main:27 ListNode ListNode ListNode
instance instance instance
IiSt t H n " . n " . " 1]
info | "a info info| "c
test |- /
next next next | null

reverse:18

RevefseExample instance

10/12/22 Compsci 201, Fall 2022, Recursion

18

Frames

main:27
list

test

reverse: 18

this

list

reverse: 18

this

list

reverse:15
this
list

Objects

ListNode ListNode ListNode

instance instance instance
infO n a n /I/ info " b n infO n C n
next s next next | null

ReveirseExample instan

main:27

reverse:18

this ‘

Hst_

reverse:19
this
list

afterMe

10/12/22

ListNode
instance

info

next

RevefseExample instance

ListNode ListNode

instance instance
info "';2%, info|"c"
///// next | null

next

Compsci 201, Fall 2022, Recursion

20

Frames

main:27

list | -
test | -

reverse:18

reverse: 20
this
list

afterMe

10/12/22

Objects

ListNode
instance

info

next

ListNode ListNode
instance instance
1) n info n C "
~—
/ next| e

RevefseExample instance

Compsci 201, Fall 2022, Recursion

21

10/12/22

Frames Objects
main:27 ListNode ListNode
instance instance
Hst‘ .
L info
test

next

reverse:18

RevefseExample i

this ‘

Hst‘

reverse:21
this
list

afterMe

il

ListNode
instance

info

next

IICII

/

Compsci 201, Fall 2022, Recursion

22

10/12/22

Frames Objects

main:27 ListNode instance ListNode instance
list |- info | "a" info | "b"
test L next next | null
reverse:19 ReverseExample/ instance
this | ListNode instance
Ilst | info "C"
afterMe " I
— next

Compsci 201, Fall 2022, Recursion 23

10/12/22

Frames Objects

main:27 ListNode instance ListNode instance
list t info|"a" info|"b"
——
test t next next| e
reverse: 20 ReverseExamplg instance
this | ListNode instance
I|St | info n C n
afterMe - .
— next

Compsci 201, Fall 2022, Recursion 24

10/12/22

Frames Objects

main:27 ListNode instance ListNode instance
list | - info | "a" info | "b"
gy
test t next | null next| e
reverse:21 ReverseExamplg instance
this L ListNode instance
I|St | info llcll
terte « 1
— next

Compsci 201, Fall 2022, Recursion 25

10/12/22

Frames Objects

main:27 ListNode instance
list | - info | "a"
test t next | null
reverse:21 ReverseExampl
this L ListNode instance
Ilst | info " C 1]
afterMe i
— next
Return
value B

Compsci 201, Fall 2022, Recursion

ListNode instance

info

"bll
\.

instance

26

Analyzing Recursive Runtime

Develop a recurrence relation of the form

T (V) = a-T(g(N) + fF(N)
Where:

* T(N) - runtime of method with input size N

* a is the number of recursive calls
* g(N) - how much input size decreases on each recursive call

* f(N) - runtime of non-recursive code on input size N

10/12/22 Compsci 201, Fall 2022, Recursion 27

Analyzing Runtime of Recursive
Reverse

public Node reverse(Node 1list) {
if (list == null || list.next == null) {
return list;

+
// in A->B->C->D, what does A point at?

// afterMe -> D->C->B->null

Node afterMe = reverse(list.next);
list.next = null;
return afterMe;

}

T(N)
=T(N—1) + 0(1)

10/12/22 Compsci 201, Fall 2022, Recursion

28

Solving Recurrence Relation

Apply recurrence

TIN)=T(N—-1)+0(1) again to T(N-1)

= (T(N =2) + 0(1))

= (T(N —3)+3-0(1)

= T(1) +N-0(1)
= O0(N)

T(1) is base case,

just O(1)

10/12/22 Compsci 201, Fall 2022, Recursion 29

* In general, wi

recurrence relations and

ex

nectations in 201

| not be asked to solve recurrent

relations on exams (for later classes in theory).

* You Will be asked to determine the recurrence
relation of a given algorithm/code.

T (n)
T (n)
T (n)
T (n)
T (n)
T (n)

T (n/2)
T (n-1)
2T (n/2)
T(n/2)
2T (n/2)
T (n-1)

+
+
+
+
+
+

o(1)
o(1)
o(1)
O(n)
O (n)
O(n)

binary search
sequential search

tree traversal

gsort partition ,find k"
mergesort, quicksort

selection or bubble sort

O(log n)
O(n)

O(n)

O(n)

O(n log n)
O (n?)

WOTO
Go to duke.is/by8a9

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/by8a9

Recursive Sorting:
Mergesort

A simple insertion sort without
recursion

* Loop through original unsorted list.

 Maintain a sorted list so far, add one value at a
time. Insert into the correct position in sorted list.

Unsorted list Sorted list
3 2 4 1

* *

10/12/22 Compsci 201, Fall 2022, Recursion

33

A simple insertion sort without
recursion

* Loop through original unsorted list.

 Maintain a sorted list so far, add one value at a
time. Insert into the correct position in sorted list.

Unsorted list Sorted list
3 2 4 1 3

* *

* First value to insert, nothing to compare with.

A simple insertion sort without
recursion

* Loop through original unsorted list.

 Maintain a sorted list so far, add one value at a
time. Insert into the correct position in sorted list.

Unsorted list Sorted list
3 2 4 1 2 3

1) L)

* Insert 2 before 3

A simple insertion sort without
recursion

* Loop through original unsorted list.

 Maintain a sorted list so far, add one value at a
time. Insert into the correct position in sorted list.

Unsorted list Sorted list
3 2 4 1 2 3 |4

* *

e Insert 4 after 2 and 3

A simple insertion sort without
recursion

* Loop through original unsorted list.

 Maintain a sorted list so far, add one value at a
time. Insert into the correct position in sorted list.

Unsorted list Sorted list
4 1 1 2

* Insert 1 at front

3 2 3 4

Simple insertion sort code

8 public static List<Integer> insertSort(List<Integer> list) {

9 List<Integer> sorted = new ArraylList<>();

10 for (int val : list) {

11 int 1=0;

12 while (1 < sorted.size() && sorted.get(i) < val) {
13 1++;

14 }

15 sorted.add(i, val);

16 }

17 return sorted;

18 }

* Unlike Collections.sort, creates new list, does not
mutate input list.

* Runtime complexity? O(N2). Anything faster?

10/12/22 Compsci 201, Fall 2022, Recursion 38

Mergesort

High level idea:

e Base case: size 1
e Return list

* Recursive case:
* Mergesort(first half)
* Mergesort(second half)

10/12/22 Compsci 201, Fall 2022, Recursion

1811 4 |25

1111 8

3

11

/\

3

/\

/\

1811 4 |25

/\

5

/\

1

Zybook 18.4 29

Mergesort

High level idea:

e Base case: size 1
e Return list

* Recursive case:
* Mergesort(first half)
* Mergesort(second half)

* Merge the sorted
halves

e Return sorted

Helper

method

10/12/22 Compsci 201, Fall 2022, Recursion

8

1111181125

[\

11

[\

8

[\

3

11

4 1118

25

e

25

1

A

Zybook 18.4

Why mergesort is O(Nlog(N)),

* Halves at each level, so

INtultion

18

25

just O(log(N)) levels.

e If we can do all of the

/

11

merges at each level in

O(N) time?

e Overall O(Nlog(N)). f \

10/12/22

[\

\

8

25

\

8

1
18

25

3

11

Compsci 201, Fall 2022, Recursion

1

8/‘ .\4

Zybook 18.4

41

Comparing O(N4) and O(Nlog(N))
sorts empirically

N, number of insertionSort, Mergesort
Strings sorting O(N2), in ms O(Nlog(N)), in ms

10,000 54 6 O(Nlog(N)) sometimes

referred to as nearly
linear.
20,000 196 13
Double N and it doubles
40,000 783 24 runtime “plus a little”
30,000 3040 51

10/12/22 Compsci 201, Fall 2022, Recursion 42

19
20
21
22
23
24
25
26
27

Mergesort in Code

* Written to sort Strings instead of integers.

public static List<String> mergeSortList(List<String> list) {
if (list.size() <= 1) {

return 1ist; ecureiva alle First half: [0, mid)
} Second half: [mid, size())
int mid = list.size()/2;

List<String> firstHalfSorted = mergeSortList(list.subList(@, mid));
List<String> secondHalfSorted = mergeSortList(list.subList(mid, list.size()));
return merge(firstHalfSorted, secondHalfSorted);

}
* Unlike Collections.sort, this implementation returns
a new sorted list, does not mutate the input.

* Where are new lists created? merge helper
method.

10/12/22 Compsci 201, Fall 2022, Recursion 43

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

indexA indexB

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

1

///i:stA listB

1 3 4 2 5 6

* *

indexA indexB

10/12/22 Compsci 201, Fall 2022, Recursion 45

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

1 2
listA \ listB
1 3 4 2 5 6

indexA indexB

10/12/22 Compsci 201, Fall 2022, Recursion 47

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

1 2
listA
1 3 4 2 6

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

1 2 3
listA/
1 3 4 2 6

indexA indexB

10/12/22 Compsci 201, Fall 2022, Recursion 49

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

1 2 3
listA
1 3 4 2 6

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

indexA indexB

10/12/22 Compsci 201, Fall 2022, Recursion 51

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

indexA indexB

10/12/22 Compsci 201, Fall 2022, Recursion 53

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

indexA indexB

Merge method

e Given two sorted lists, 11stA and 1istB, want to
return a new sorted list with all values from both.

* Need to keep track of two indices, 1ndexA in
1istA and indexB in 11stB.

indexA indexB

10/12/22 Compsci 201, Fall 2022, Recursion

How to compare Strings?

* What is the equivalent of < for Strings?

* Use the compareTo method for the natural
lexicographic (dictionary/sorted) ordering.

'jshell> "a".compareTo("b"); Negative for “less than”

$30 ==> -1

jshell> "b".compareTo("b")

$31 => 0

$32 == 1

jshell> "az".compareTo("cb"); Lexicographic, check first character,
$37 ==> -2 second if equal, third if still equal, ...

10/12/22 Compsci 201, Fall 2022, Recursion 56

Merge method in code

29 public static List<String> merge(List<String> 1listA, List<String> 1listB) {

30 List<String> merged = new ArraylList<>();
31 int indexA = 0; New list, not mutating
32 int indexB = 0;

33 while (indexA < listA.size() && indexB < listB.size()) {

34 if (listA.get(indexA).compareTo(listB.get(indexB)) <= 0) {

35 merged.add(listA.get(indexA));

36 LndexA++; If 1istA value less than or
37 } equal to 1istB value, add it to
38 else { . , merged and increment indexA.
39 merged.add(listB.get(indexB));

40 indexB++;

41 } Else add 1istB value and

42 } increment indexB

* Not recursive! Just looping.
* Code shown incomplete. How to finish?

10/12/22 Compsci 201, Fall 2022, Recursion 57

Finishing merge method

43 if (indexA < listA.size()) {

44 merged.addAlL(listA.subList(indexA, listA.size()));
45 }

46 else {

47 merged.addAl1l(1listB.subList(indexB, listB.size()));
48 }

49 return merged;

* Overall runtime complexity?

* Need to iterate through every element in 1istA
and 11stB, constant time operations on each.

e IfnA=1istA.size() andnB=1istB.size(),
runtime complexity is O(nA+nB), linear.

10/12/22 Compsci 201, Fall 2022, Recursion 58

Runtime complexity of
mergesort?

19 public static List<String> mergeSortList(List<String> list) {
20 if (list.size() <= 1) {

21 return list;

22 }

23 int mid = list.size()/2;

24 List<String> firstHalfSorted = mergeSortList(list.subList(@, mid));

25 List<String> secondHalfSorted = mergeSortList(list.subList(mid, list.size()));
26 return merge(firstHalfSorted, secondHalfSorted);

27 }

10/12/22 Compsci 201, Fall 2022, Recursion 59

Depth of the
recursion tree:

Number of recursive
calls before base case.

10/12/22

Recursion tree

T(N)=N+T(N/2)+T(N/2)

T(N) = O(N log N)

Visualization from the Zybook
Compsci 201, Fall 2022, Recursion

Total complexity of
each level across all of
the recursive calls.

60

Person in CS: Ellen Ochoa

e BS physics (‘75), PhD EE (‘85).
* Starting working on software for
optical recognition systems in ‘80s.

* Applied to be an astronaut in...
» ‘85...rejected
» ‘87...rejected
e ‘90...accepted!!!

* Worked on flight software, computer
hardware, and robotics

* First Hispanic woman in space ‘93

* Director of NASA Johnson Space Flight
Center (Houston) ‘13

10/12/22 Compsci 201, Fall 2022, Recursion 61

